Carbon leakage and Capacity-Based Allocations. Is the EU right?

Guy Meunier1,2, Jean-Pierre Ponssard2, Philippe Quirion3
1INRA–ALISS
2Ecole Polytechnique
3CIRED

September 2012
ETS and carbon intensive internationally traded industries

- Leakage and competitiveness issues have led to free allocations in various forms (Hood 2010).
 - Output based in New-zealand, Australia, California;
 - Capacity based in the EU.
- Previous literature only partially addressed the issue.
 - Quirion (2009), Fisher and Fox (2011);
 - Ellerman (2008), Neuhoff (2006), Zhao et al. (2010);
- This paper
 - Introduces a model of capacity decisions under uncertainty;
 - Characterizes the optimal allocation scheme;
 - Applies the analysis to the EU-ETS for cement.
The model (Simplified specification)

- An homogenous good with a variable price function:

\[p(q, \theta) = a + \theta - bq; \]

- Home production:
 - Old plants: \(c_h \cdot q_o + \gamma h q_o^2 \)
 - New plants: \(c_h \cdot q_n + c_k \cdot k \)

\[
C_h(q, k) = \begin{cases}
 c_h q & \text{if } q < k \\
 c_h q + 0.5 \gamma h (q - k)^2 & \text{otherwise}
\end{cases}
\]

- Imports:

\[C_f(q_f) = c_f + \gamma f q_f^2. \]
The Model

Figure: Supply curve and demand without regulation.
The Model

- Environmental damage (σ exogenous):
 \[
 \sigma E = \sigma [u_h q_h + u_f q_f]
 \]

- Welfare:
 \[
 W = \int_{\theta} [S(q(\theta), \theta) - C_h(q_h, k) - C_f(q_f) - \sigma E] d\theta - c_k k
 \]

- Policy:
 - Home emissions are taxed σ but imports are not regulated.
 - Production and capacity are subsidized, s_h and s_k.

- Timing:
 1. The regulator fixes s_h and s_k subsidy on production and capacity;
 2. Firms invest in k;
 3. θ is known and firms produce and import.
Direct technology effect

Figure: Without regulation
Direct technology effect

Figure: Uniform carbon price (BTA)
Direct technology effect

Figure: Unilateral carbon price (auctioning)
Direct technology effect

Figure: The subsidy scheme \((s_h, s_k)\)
The optimal Scheme

- Intuition for the results:
 - the first-best would be to tax domestic and foreign emissions (BTA);
 - without uncertainty the second best would be to subsidize home production (OBA);
 - with uncertainty, the regulator would like to set a different subsidy in each demand state;
 - if he cannot do so there is a welfare loss in low demand states;
 - the subsidy on capacity allows to discriminate among demand states.
The optimal Scheme

Corollary

With the linear specification, the optimal couple of subsidies satisfies:

\[
 s_h = \sigma u_f \frac{b}{b + \gamma_f} \frac{1 - F(\theta^+)}{1 - F(\theta^+) + A} \\
 s_k = s_h \frac{\gamma_h}{b} F(\theta^-),
\]

in which

\[
 A = \left[\gamma_h + \gamma_f \frac{b}{b + \gamma_f} \right] \left[\frac{F(\theta^-)}{b} + \frac{F(\theta^+) - F(\theta^-)}{b + \gamma_h} \right].
\]
The optimal Scheme

\[s_h = \sigma_u f \frac{b}{b + \gamma_f} \frac{1 - F(\theta)}{1 - F(\theta^+) + A} \] \hspace{1cm} (4)

\[s_k = s_h \frac{\gamma_h}{b} F(\theta^-) \] \hspace{1cm} (5)

- The subsidy on production is the product of three factors:
 - the marginal environmental damage of foreign production;
 - the sensitivity of imports to home production;
 - the ratio between the expected effect of the subsidy on production in high demand states (with imports) and the expected effect in all states.

- The subsidy on capacity is null if capacity is fully used in all states.
The补贴 on production is the product of three factors:
- the marginal environmental damage of foreign production;
- the sensitivity of imports to home production;
- the ratio between the expected effect of the subsidy on production in high demand states (with imports) and the expected effect in all states.

The subsidy on capacity is null if capacity is fully used in all states.

\[s_h = \sigma u_f \frac{b}{b + \gamma_f} \frac{1 - F(\theta^+)}{1 - F(\theta^+) + A} \quad (4) \]

\[s_k = s_h \frac{\gamma h}{b} F(\theta^-), \quad (5) \]
The optimal Scheme

\[s_h = \sigma u_f \frac{b}{b + \gamma_f} \frac{1 - F(\theta^+)}{1 - F(\theta^+) + A} \]

\[s_k = s_h \frac{\gamma h}{b} F(\theta^-), \]

- The subsidy on production is the product of three factors:
 - the marginal environmental damage of foreign production;
 - the sensitivity of imports to home production;
 - the ratio between the expected effect of the subsidy on production in high demand states (with imports) and the expected effect in all states.

- The subsidy on capacity is null if capacity is fully used in all states.
The optimal Scheme

\[s_h = \sigma u_f \frac{b}{b + \gamma_f} \frac{1 - F(\theta^+)}{1 - F(\theta^+)} + A \] \hspace{1cm} (4)

\[s_k = s_h \frac{\gamma_h}{b} F(\theta^-), \] \hspace{1cm} (5)

- The subsidy on production is the product of three factors:
 - the marginal environmental damage of foreign production;
 - the sensitivity of imports to home production;
 - the ratio between the expected effect of the subsidy on production in high demand states (with imports) and the expected effect in all states.

- The subsidy on capacity is null if capacity is fully used in all states.
The optimal Scheme

\[s_h = \sigma u_f \frac{b}{b + \gamma_f} \frac{1 - F(\theta^+)}{1 - F(\theta^+)} + A \] \hspace{1cm} (4)

\[s_k = s_h \frac{\gamma h}{b} F(\theta^-), \] \hspace{1cm} (5)

- The subsidy on production is the product of three factors:
 - the marginal environmental damage of foreign production;
 - the sensitivity of imports to home production;
 - the ratio between the expected effect of the subsidy on production in high demand states (with imports) and the expected effect in all states.

- The subsidy on capacity is null if capacity is fully used in all states.
Application to the EU-ETS for the cement industry

- Some characteristics of cement
 - A carbon intensive internationally traded industry
 - Previous analysis of leakage and competitiveness
 - Demand fluctuations and imports
 - Calibration of the Model (2007 high demand, 2009 low demand)
Comparison of the optimal scheme with the actual scheme

- The optimal (2nd best) scheme is an OBA scheme with a rate of output-based allocations:

\[s_k = 0 \text{ and } \frac{s_h}{\sigma} = u_f \frac{b}{b + \gamma_f} = 0.284t \text{ CO}_2/t. \]

- The EU-ETS policy correspond to:

\[\frac{s_k}{\sigma} = 0.766t \text{ CO}_2/t \text{ and } s_h = 0 \]

and grandfathering (based on production in years 2005–2008).
Calibration

Part 1: Data used for calibration of the No Policy scenario

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand curve slope (1/b)</td>
<td>2 Mt/(€/t)</td>
<td>Own estimation</td>
</tr>
<tr>
<td>Clinker price (high demand - h.d.)</td>
<td>80 €/t</td>
<td>UN Comtrade (2007)</td>
</tr>
<tr>
<td>Clinker price (low demand - l.d.)</td>
<td>60 €/t</td>
<td>UN Comtrade (2009)</td>
</tr>
<tr>
<td>Production from existing plants (h.d.)</td>
<td>220 Mt/yr</td>
<td>Cembureau (2007)</td>
</tr>
<tr>
<td>Production from existing plants (l.d.)</td>
<td>140 Mt/yr</td>
<td>Cembureau (2009)</td>
</tr>
<tr>
<td>Production from new plants</td>
<td>20 Mt/yr</td>
<td>Own estimation</td>
</tr>
<tr>
<td>Imports (h.d.)</td>
<td>30 Mt/yr.</td>
<td>UN Comtrade (2007)</td>
</tr>
<tr>
<td>Imports (l.d.)</td>
<td>10 Mt/yr.</td>
<td>UN Comtrade (2009)</td>
</tr>
</tbody>
</table>
Part 2: Parameters calibrated

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected demand curve intercept</td>
<td>360 Mt/yr</td>
</tr>
<tr>
<td>Standard deviation of θ</td>
<td>70 Mt/yr</td>
</tr>
<tr>
<td>Annualized fixed cost of capacity (c_k)</td>
<td>45 €/t</td>
</tr>
<tr>
<td>Operational cost of new plants and of the least costly existing plant (c_h)</td>
<td>25 €/t</td>
</tr>
<tr>
<td>Price of cheapest import (c_f)</td>
<td>50 €/t</td>
</tr>
<tr>
<td>Slope of existing plants supply curve ($1/\gamma_h$)</td>
<td>4Mt/(€/t)</td>
</tr>
<tr>
<td>Slope of imports supply curve ($1/\gamma_f$)</td>
<td>1Mt/(€/t)</td>
</tr>
</tbody>
</table>

Part 3: Additional parameters used for the other scenarios

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO$_2$ price (σ)</td>
<td>20 €/t</td>
<td>Grubb and Cooper (2011)</td>
</tr>
<tr>
<td>Benchmark for free allocation in the ETS</td>
<td>766kg CO$_2$/t</td>
<td>E.C. (2010)</td>
</tr>
<tr>
<td>Specific emissions, EU27 (u_h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- for $\sigma = 0$</td>
<td>858 kg CO$_2$/t</td>
<td>E.C. (2010)</td>
</tr>
<tr>
<td>- for $\sigma = 20€/t$</td>
<td>758 kg CO$_2$/t</td>
<td></td>
</tr>
<tr>
<td>Specific emissions, rest of the world (u_f)</td>
<td>852 kg CO$_2$/t</td>
<td>WBCSD + E. C. (2010)</td>
</tr>
<tr>
<td>MAC curve slope</td>
<td>0.2 €/ kg CO$_2$</td>
<td>Own estimation</td>
</tr>
</tbody>
</table>
Scenarios

Five scenarios are compared to the No-Policy reference:

- Auctionning;
- NER: capacity-based allocation;
- EU-ETS: capacity-based allocation + grandfathering;
- OBA: output-based allocation;
- BTA: border tax adjustment.
Investment and Production

<table>
<thead>
<tr>
<th></th>
<th>No-Policy</th>
<th>Auction</th>
<th>OBA</th>
<th>EU-ETS & NER</th>
<th>BTA*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>OBA*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investment</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>79</td>
</tr>
<tr>
<td>Low demand</td>
<td></td>
<td></td>
<td>OBA^0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>new plants</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>79</td>
</tr>
<tr>
<td>old plants</td>
<td>140</td>
<td>124</td>
<td>133</td>
<td>140</td>
<td>79</td>
</tr>
<tr>
<td>Imports</td>
<td>10</td>
<td>22</td>
<td>19</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>170</td>
<td>146</td>
<td>152</td>
<td>168</td>
<td>168</td>
</tr>
<tr>
<td>High demand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>new plants</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>79</td>
</tr>
<tr>
<td>old plants</td>
<td>220</td>
<td>204</td>
<td>213</td>
<td>220</td>
<td>159</td>
</tr>
<tr>
<td>Imports</td>
<td>30</td>
<td>42</td>
<td>39</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>Total</td>
<td>270</td>
<td>246</td>
<td>252</td>
<td>oo</td>
<td>268</td>
</tr>
</tbody>
</table>

JP Ponssard ()

Capacity-Based Allocations

2012 15 / 20
Price and profits

Low demand

<table>
<thead>
<tr>
<th></th>
<th>No Policy</th>
<th>Auction</th>
<th>OBA</th>
<th>NER</th>
<th>EU-ETS</th>
<th>BTA*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price (€/t)</td>
<td>60</td>
<td>72</td>
<td>69</td>
<td>61</td>
<td>61</td>
<td>61</td>
</tr>
<tr>
<td>Profit (M€)</td>
<td>2300</td>
<td>2156</td>
<td>2405</td>
<td>2340</td>
<td>46</td>
<td>2497</td>
</tr>
<tr>
<td>Public revenue</td>
<td>0</td>
<td>1876</td>
<td>1258</td>
<td>0</td>
<td>1183</td>
<td>-1252</td>
</tr>
<tr>
<td>Free allocation</td>
<td>0</td>
<td>0</td>
<td>758</td>
<td>2380</td>
<td>1207</td>
<td>3642</td>
</tr>
</tbody>
</table>

High demand

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Price (€/t)</td>
<td>80</td>
<td>92</td>
<td>89</td>
<td>81</td>
<td>81</td>
<td>81</td>
</tr>
<tr>
<td>Profit (M€)</td>
<td>6700</td>
<td>6073</td>
<td>6450</td>
<td>6700</td>
<td>4412</td>
<td>6863</td>
</tr>
<tr>
<td>Public revenue (M€)</td>
<td>0</td>
<td>3088</td>
<td>2009</td>
<td>0</td>
<td>2394</td>
<td>-42</td>
</tr>
<tr>
<td>Free allocation (M€)</td>
<td>0</td>
<td>0</td>
<td>1212</td>
<td>3335</td>
<td>1207</td>
<td>3658</td>
</tr>
</tbody>
</table>

Average

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Profits dom. (M€)</td>
<td>4250</td>
<td>3551</td>
<td>3961</td>
<td>4250</td>
<td>1962</td>
<td>4413</td>
</tr>
<tr>
<td>vs No Policy (%)</td>
<td>-16%</td>
<td>-7%</td>
<td>0%</td>
<td>-54%</td>
<td>4%</td>
<td>-7%</td>
</tr>
<tr>
<td>Public revenue (M€)</td>
<td>0</td>
<td>2481</td>
<td>1634</td>
<td>0</td>
<td>1788</td>
<td>-647</td>
</tr>
<tr>
<td>Free allocations (M€)</td>
<td>0</td>
<td>0</td>
<td>985</td>
<td>2987</td>
<td>1207</td>
<td>3642</td>
</tr>
</tbody>
</table>

Leakage and Emissions

<table>
<thead>
<tr>
<th>Emissions</th>
<th>No-Policy</th>
<th>Auction</th>
<th>OBA</th>
<th>EU-ETS & NER</th>
<th>BTA*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>OBA*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>from domestic production</td>
<td>172</td>
<td>124</td>
<td>131</td>
<td>149</td>
<td>150</td>
</tr>
<tr>
<td>from imports</td>
<td>17</td>
<td>27</td>
<td>25</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>189</td>
<td>151</td>
<td>156</td>
<td>167</td>
<td>167</td>
</tr>
<tr>
<td>Leakage ratio (%)</td>
<td>-</td>
<td>22</td>
<td>19</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

JP Ponssard ()

Capacity-Based Allocations 2012 17 / 20
Welfare

Capacity-Based Allocations

JP Ponsard ()
The paper provides the optimal second best scheme as a mixture of OBA and CBA which depends on
 - the market uncertainty;
 - the level of international competition

NB This contradicts traditional OBA analysis based on leakage ratio.

It is relevant for EU-ETS 2013–2020, Australia, California; New-Zealand...

its application to EU cement sector shows:
 - current scheme triggers excessive investment (Mt);
 - induces excessive transfers (2,3M€);
 - and is associated with a welfare loss of 5%.
Thank You!