Energy and Capital in a New-Keynesian Framework

Verónica Acurio Vásconez, Gaël Giraud,
Florent Mc Isaac, Ngoc Sang Pham

CES, PSE, University Paris I

March 27, 2014
Outline

Goals

Model

Household

Firms
- The Final Good Firm
- Intermediate Good Firms

Government
- GDP and GDP Deflator

Estimation
- Setting
- Estimation Results

Impulse Response Functions
Outline

Goals

Model

Household

Firms

Government

Estimation

Impulse Response Functions
• This paper constructs a New-Keynesian model with oil in the production function and in consumption.

• The model’s parameters are estimated using Bayesian techniques.

• We observe the impact of the oil shock in this economy.
Outline

Goals

Model

Household

Firms

Government

Estimation

Impulse Response Functions

Goals

Model

Household

Firms

Government

Estimation

Impulse Response Functions
Model Structure

Domestic Economy
Model Structure

- Domestic Economy
 - Household
 - Final Good Firm

- Firms
 - Invests
 - Works
 - Consumes
 - Stays taxes
 - Capital
 - Bonds

- Final Goods
 - Energy

- Intermediate Firms
 - Labor
 - Capital
 - Energy
 - Exo Pro.
 - Profits
 - Foreign exo Pro.
 - Exogenous price

- Government
 - Taxes
 - Taylor
Model Structure

Domestic Economy → Final Good Firm

Household:
- works
- consumes
- pays taxes
- invests

Final Goods:
- Energy
- Intermediate Firms

Firms:
- Labor
- Capital
- Exogenous Price
- Profits

Foreign:
- Exogenous Price

Government:
- Taylor

Goals:
- Model
- Household
- Firms
- Government
- Estimation
- Impulse Response Functions
Model Structure

- **Household**
 - works
 - consumes
 - pays taxes
 - invests
 - capital
 - bonds

- **Final Good Firm**
 - Domestic Economy

- **Domestic Economy**
 - Energy
 - Intermediate Firms
 - Energy
 - Labor
 - Capital
 - Exogenous price

- **Government**
 - Taylor

- **Firms**
 - produces
Model Structure

Domestic Economy
- Household
 - consumption
 - works
 - capital
 - invests
- Final Goods
 - Energy

Final Good Firm
Model Structure

Domestic Economy → Final Good Firm

Household
- consumes
- works
- invests
- l.s taxes
- capital

Final Goods

Energy

Foreign exo p.

Taylor

Intermediate Firms: Energy, Labor, Capital

Exogenous price

Government

Taylor

Goals

Model

Household

Firms

Government

Estimation

Impulse Response Functions
Model Structure

Domestic Economy

Household

Final Good Firm

Intermediate Firms

Final Goods

Energy

l.s taxes

bonds

capital

consumes

invests

works

produces

Foreign exo p.

Government

Firms

Household

Goals

Estimation

Impulse Response Functions
Model Structure

- **Household**
 - consumes
 - works
 - invests
 - pays taxes

- **Domestic Economy**
 - produces Final Goods

- **Final Good Firm**

- **Intermediate Firms**
 - produces Energy, Labor, Capital

- **Foreign Firms**
 - exogenous price

- **Government**

- **Goals**
 - Model
 - Household
 - Firms
 - Government
 - Estimation
 - Impulse Response Functions
Model Structure

- Domestic Economy
 - Household
 - consumes
 - works
 - invests
 - final goods
 - Energy
 - Labor
 - Capital
 - exogenous price
 - exogenous price
 - foreign

- Final Good Firm
 - Intermediate Firms
 - profits
 - exo p.
 - exo p.
Model Structure

Government

Domestic Economy

Final Good Firm

Household

Intermediate Firms

Foreign

Final Goods

Energy

Labor

Capital

Invests

Works

Consumes

Taylor

l.s taxes

bonds

capital

profits

produces

exogenous price

Energy

exo p.

Profit
Outline

Goals

Model

Household

Firms

Government

Estimation

Impulse Response Functions
Household

Problem

\[
\max \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t U(C_t, L_t) \right], \quad 0 < \beta < 1
\]

s. t

\[
P_{e,t} C_{e,t} + P_{q,t} C_{q,t} + P_{k,t} l_t + B_t + T_t \\
\leq (1 + i_{t-1}) B_{t-1} + W_t L_t + D_t + r^k_t P_{k,t} K_t
\]
Household

Problem

$max \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t U(C_t, L_t) \right], \quad 0 < \beta < 1$

s. t

$P_e, t C_{e, t} + P_q, t C_{q, t} + P_k, t I_t + B_t + T_t \leq (1 + i_{t-1}) B_{t-1} + W_t L_t + D_t + r^k_t P_{k, t} K_t$

$\Theta_x := x^{-x}(1 - x)^{-(1-x)}$

$C_t := \Theta_x C_{e, t}^x C_{q, t}^{1-x}$
Household

Problem

\[
\max E_0 \left[\sum_{t=0}^{\infty} \beta^t U(C_t, L_t) \right], \quad 0 < \beta < 1
\]

s. t.

\[
P_{e,t} C_{e,t} + P_{q,t} C_{q,t} + P_{k,t} I_t + B_t + T_t \\
\leq (1 + i_{t-1}) B_{t-1} + W_t L_t + D_t + r^k_t P_{k,t} K_t
\]

θ_x :=

\[
x^{-x}(1 - x)^{-(1-x)}
\]

C_t :=

\[
\Theta_x C_{e,t}^x C_{q,t}^{1-x}
\]

U(C_t, L_t) =

\[
\log(C_t) - \frac{L_t^{1+\phi}}{1+\phi}
\]
Household

Problem

\[\max \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t U(C_t, L_t) \right], \quad 0 < \beta < 1 \]

s. t

\[P_{e,t} C_{e,t} + P_{q,t} C_{q,t} + P_{k,t} I_t + B_t + T_t \leq (1 + i_{t-1})B_{t-1} + W_t L_t + D_t + r_k^k P_{k,t} K_t \]

\[C_{q,t} := \left(\int_0^1 C_{q,t}(i)^{1-\frac{1}{\epsilon}} di \right)^{\frac{\epsilon}{\epsilon-1}} \]

\[\Theta_x := x^{-x}(1 - x)^{-(1-x)} \]

\[C_t := \Theta_x C_{e,t}^x C_{q,t}^{1-x} \]

\[U(C_t, L_t) = \log(C_t) - \frac{L_t^{1+\phi}}{1+\phi} \]
Household

\[\text{Problem} \]

\[\max \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t U(C_t, L_t) \right], \quad 0 < \beta < 1 \]

s. t

\[P_{e,t} C_{e,t} + P_{q,t} C_{q,t} + P_{k,t} I_t + B_t + T_t \leq (1 + i_{t-1}) B_{t-1} + W_t L_t + D_t + r^k P_{k,t} K_t \]

\[C_{q,t} := \left(\int_0^1 C_{q,t}(i)^{1 - \frac{1}{\epsilon}} di \right)^{\frac{\epsilon}{\epsilon - 1}} \]

\[U(C_t, L_t) = \log(C_t) - \frac{L_t^{1+\phi}}{1+\phi} \]

\[I_t := K_{t+1} - (1 - \delta) K_t \]

\[\Theta_x := x^{-x}(1 - x)^{-(1-x)} \]

\[C_t := \Theta_x C_{e,t}^x C_{q,t}^{1-x} \]
Optimization

Household’s Optimal Expenditure Allocation
Optimization

Household’s Optimal Expenditure Allocation

\[
\max_{C_{q,t}, C_{e,t}} P_{c,t} C_t
\]

s. t

\[
P_{c,t} C_t = P_{e,t} C_{e,t} + P_{q,t} C_{q,t}
\]

\[
C_t = \Theta x C_{e,t}^{x} C_{q,t}^{1-x}
\]
Optimization

Household's Optimal Expenditure Allocation

\[
\max_{C_{q,t}, C_{e,t}} P_{c,t} C_t
\]

subject to

\[
P_{c,t} C_t = P_{e,t} C_{e,t} + P_{q,t} C_{q,t}
\]

\[
C_t = \Theta x C_{e,t} C_{q,t}^{1-x}
\]

\[
P_{q,t} C_{q,t} = (1-x) P_{c,t} C_t
\]

\[
P_{e,t} C_{e,t} = x P_{c,t} C_t
\]

\[
P_{c,t} = P_{e,t}^x P_{q,t}^{(1-x)}
\]
Outline

Goals

Model

Household

Firms

- The Final Good Firm
- Intermediate Good Firms

Government

Estimation

Impulse Response Functions
Goals
Model
Household
Firms
Government
Estimation
Impulse Response Functions

Final Good Producers

Final Good Firm
Final Good Producers

Intermediate Good $i \in [0, 1]$

Final Good Firm

$Q_t = \left(\int_0^1 Q_t(i) \epsilon \epsilon - 1 \epsilon d_i \right) \epsilon \epsilon - 1 \epsilon$: the elasticity of substitution among intermediate goods
Final Good Producers

Intermediate Good \(i \in [0, 1] \)

Final Good Firm

\[Q_t = \left(\int_0^1 Q_t(i) \frac{e^{-1}}{\epsilon} \, di \right)^{-\frac{\epsilon}{\epsilon-1}} \]
Final Good Producers

Intermediate Good $i \in [0, 1]$

Final Good Firm

$Q_t = \left(\int_0^1 Q_t(i) \frac{e-1}{\epsilon} \, di \right)^{\frac{\epsilon}{\epsilon-1}}$

ϵ: the elasticity of substitution among intermediate goods
Final Good Producer Problem

Final Good Firm Profit Optimization

\[
\max_{Q_t(i)} P_{q,t} Q_t - \int_0^1 P_{q,t}(i) Q_t(i) \, di
\]

s. t

\[
Q_t = \left(\int_0^1 Q_t(i) \frac{\epsilon - 1}{\epsilon} \, di \right)^{\frac{\epsilon}{\epsilon - 1}}
\]

\[
Q_t(i) = \left(\frac{P_{q,t}(i)}{P_{q,t}} \right)^{-\epsilon} Q_t
\]

\[
P_{q,t} = \left(\int_0^1 P_{q,t}(i)^{1-\epsilon} \, di \right)^{\frac{1}{1-\epsilon}}
\]
Intermediate Good Firms

Intermediate Firms
Intermediate Good Firms

\[Q_t(i) = A_t E_t(i)^{\alpha_e} L_t(i)^{\alpha_\ell} K_t(i)^{\alpha_k} \]

\[\alpha_e, \alpha_\ell, \alpha_k \geq 0, \quad \alpha_e + \alpha_\ell + \alpha_k \leq 1 \]
Intermediate Good Firms

\[Q_t(i) = A_t E_t(i)^{\alpha_e} L_t(i)^{\alpha_\ell} K_t(i)^{\alpha_k} \]

\[\alpha_e, \alpha_\ell, \alpha_k \geq 0, \quad \alpha_e + \alpha_\ell + \alpha_k \leq 1 \]

strategy of firm \(i \): Marginal cost pricing behavior

Given: \(P_{e,t}, P_{k,t}, W_t \) and \(Q_t(i) \)

Choses: \(E_t(i), L_t(i) \) and \(K_t(i) \)
Intermediate Good Firms

\[Q_t(i) = A_t E_t(i)^{\alpha_e} L_t(i)^{\alpha_{\ell}} K_t(i)^{\alpha_k} \]

\[\alpha_e, \alpha_{\ell}, \alpha_k \geq 0, \quad \alpha_e + \alpha_{\ell} + \alpha_k \leq 1 \]

strategy of firm \(i \): Marginal cost pricing behavior

Given: \(P_{e,t}, P_{k,t}, W_t \) and \(Q_t(i) \)

Choses: \(E_t(i), L_t(i) \) and \(K_t(i) \)

Given: prices and quantities

Choses: \(P_{q,t} \)
Price Optimization

Price Maximization (at each date t) (Calvo Price Setting)

$$P_{q,t}(i) = P_{q,t-1}(i)$$

$$P_{q,t}(i) = P_{q,t}^o(i)$$

θ cannot change

$1 - \theta$ can change
Outline

Goals

Model

Household

Firms

Government

GDP and GDP Deflator

Estimation

Impulse Response Functions
GDP and GDP Deflator Definition

\[P_{y,t} Y_t = P_{q,t} Q_t - P_{e,t} E_t \]
GDP and GDP Deflator Definition

\[P_y, t \ Y_t = P_q, t \ Q_t − P_e, t \ E_t \]

GDP (in value added)

GDP Deflator

\[P_y, t = P_c, t \]
<table>
<thead>
<tr>
<th>Goals</th>
<th>Model</th>
<th>Household</th>
<th>Firms</th>
<th>Government</th>
<th>Estimation</th>
<th>Impulse Response Functions</th>
</tr>
</thead>
</table>

Government

\[
\begin{align*}
\Pi_q, t &= \beta(\Pi_q, t) \phi_\pi(Y_t, Y_t) \phi_y \varepsilon_{i, t},
\end{align*}
\]

\[
\begin{align*}
\Pi_q, t &= P_q, t - 1 \ln(\varepsilon_{i, t}) = \rho_i \ln(\varepsilon_{i, t-1}) + \varepsilon_{i, t}(1+i_{t-1}B_{t-1} + G_{t}) = B_t + T_t
\end{align*}
\]

\[
\begin{align*}
\ln(G_r, t) &= (1 - \rho_g)\ln(\omega Q) + \rho_g \ln(G_r, t-1) + \rho_{alk, ge} e_{alk, t} + \rho_{ae, ge} e_{ae, t} + e_{ge, t}
\end{align*}
\]

budget constraint
Government

Central Bank → Government

\[\Pi_{q,t} := \frac{P_{q,t}}{P_{q,t-1}} \ln \left(\varepsilon_{i,t} \right) = \rho_i \ln \left(\varepsilon_{i,t-1} \right) + \varepsilon_{i,t} \left(1 + i_{t-1} B_{t-1} + G_{t} \right) \]

\[\ln \left(G_r,t \right) = \left(1 - \rho_g \right) \left(\ln \left(\omega Q \right) \right) + \rho_g \ln \left(G_r,t-1 \right) + \rho_{alg} e_{alg},t + \rho_{ae} e_{ae},t + e_{g},t \]

budget constraint
Government

Central Bank

Government

\[1 + i_t = \frac{1}{\beta} (\Pi_{q,t})^{\phi_\pi} \left(\frac{Y_t}{Y} \right)^{\phi_y} \varepsilon_{i,t} \]
Government

$1 + i_t = \frac{1}{\beta} (\Pi_{q,t})^{\phi_\pi} \left(\frac{Y_t}{Y} \right)^{\phi_y} \varepsilon_{i,t}$

$\Pi_{q,t} := \frac{P_{q,t}}{P_{q,t-1}}$

$\ln(\varepsilon_{i,t}) = \rho_i \ln(\varepsilon_{i,t-1}) + e_{i,t}$
Government

Central Bank

\[1 + i_t = \frac{1}{\beta} (\Pi_{q,t})^{\phi_\pi} \left(\frac{Y_t}{Y} \right)^{\phi_y} \varepsilon_{i,t} \]

Government

\[(1 + i_{t-1})B_{t-1} + G_t = B_t + T_t \]

\[\Pi_{q,t} := \frac{P_{q,t}}{P_{q,t-1}} \]

\[\ln(\varepsilon_{i,t}) = \rho_i \ln(\varepsilon_{i,t-1}) + e_{i,t} \]
Government

\[\ln(G_r,t) = (1 - \rho_g)\ln(\omega Q) + \rho_g \ln(G_r,t-1) + \rho_{alk,g} e_{alk,t} + \rho_{ae,g} e_{ae,t} + e_{g,t} \]

Central Bank

\[1 + i_t = \frac{1}{\beta}(\Pi_q,t)^{\phi_{\pi}} \left(\frac{Y_t}{Y} \right)^{\phi_y} \varepsilon_{i,t} \]

Government

\[(1 + i_{t-1})B_{t-1} + G_t = B_t + T_t \]

\[\ln(\varepsilon_{i,t}) = \rho_i \ln(\varepsilon_{i,t-1}) + e_{i,t} \]

\[\Pi_{q,t} := \frac{P_{q,t}}{P_{q,t-1}} \]
Other Shocks

\[S_{e,t} := \frac{P_{e,t}}{P_{q,t}} \]

\[\log(S_{e,t}) = \rho_s \log(S_{e,t-1}) + e_{se,t} \]

\[\text{Oil Price} \]

\[\text{AR}(1) \]
Other Shocks

Oil Price

\[S_{e,t} := \frac{P_{e,t}}{P_{q,t}} \]

\[\log(S_{e,t}) = \rho_s e \log(S_{e,t-1}) + e_{se,t} \]

Capital Price

\[S_{k,t} := \frac{P_{k,t}}{P_{q,t}} \]

\[\log(S_{k,t}) = \rho_s k \log(S_{k,t-1}) + e_{sk,t} \]
Other Shocks

\[\ln(A_t) = \rho_a \ln(A_{t-1}) + e_{a,t} \]
Other Shocks

TFP

\[\ln(A_t) = \rho_a \ln(A_{t-1}) + e_{a,t} \]

Price Markup

\[\varepsilon_{p,t} = \rho_p \varepsilon_{p,t-1} + e_{p,t} - \nu_p e_{p,t-1} \]
Definition of Equilibrium
Definition of Equilibrium

agents maximize its problems

all markets clear Equilibrium Government budget const. fulfilled
Outline

Goals

Model

Household

Firms

Government

Estimation

Setting

Estimation Results

Impulse Response Functions
Data

<table>
<thead>
<tr>
<th>Observed Variable</th>
<th>Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>invobs</td>
<td>detrend ((\ln(\frac{PFI}{GDPDEF}) \times 100))</td>
</tr>
<tr>
<td>yobs</td>
<td>detrend ((\ln(\frac{GDPC09}{LNSIndex}) \times 100))</td>
</tr>
<tr>
<td>labobs</td>
<td>(\ln\left(\frac{\text{Averagehours} \times CE16OVIndex}{LNSIndex}\right) \times 100 - \text{mean}\left(\ln\left(\frac{\text{Averagehours} \times CE16OVIndex}{LNSIndex}\right) \times 100\right))</td>
</tr>
<tr>
<td>infobs</td>
<td>(\ln\left(\frac{\text{GDPDEF}}{\text{GDPDEF}(-1)}\right) \times 100 - \text{mean}\left(\ln\left(\frac{\text{GDPDEF}}{\text{GDPDEF}(-1)}\right) \times 100\right))</td>
</tr>
<tr>
<td>iobs</td>
<td>((\ln\left(1 + \frac{\text{FEDFUND}}{400}\right) - \text{mean}\left(\ln\left(1 + \frac{\text{FEDFUND}}{400}\right)\right)) \times 100)</td>
</tr>
<tr>
<td>eobs</td>
<td>(\ln\left(\frac{\text{TotalSAOil}}{\text{LNSIndex}}\right) \times 100 - \text{mean}\left(\ln\left(\frac{\text{TotalSAOil}}{\text{LNSIndex}}\right) \times 100\right))</td>
</tr>
</tbody>
</table>
Calibrated Parameters

<table>
<thead>
<tr>
<th>β</th>
<th>δ</th>
<th>ω</th>
<th>x</th>
<th>ϵ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.99</td>
<td>0.025</td>
<td>0.18</td>
<td>0.023</td>
<td>8</td>
</tr>
</tbody>
</table>

Table: Calibrated Parameters
Estimation Results - θ estimated

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Prior distribution</th>
<th>Posterior distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mode</td>
</tr>
<tr>
<td>θ estimated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital elasticity</td>
<td>α_k IGamma(0.1,2)</td>
<td>0.3728</td>
</tr>
<tr>
<td>Labor elasticity</td>
<td>α_ℓ IGamma(0.4,2)</td>
<td>0.6424</td>
</tr>
<tr>
<td>Oil elasticity</td>
<td>α_e IGamma(0.6,2)</td>
<td>0.1234</td>
</tr>
<tr>
<td>Inverse Frisch elasticity</td>
<td>ϕ IGamma(1.17,0.5)</td>
<td>0.6209</td>
</tr>
<tr>
<td>Taylor rule response to inflation</td>
<td>ϕ_π Normal(1.2,0.1)</td>
<td>1.2235</td>
</tr>
<tr>
<td>Taylor rule response to output</td>
<td>ϕ_y Normal(0.5,0.1)</td>
<td>0.8020</td>
</tr>
<tr>
<td>Calvo price parameter</td>
<td>θ Beta(0.5,0.1)</td>
<td>0.9812</td>
</tr>
</tbody>
</table>

Table: Prior and Posterior Distribution of Structural Parameters
Table: Prior and Posterior Distribution of Shock Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Prior distribution</th>
<th>Mode</th>
<th>Mean</th>
<th>10%</th>
<th>90%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoregressive parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology</td>
<td>ρ_a Beta(0.5,0.2)</td>
<td>0.8619</td>
<td>0.8481</td>
<td>0.7960</td>
<td>0.8999</td>
</tr>
<tr>
<td>Real oil price</td>
<td>ρ_{se} Beta(0.5,0.2)</td>
<td>0.5761</td>
<td>0.5611</td>
<td>0.4629</td>
<td>0.6669</td>
</tr>
<tr>
<td>Real capital price</td>
<td>ρ_{sk} Beta(0.5,0.2)</td>
<td>0.7210</td>
<td>0.7080</td>
<td>0.6647</td>
<td>0.7524</td>
</tr>
<tr>
<td>Price markup1</td>
<td>ρ_p Beta(0.5,0.2)</td>
<td>0.9418</td>
<td>0.9283</td>
<td>0.8955</td>
<td>0.9640</td>
</tr>
<tr>
<td>Price markup2</td>
<td>ν_p Beta(0.5,0.2)</td>
<td>0.9796</td>
<td>0.9760</td>
<td>0.9610</td>
<td>0.9913</td>
</tr>
<tr>
<td>Government</td>
<td>ρ_g Beta(0.5,0.2)</td>
<td>0.9058</td>
<td>0.8995</td>
<td>0.8712</td>
<td>0.9258</td>
</tr>
<tr>
<td>Tech. in Gov.</td>
<td>ρ_{ag} Beta(0.5,0.2)</td>
<td>0.6904</td>
<td>0.6127</td>
<td>0.3549</td>
<td>0.9472</td>
</tr>
<tr>
<td>Monetary</td>
<td>ρ_i Beta(0.5,0.2)</td>
<td>0.9399</td>
<td>0.9308</td>
<td>0.9035</td>
<td>0.9581</td>
</tr>
<tr>
<td>Standard deviations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology</td>
<td>σ_a IGamma(1,2)</td>
<td>0.4361</td>
<td>0.4435</td>
<td>0.3901</td>
<td>0.4942</td>
</tr>
<tr>
<td>Real oil price</td>
<td>σ_{se} IGamma(1,2)</td>
<td>2.0000</td>
<td>1.9373</td>
<td>1.8652</td>
<td>2.000</td>
</tr>
<tr>
<td>Real capital price</td>
<td>σ_{sk} IGamma(1,2)</td>
<td>0.7740</td>
<td>0.7675</td>
<td>0.6379</td>
<td>0.8781</td>
</tr>
<tr>
<td>Price markup</td>
<td>σ_p IGamma(1,2)</td>
<td>0.1814</td>
<td>0.1854</td>
<td>0.1615</td>
<td>0.2094</td>
</tr>
<tr>
<td>Government</td>
<td>σ_g IGamma(1,2)</td>
<td>2.0000</td>
<td>1.7921</td>
<td>1.5508</td>
<td>1.9998</td>
</tr>
<tr>
<td>Monetary</td>
<td>σ_i IGamma(1,2)</td>
<td>0.5410</td>
<td>0.4566</td>
<td>0.3859</td>
<td>0.5205</td>
</tr>
</tbody>
</table>
Estimation Results - θ calibrated

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Prior distribution</th>
<th>Posterior distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mode</td>
</tr>
<tr>
<td>θ calibrated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital elasticity α_k</td>
<td>IGamma(0.2,2)</td>
<td>0.3918</td>
</tr>
<tr>
<td>Labor elasticity α_ℓ</td>
<td>IGamma(0.4,2)</td>
<td>0.5947</td>
</tr>
<tr>
<td>Oil elasticity α_e</td>
<td>IGamma(0.5,2)</td>
<td>0.1132</td>
</tr>
<tr>
<td>Inverse Frisch elasticity ϕ</td>
<td>IGamma(1.17,0.5)</td>
<td>1.2562</td>
</tr>
<tr>
<td>Taylor rule response to inflation ϕ_π</td>
<td>Normal(1.2,0.1)</td>
<td>1.5236</td>
</tr>
<tr>
<td>Taylor rule response to output ϕ_y</td>
<td>Normal(0.5,0.1)</td>
<td>0.0265</td>
</tr>
</tbody>
</table>

Table: Prior and Posterior Distribution of Structural Parameters
Estimation Results - θ calibrated

Table: Prior and Posterior Distribution of Shock Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Prior distribution</th>
<th>Posterior distribution</th>
<th>Mode</th>
<th>Mean</th>
<th>10%</th>
<th>90%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoregressive parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology</td>
<td>ρ_a Beta(0.5,0.2)</td>
<td>0.9605 0.9401 0.9033 0.9774</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real oil price</td>
<td>ρ_{se} Beta(0.5,0.2)</td>
<td>0.9934 0.9872 0.9754 0.9977</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real capital price</td>
<td>ρ_{sk} Beta(0.5,0.2)</td>
<td>0.8940 0.8924 0.8483 0.9314</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price markup1</td>
<td>ρ_p Beta(0.5,0.2)</td>
<td>0.9839 0.9621 0.9299 0.9971</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price markup2</td>
<td>ν_p Beta(0.5,0.2)</td>
<td>0.1652 0.1711 0.0593 0.2758</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government</td>
<td>ρ_g Beta(0.5,0.2)</td>
<td>0.9373 0.9312 0.9061 0.9560</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tech. in Gov.</td>
<td>ρ_{ag} Beta(0.5,0.2)</td>
<td>0.7129 0.6589 0.3808 0.9541</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monetary</td>
<td>ρ_i Beta(0.5,0.2)</td>
<td>0.1914 0.2104 0.1249 0.2856</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard deviations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology</td>
<td>σ_a IGamma(1,2)</td>
<td>0.4538 0.4542 0.3981 0.5078</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real oil price</td>
<td>σ_{se} IGamma(1,2)</td>
<td>2.0000 1.9475 1.8842 2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real capital price</td>
<td>σ_{sk} IGamma(1,2)</td>
<td>0.5459 0.5750 0.4722 0.6714</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price markup</td>
<td>σ_p IGamma(1,2)</td>
<td>0.4235 0.4645 0.2868 0.6602</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government</td>
<td>σ_g IGamma(1,2)</td>
<td>2.0000 1.8359 1.6425 2.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monetary</td>
<td>σ_i IGamma(1,2)</td>
<td>0.4778 0.4769 0.4062 0.5455</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Outline

Goals
Model
Household
Firms
Government
Estimation
Impulse Response Functions
IRF to a Real Oil Price Shock. Case: θ Estimated
IRF to a Real Oil Price Shock. Case: θ Calibrated
Optimization

\[1 = \beta E_t \left[(1 + i_t) \frac{C_t}{C_{t+1}} \frac{P_{c,t}}{P_{c,t+1}} \right]\]

Euler

First Order Conditions

\[1 = \beta E_t \left[\frac{C_t}{C_{t+1}} \frac{P_{c,t}}{P_{c,t+1}} \frac{P_{k,t+1}}{P_{k,t}} (r_{t+1}^k + 1 - \delta) \right]\]

Fisher

\[\frac{W_t}{P_{c,t}} = C_t L_t^\phi\]
No Ponzi Scheme

Transversality condition (no Ponzi Scheme)

$$\lim_{k \to \infty} E_t \left(\frac{B_{t+k}}{t+k-1} \prod_{s=0}^{t+k-1} (1 + i_{s-1}) \right) \geq 0, \quad \forall t.$$
Stochastic Discount Factor

1. from date t to date $t + 1$

$$d_{t,t+1} := \frac{\beta U_C(C_{t+1}, L_{t+1})}{U_C(C_t, L_t)} \frac{P_{c,t}}{P_{c,t+1}}, \text{ i.e., } \frac{1}{1 + i_t} = \mathbb{E}_t (d_{t,t+1}).$$

2. from date t to date $t + k$

$$d_{t,t+k} := \prod_{s=t}^{t+k-1} \Delta_s^{s+1}, \text{ then, } d_{t,t+k} := \frac{\beta^k U_C(C_{t+k}, L_{t+k})}{U_C(C_t, L_t)} \frac{P_{c,t}}{P_{c,t+k}}.$$
Cost Minimization

\[mc_t(i) := \frac{W_t}{Q_t(i)} = \frac{r^k P_{i,t}}{Q_t(i)} = \frac{P_{e,t}}{Q_t(i)} \]

\[cost(Q_t(i)) = (\alpha_e + \alpha_\ell + \alpha_k) F_t Q_t(i) \]

\[F_t := \left(\frac{A \alpha_e}{r^k P_{i,t}} \right)^{-1} \]

\[mc_t(i) = F_t Q_t(i)^{\frac{1}{\alpha_e + \alpha_\ell + \alpha_k}} - 1 \]
Price Optimization

Price Maximization (at each date t)

Flexible Price Setting

Calvo Price Setting

\[
\max_{P_{q,t}(i)} P_{q,t}(i)Q_{t}(i) - \text{cost}(Q_{t}(i))
\]

s.t

\[
\mu^p = \frac{\epsilon}{\epsilon - 1}
\]

\[
P_{q,t} = \mu^p mc_t
\]

\[
Q_{t}(i) = \left(\frac{P_{q,t}(i)}{P_{q,t}}\right)^{-\epsilon} Q_t
\]
Calvo Price Setting

\[P_{q,t}(i) = P_{q,t-1}(i) \]

\[P_{q,t}(i) = P_{q,t}^o(i) \]

\[P_{q,t} = (\theta P_{q,t-1}^{1-\epsilon} + (1 - \theta)(P_{q,t}^o)^{1-\epsilon})^{\frac{1}{1-\epsilon}} \]
Calvo Price Setting

Calvo Price Setting Problem

\[
\max_{P_{q,t}(i)} \mathbb{E}_t \left[\sum_{k=0}^{\infty} \theta^k d_{t,t+k} \left[P_{q,t}(i) Q_{t,t+k}(i) - \text{cost}(Q_{t,t+k}(i)) \right] \right]
\]

s.t

\[
Q_{t,t+k}(i) = \left(\frac{P_{q,t}(i)}{P_{q,t+k}} \right)^{-\epsilon} Q_{t+k}, \quad \forall k \geq 0
\]
Calvo Price Setting

Calvo Price Setting Solution

\[E_t \left[\sum_{k=0}^{\infty} \theta^k d_{t,t+k} Q_o^{t,t+k} \left(P_o^{q,t} - \mu P m c_o^{t,t+k} \right) \right] = 0 \]

\[m c_o^{t,t+k} := F_{t+k} \left(Q_o^{t,t+k} \right)^{\frac{1}{\alpha e + \alpha \ell + \alpha_k} - 1} \]

\[Q_o^{t,t+k} = \left(\frac{P_o^{q,t}}{P_{q,t+k}} \right)^{-\epsilon} Q_{t+k} \]