Sectoral trading, a next step in the international agreements on climate change?
Analysis of Sectoral Trading Proposition with EPPA
In the IEA reference scenario, non-OECD countries emissions in 2030 represent nearly 70% of the world emissions and in these countries, emissions from power generation represents nearly 50% of the national emissions.

World CO₂ emissions in 2030 in the IEA reference scenario / EPPA No-policy scenario

<table>
<thead>
<tr>
<th></th>
<th>Total CO₂ emissions (Mt)</th>
<th>of which power generation (Mt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>World</td>
<td>40.2</td>
<td>17.8</td>
</tr>
<tr>
<td>- OECD countries</td>
<td>12.4</td>
<td>5.0</td>
</tr>
<tr>
<td>- Non-OECD countries</td>
<td>26.4</td>
<td>12.8</td>
</tr>
<tr>
<td>- China</td>
<td>11.6</td>
<td>6.4</td>
</tr>
<tr>
<td>- India</td>
<td>3.4</td>
<td>1.8</td>
</tr>
</tbody>
</table>

International marine and aviation bunkers are reported at the world level

Source: World Energy Outlook 2009
Context

World CO₂ emissions

Chinese CO₂ emissions by sector

Indian CO₂ emissions by sector

Friday Lunch Meeting, July 2011
Sectoral Trading : What is it ? Why has it been proposed?

Example of sectoral trading between the Chinese electricity sector and a carbon market in some developed countries

- To avoid carbon lock-in and spur early investment in low-carbon technologies
- To make developing countries participate into a global agreement even if they do not make nation-wide commitments
- To move from a project-based mechanism (CDM) to a sector-based mechanism
- A way to link carbon markets ?

Proposed and discussed by the Europe Union, International Energy Agency, Öko-Institut, Center for Clean Air Policy, International Chamber of Commerce...

Friday Lunch Meeting, July 2011
Our Work: CGE analysis of Sectoral Trading

• Impact on the emissions of each country involved?

• Impact on the carbon price?

• Impact on the energy sector of the countries involved?

• Impact on the rest of their economy?

• Financial Transfers induced? Welfare changes?
Method: EPPA Model

MIT Emissions Prediction and Policy Analysis (EPPA) Model

- **Primary Factors**
 - Income
 - Expenditures

- **Goods & Services**
 - Consumer Sectors
 - Producer Sectors

- **Regions**
 - Region A
 - Region B
 - Region C

Model Features
- All greenhouse-relevant gases
- Flexible regions
- Flexible producer sectors
- Energy sector detail
- Welfare costs of policies

Mitigation Policies
- Emissions limits
- Carbon taxes
- Energy taxes
- Tradeable permits
- Technology regulation

Regions in EPPA 5
- United States (USA)
- Canada (CAN)
- Japan (JPN)
- Australia-New Zealand (ANZ)
- Europe (EUR)
- Mexico (MEX)
- Europe and Central Asia (ROE)
- Russia (RUS)
- East Asia (ASI)
- China (CHN)
- India (IND)
- Brazil (BRA)
- Africa (AFR)
- Middle East (MES)
- Rest of Latin America (LAM)
- Rest of Asia (REA)

Sectors in EPPA 5
- Agriculture – crops (CROP)
- Agriculture – livestock (LIVE)
- Agriculture – forestry (FORS)
- Food product (FOOD)
- Energy-intensive Industries (EINT)
- Transport (TRAN)
- Services (SERV)
- Other Industries (OTHR)
- Coal (COAL)
- Crude Oil (OIL)
- Refined Oil (ROIL)
- Gas (GAS)
- Electricity (ELEC)

Electricity Generation
- Coal
- Gas
- Refined Oil
- Hydro
- Nuclear
- Wind and Solar
- Biomass
- NGCC
- NGCC-CCS
- IGCC-CCS

Figure 2. The circular flow of goods and resources in EPPA.
Method: Model Extension on EPPA 5

Emissions permits in EPPA:

- International permits → International carbon price
- National permits → National carbon price
- National, sectoral permits → Sectoral carbon price

Model extension that was required:

Programming to allow trade between international or national carbon price and a sectoral carbon price

Scenarios on CO₂ only, in the time frame 2010-2030
Main results from our CGE analysis

Sectoral trading

- in the developing countries involved:
 - reduces the total amount of electricity generated
 - reduces the use of coal and increases fossil generation efficiency
 - does not justify low carbon technologies on an economic basis
 - induces some internal leakage

- in the developed countries involved:
 - lowers carbon price
 - cancels part of the electricity generation changes observed without sectoral trading

- induces substantial financial transfers between the countries, but benefits more the developed countries than the developing countries involved
Two case studies

- Sectoral trading between a U.S. cap and trade system and Chinese Electricity sector
 - Chinese Energy/Climate Policy
 - Scenarios used
 - Results
- Sectoral trading between the EU-ETS and the electricity sector of 4 emerging economies: China, India, Brazil and Mexico
 - European Union targets
 - Scenarios used
 - Main results
Two case studies

- Sectoral trading between a U.S. cap and trade system and Chinese Electricity sector
 - Chinese Energy/Climate Policy
 - Scenarios used
 - Results

- Sectoral trading between the EU-ETS and the electricity sector of 4 emerging economies: China, India, Brazil and Mexico
 - European Union targets
 - Scenarios used
 - Main results
Chinese Energy Policy

- 40-45% reduction in carbon intensity for 2005-2020
- 15% of non-fossil fuels in primary energy consumption in 2020
 (non fossil includes hydro, nuclear, solar, wind, biomass, etc)
- Increase forest coverage by 40Mha by 2020

- 70GW of nuclear by 2020 contracted, maybe 18 GW more
 (depending on capacity factor, 70GW is approximately 2 EJ of electricity);
- For 2015, 40GW of nuclear is expected; 400-500GW of nuclear by 2050;

Other targets:
- 100GW of wind by 2020 (currently 25GW in 2009);
- Feed-in tariffs for biomass and wind power;
- Increase gas : up to 10% of total energy use by 2020 (now 4%?);
- Requirement for large power firms are required to have more than 3% of their installed capacity from renewables excluding hydropower by 2010, and 8% by 2020;
- Rebates for electric cars and small cars.
Scenarios Used

<table>
<thead>
<tr>
<th>Scenarios Used</th>
<th>Cap on US emissions</th>
<th>Cap on Chinese electricity emissions</th>
<th>Sectoral trading</th>
</tr>
</thead>
<tbody>
<tr>
<td>No-Policy</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>US-CAP</td>
<td>30% reduction below 2005 levels by 2030</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>TRADE</td>
<td>30% reduction below 2005 levels by 2030</td>
<td>BAU emissions</td>
<td>Sectoral trading</td>
</tr>
<tr>
<td>Alternative constraints</td>
<td>30% reduction below 2005 levels by 2030</td>
<td>More stringent constraints</td>
<td>Sectoral trading</td>
</tr>
</tbody>
</table>
Emissions and Carbon Price

U.S. Emissions

Chinese Electricity Sector Emissions

Carbon Price

Friday Lunch Meeting, July 2011
Electricity Generation in China

7% increase in the efficiency of fossil electricity
Electricity Generation in the U.S.

No Policy

US-CAP Scenario

TRADE Scenario

Friday Lunch Meeting, July 2011
Rest of the Chinese economy

Increased emissions in all the other sectors of the Chinese economy, except in transport and refined oil sectors.

- Electricity price increases (+29% in 2030) → Output decreases in all sectors (-2% in energy intensive industries, -1% in transport)
- Coal price decreases (-15% in 2030) → Increased use of coal by all sectors except transport and refined oil

→ increased emissions in all sectors except transport and refined oil

In aggregate, internal leakage towards the rest of the Chinese economy:
0.38 Gt CO$_2$ in 2030
= 19% of the reductions in Chinese emissions from electricity
Or 12% of the reduction imposed by the US cap.
Welfare and Financial Transfers

Value of permits traded: $16 billions in 2020, $42 billions in 2030
total exports from the US to China in 2009: $69 billions
trade deficit between the China and the US in 2009: $227 billions

Welfare change in China: - 0.1% in 2030, compared to the US-CAP scenario

Welfare change in the U.S.: + 0.6% in 2030, compared to the US-CAP scenario

→ Further analysis when a more stringent constraint is imposed on Chinese electricity emissions
Alternative Constraints on Chinese Electricity Emissions

Carbon Price

Financial Transfers from the U.S. to China

Welfare Change relative to the No Policy Scenario

Friday Lunch Meeting, July 2011
Conclusions for the U.S.-China case study

In China
- Reduces the total amount of electricity generated in China by 4.4 EJ (12%) in 2030, compared to the US-CAP scenario
- Electricity from coal decreases by 6.9 EJ (30%),
- Electricity price increases by 29% in 2030, coal price decreases by 15% in 2030
- Fossil electricity efficiency increases by 7%
- Limited impact on the low carbon technologies in Chinese electricity sector
- Internal leakages due to this sectoral regime: 0.38 bmt CO2 in 2030 (=12% of the reduction imposed in the US)

In the US
- It lowers the carbon price from $105 to $21/t CO2.
- Less changes in the electricity generation

Substantial financial transfers:
- $16 billions in 2020, $42 billions in 2030 if there is no constraint on Chinese electricity sector.
- But welfare is improved in the U.S. and not really in China.

Note: The model allows to analyze the economic response of the Chinese economy to the proposition of sectoral trading, but China can support some technologies with other policies
Two case studies

- Sectoral trading between a U.S. cap and trade system and Chinese Electricity sector
 - Chinese Energy/Climate Policy
 - Scenarios used
 - Results

- Sectoral trading between the EU-ETS and the electricity sector of 4 emerging economies: China, India, Brazil and Mexico
 - European Union targets
 - Scenarios used
 - Main results
European Union climate policy

EU-ETS since 2005

European targets:
- 20% reduction of their emissions by 2020 below 1990 levels
- 20% of EU electricity generation to come from renewable energies
- 20% reduction in primary energy use, through energy efficiency improvement

Strong shares of fossil fuels in the electricity generation of developing countries: coal in China and India, coal, oil and gas in Mexico

Sectoral trading seen as a way to extend the EU carbon market to emerging countries.
Scenarios Used

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Cap on US emissions</th>
<th>Sectoral trading with</th>
</tr>
</thead>
<tbody>
<tr>
<td>No-Policy</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>EU-ETS</td>
<td>30% reduction by 2020, 44% reduction by 2030, below 1990 levels</td>
<td>No</td>
</tr>
<tr>
<td>EU-ETS-CHN</td>
<td>As above</td>
<td>Chinese electricity sector, Trading baseline : BAU</td>
</tr>
<tr>
<td>EU-ETS-MEX</td>
<td>As above</td>
<td>Mexican electricity sector, Trading baseline : BAU</td>
</tr>
<tr>
<td>EU-ETS-ALL4</td>
<td>As above</td>
<td>Chinese, Mexican, Brazil and India electricity sectors, Trading baseline : BAU</td>
</tr>
</tbody>
</table>

Assumption: no carbon policy in China or India, no banking behavior in EU

Friday Lunch Meeting, July 2011

22
Emerging Countries Emissions

Chinese Electricity Emissions

Indian Electricity Emissions

Brazilian Electricity Emissions

Mexican Electricity Emissions

Friday Lunch Meeting, July 2011
Electricity Generation in China

No Policy

Sectoral Trading between the EU-ETS and China

Sectoral Trading with the Four Countries

Friday Lunch Meeting, July 2011
Electricity Generation in Mexico

No Policy

Sectoral Trading between the EU-ETS and Mexico

Sectoral Trading with the Four Countries

Friday Lunch Meeting, July 2011
Electricity Generation in the European Union

No Policy

EU-ETS

Sectoral Trading between the EU-ETS and China

Sectoral Trading between the EU-ETS and Mexico

Friday Lunch Meeting, July 2011
Electricity Generation in the European Union

No Policy

EU-ETS

Sectoral Trading with the Four Countries

Friday Lunch Meeting, July 2011
Carbon Price and Financial Transfers

With China

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon price</td>
<td>$ / t CO₂</td>
<td>1.9</td>
</tr>
<tr>
<td>Permits transfers</td>
<td>Mt CO₂</td>
<td>206</td>
</tr>
<tr>
<td>Financial transfers</td>
<td>$ millions</td>
<td>401</td>
</tr>
</tbody>
</table>

With Mexico

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon price</td>
<td>$ / t CO₂</td>
<td>11.7</td>
</tr>
<tr>
<td>Permits transfers</td>
<td>Mt CO₂</td>
<td>8</td>
</tr>
<tr>
<td>Financial transfers</td>
<td>$ millions</td>
<td>101</td>
</tr>
</tbody>
</table>

Sectoral trading between the EU-ETS and the electricity sector of one country only

Sectoral trading between the EU-ETS and the electricity sector of the four countries

European trade deficit with China in 2009 : 133 billions €, trade surplus with Mexico in 2009 : 6 billions €, trade surplus with India : 2 billions €, trade deficit with Brazil : 4 billions €
Conclusion for the EU case study

In the EU-ETS
- Lowers the carbon price to less than $10/t CO2 if trading with China or India (under our assumptions),
If such a mechanism were used, would there be conditions for the use of it or a limit to the number of credits that the European Union could buy?
- Changes in the European electricity sector due to the EU-ETS are canceled

In developing countries
- Impacts are much smaller than with the US, due to the smaller size of the EU-ETS
 - Little impact on Chinese electricity generation: 1 EJ (3%) decrease in the total amount of electricity generated.
 - Some impact on Mexican electricity generation if China is not involved: 0.08 EJ (9%) decrease in the total amount of electricity generated in 2030.
- Very limited impact on low carbon technologies

Financial transfers are strongly dependent on the nature and the size of the countries involved
Conclusion

<table>
<thead>
<tr>
<th></th>
<th>Carbon Price</th>
<th>Volume of Permits</th>
<th>Financial Transfers</th>
<th>Trade balance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$/t CO2</td>
<td>Mt CO2</td>
<td>2005 $ billions</td>
<td>billions</td>
</tr>
<tr>
<td></td>
<td>2020 2030</td>
<td>2020 2030</td>
<td>2020 2030</td>
<td></td>
</tr>
<tr>
<td>US-China</td>
<td>13.6 21.4</td>
<td>1172 1940</td>
<td>16 42</td>
<td>- $ 227</td>
</tr>
<tr>
<td>EU-ETS-China</td>
<td>1.9 3.7</td>
<td>206 413</td>
<td>0.40 1.5</td>
<td>- 133 €</td>
</tr>
<tr>
<td>EU-ETS-Mexico</td>
<td>11.7 29.4</td>
<td>8 19</td>
<td>0.10 0.6</td>
<td>+6 €</td>
</tr>
<tr>
<td>EU-4 countries</td>
<td>1.5 2.7</td>
<td>221 451</td>
<td>0.32 1.2</td>
<td>- 129 €</td>
</tr>
</tbody>
</table>
Conclusion

Sectoral trading

• in the developing countries involved:
 - reduces the total amount of electricity generated
 - reduces the use of coal and increases fossil generation efficiency
 - does not justify low carbon technologies on an economic basis
 - induces some internal leakage

• in the developed countries involved:
 - lowers carbon price
 - cancels part of the electricity generation changes observed without sectoral trading

• induces substantial financial transfers between the countries, but benefits more the developed countries than the developing countries involved
Some References

• Sectoral Approaches in Electricity, Building bridges to a Safe Climate, IEA, 2009 (livre)
• Sectoral Approaches to Greenhouse Gas Mitigation, IEA, 2007
• Sectoral Approaches to GHG Mitigation: Scenarios for Integration, IEA 2006
• Sectoral Crediting Mechanisms for Greenhouse Gas Mitigation: Institutional and Operational Issues, IEA 2006
• Exploring Options for Sectoral Crediting Mechanisms, IEA, 2005
• Sectoral Crediting Mechanisms: An initial Assessment of Electricity and Aluminium, IEA 2005

• Sectoral crediting mechanism design, Results of a study commissioned by the Global Wind Energy Council (GWEC), Bonn, Germany, 8 June 2009, Lambert Schneider, Martin Cames, Öko Institut

• World Resources Institute: Slicing the Pie: sector-based approaches to International Climate Agreements, R.Bradley, B.C. Staley, T.Herzog, J. Pershing, K.A. Baumert, 2007