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Abstract
This article presents a stochastic dynamic Generalized Nash-Cournot model to describe

the evolution of the natural gas markets. The major gas chain players are depicted includ-
ing: producers, consumers, storage, and pipeline operators, as well as intermediate local
traders. Our economic structure description takes into account market power and the de-
mand representation tries to capture the possible fuel substitution that can be made between
the consumption of oil, coal, and natural gas in the overall fossil energy consumption. The
demand is made random because of the oil price fluctuations. We take into account the
long-term aspects inherent to some markets, in an endogenous way. This particularity of
our description makes the model a Generalized Nash Equilibrium problem that needs to be
solved using specialized mathematical techniques. The model has been applied to represent
the European natural gas market and to forecast, until 2035, after a calibration process,
consumption, prices, production, and long-term contract prices and volumes. Finally, we
defined and calculated the value of stochastic solution adapted to our model.

keywords
Energy markets modeling, Game theory, Generalized Nash-Cournot equilibria, Quasi-Variational
Inequality, Equilibrium problems, Stochastic programing.

1 Introduction

When trying to represent the natural gas industry, the modeler may have to deal with uncer-
tainty, at practically all the different gas chain levels. If we consider production, for instance,
the exploration activities contain a lot of uncertainty since a producing firm does not know, a
priori, the amount of gas trapped under the ground before drilling. Regarding the infrastructure,
technical hazards may constitute an important uncertainty source in the gas transport. As for
the demand, its fluctuations among the months of the year (or the seasonality) is mainly driven
by the temperature variation, which is fundamentally a random phenomenon from the point of
view of energy economics. Adding to that, uncertainty may be the consequence of political or
technical issues that are sometimes hard to take care of in detailed mathematical models. As an
example, the Russia/Ukraine dispute over the Russian gas dedicated to Europe that led to an
important shortage of supplies, was mainly motivated by political reasons. The unpredictedness
of the shortage, which happened twice between 2006 and 2010, may make us consider such situ-
ations as random.

∗EDF Research and Development, IFP Energies nouvelles and EconomiX-CNRS, University of Paris 10, France

1



Taking into account randomness in the decisions of a gas industry actor may radically change
its planning, as compared with a deterministic foresight’s outcome. Indeed, a trader for example
who has to choose its gas supplies may want to diversify its sources if he has to deal with secu-
rity of supply issues. A random demand will deeply influence a producer or a storage operator’s
investment decisions. Therefore, to be more realistic, it is important to capture randomness of
the gas markets when trying to mathematically model them. Nevertheless, though this leads to
more realism, considering stochasticity in models is not costless. Indeed, stochastic models are
often huge in terms of number of variables and hold computational problems when solving them,
which forces the modeler to use decomposition techniques, such as the Benders’ decomposition
[6], [25] or scenario reduction methods [12]. Therefore, one must select carefully the type of
randomness (production, demand, etc.) to consider.

Among all the types of random gas market’s characteristics, we decided to model the uncer-
tainty associated with the demand because on the one hand we believe that its impact on the
markets’ outcome (especially prices and consumption) is the most important and, on the other
hand, the demand function specification is the most serious drawback of current gas markets
models [51], because it presents an arbitrary aspect in the calibration. The economic literature
provides an important panel of numerical models whose objective is to describe the natural gas
trade structure while taking into account stochasticity. As an example, we can cite the "Stochas-
tic World Gas Model" (University of Maryland) ([16]), which presents a stochastic extension of
the "World Gas Model" ([14]), where the demand is made random. Other interesting works
include [24] and [54]. Most of these models consider only randomness of the demand.

A casual look at the oil and gas prices in the spot markets suggests that they are strongly
correlated [39]. This is mainly due to two reasons: The first is the long-term contract prices’ oil
price indexation and the second is related to energy substitution.

Long-term contracts (or LTC) prices between producers and traders have always been indexed
by the oil price, to allow natural gas to be a competitive fuel. 1 Since LTC prices constitute a
supply marginal cost for the traders, they are correlated to the gas spot prices and, therefore,
spot gas and oil prices become correlated too.

Energy substitution also plays an important role in linking the fuels’ prices. Indeed, if the
consumers are allowed to choose their energy consumption’s source, they will go for the cheap-
est fuel to satisfy their demand (notwithstanding capacity consumption and investment inertia).
Therefore, such a consumption feature will ensure all the fuels remain competitive in the market
and will link their prices.

Taking into account long-term contract oil price indexation in gas markets modeling requires
exogenous data, such as the indexation formula between each pair of producer/trader. Because
of a lack of data, we decided to focus mainly on energy substitution to capture the gas and oil
prices correlation.

The model we have developed, named S-GaMMES, Stochastic Gas Market Modeling with
Energy Substitution is based on an oligopolistic approach to the natural gas markets. The inter-
action between all the players is a Generalized Nash-Cournot competition and we explicitly take
into consideration, in an endogenous way, the long-term contractual aspects (prices and volumes)
of the markets that link the producers and the traders. The representation of the demand is new
and rich because it includes the possible substitution, within the overall energy consumption,

1Currently, some coal prices indexation formulas are being introduced in the contracts.
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between different types of fuels. Hence, in our work, we mitigate the market power exerted by
the strategic players: they cannot force the natural gas price up freely because some consumers
would switch to other fuels to satisfy their demand.

The economic structure we modeled is the one used in the deterministic version of our first
model, named GaMMES [1]. In particular, we divide the markets into two stages: the upstream
part that represents production and the downstream one, constituted by the different spot mar-
kets (end-use consumption markets). Both stages are linked by a set of independent traders.
The traders buy gas from the producers on a long-term contract basis and bring it to the spot
markets where market power is exerted. Both producers and traders have market power and
compete via a Nash-Cournot competition. Long-term contracts, production, transportation, and
storage investments are endogenous to the model and this property makes our formulation a
Generalized Nash-Cournot game.

The specification of the demand function is the one derived from the system dynamics ap-
proach presented in [3]. Besides, in order to capture the oil price’s fluctuation and the oil/gas
price correlation, we decided to model the oil price as a random variable. This property makes
the demand function stochastic.

The remaining parts of this paper are as follows: Section 2.1 gives a general description of the
chosen economic structure representation. All the players are presented and are divided into two
categories: the strategic and the non-strategic ones. The strategic interaction is also detailed. In
Sections 2.3 and 2.4, we explain how we estimate the demand function, introduce stochasticity
in the demand representation and construct the scenario tree. Section 2.5 is dedicated to the
mathematical representation of the markets: the optimization programs associated with all the
strategic and non-strategic players are presented and discussed. We also explain in this part
how we make the long-term contract prices and volumes endogenous to the model. A set of
theorems and theoretical results inherent to S-GaMMES is provided and discussed in Section
2.6. They principally concern long-term contract prices and volumes characteristics. The last
section concludes the paper.

2 The model

2.1 Economic description

The economic structure is similar to the one described in GaMMES. We refer to [1] for more
details.

The main advantage of the S-GaMMES model is that it takes into account, in an endogenous
way, long-term contracts between the independent traders and the producers. Obviously, this
representation is quite realistic for the European natural gas trade since the latter is still dom-
inated by long-term selling/purchase prices and volumes. Another advantage inherent to this
description is that the inverse demand function explicitly takes into consideration the possible
substitution between consumption of natural gas and the competing fuels.

Market power is exerted by the producers and the independent traders in the spot markets,
where the competition is modeled thanks to a Nash-Cournot equilibrium.

Considering the energy substitutions in the natural gas demand mitigates the market power
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that can be exerted by all the strategic players in the end-use markets. Indeed, this is due to the
fact that the consumers have the ability to reduce the natural gas share in their energy mixes
if the gas market price is much higher than the substitution fuel’s (such as oil and coal) price.
Therefore, the producers may not have any considerable incentive to reduce their natural gas
production in order to force the price up. This model property allows us to take into account the
oil/natural gas prices indexation: the Nash-Cournot interaction will link the natural gas price to
the coal and oil prices because of the demand function dependence on these parameters.

Standard stochastic natural gas market models, like [24], [54] and [31] usually consider ran-
domness in the demand. If the demand function is considered linear, which is the case in most
of these models, consumption = a− b× price, then the parameter a is usually made stochastic
using a discrete probability law. This leads to the construction of a scenario tree that captures
the dynamics of the model. Unfortunately most of these models give arbitrary probability laws
to the demand levels and do not carry out a realistic calibration process. As an example, the
parameter a may follow a Gaussian distribution with an arbitrary mean value and variance. In
the Stochastic GaMMES model, randomness is also taken care of by the demand level. Indeed,
in order to capture the demand fluctuations and make the model more realistic, we introduced
stochasticity in the demand via the fluctuations of the oil price. For that purpose, an econometric
study of the oil price is carried out in order to deduce and calibrate the probability law of the
oil price’s dynamic evolution.

The model also takes advantage of a scenario tree representation where each node represents
the intersection of randomness and time. The oil price, at each time-step, is hence a random
variable that influences the demand function parameters at each scenario node.

The transport and storage infrastructure is modeled using competitive pipeline and storage
operators whose objective is to minimize the operation costs. Regarding the transport, the
cost includes transportation, congestion, and investment fees. Regarding the storage, the cost
includes capacity reservation, storage, withdrawal, and investment fees.

2.2 Notation

The units chosen for the model are the following: quantities in toe (i.e., Ton Oil Equivalent) or
Bcm (i.e., 109 cubic meters) and unit prices in $/toe or $/cm.

The following table summarizes the notation chosen for the exogenous parameters and the
endogenous variables.
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Exogenous factors

P set of producers-dedicated traders
I set of independent traders
D set of gas consuming countries in the downstream market

(no distinction between the sectors) D ⊂ N
T time T = {0, 1, 2, ..., Num}
M set of seasons. Off-peak (low-consumption) and peak (high-consumption) regimes
F set of all the gas production fields. F ⊂ N
N set of the nodes
S set of the storage sites S ⊂ N
A set of the arcs (topology)
Ω set of scenario nodes
Ωl set of the tree leaves Ωl ⊂ Ω
Rff field f ’s total gas resources (endowment)
Kff field f ’s initial capacity of production, year 0
Lff production node f ’s maximum increase of the production capacity (in %)
Ics injection marginal cost at storage site s (constant)
Wcs withdrawal marginal cost at storage site s (constant)
Rcs reservation marginal cost at storage site s (constant)
Lss storage node s’s maximum increase of the storage capacity (in %)
Pcf production cost function, field f
Tca transport marginal cost through arc a (constant)
Tka pipeline initial capacity through arc a, year 0
Kss initial storage capacity at site s, year 0
Iss investment marginal costs in storage (constant)
Ipf investment marginal costs in production (constant)
Ika investment marginal costs in pipeline capacity through arc a (constant)
Laa arc a’s maximum increase of the transport capacity (in %)
O incidence matrix ∈ MF×P . Ofp = 1 if and only if producer p owns field f
B incidence matrix ∈ MI×D. Bid = 1 if and only if trader i is located at the consumption node d
M1 incidence matrix ∈ MF×N . M1fn = 1 if and only if node n has field f
M2 incidence matrix ∈ MI×N . M2in = 1 if and only if trader i is located at node n
M3 incidence matrix ∈ MD×N . M3dn = 1 if and only if node n has market d
M4 incidence matrix ∈ MS×N . M4sn = 1 if and only if node n has storage site s
M5 incidence matrix ∈ MA×N . M5an = 1 if and only if arc a starts at node n
M6 incidence matrix ∈ MA×N . M6an = 1 if and only if arc a ends at node n
(ω) probability of occurence of scenario node ω
t(ω) time associated with scenario node ω
H maximum value for the quantities produced and consumed
δωmd an inverse demand function parameter
βωmd an inverse demand function parameter
γωmd an inverse demand function parameter
pcωmd an inverse demand function parameter
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flf field f ’s flexibility: the maximum spread
between production during off-peak and peak seasons

minpi percentage of the minimum quantity that has to be exchanged on the long-term contract trade
between i and p

δ discount factor
delays,i,p period of time necessary to undertake technical investments
lossa loss factor through arc a
depf depreciation factor of the production capacity at field f

Endogenous variables

xωmfpd quantity of gas produced by p from field f for the end-use market d, scenario node ω, season m
in Bcm

zpωmfpi quantity of gas produced by p from field f dedicated to the long-term contract
with trader i, scenario node ω, season m
in Bcm

ziωmpi quantity of gas bought by trader i from producer p with a long-term contract
scenario node ω, season m
in Bcm

uppi quantity of gas sold by producer p to trader i with a long-term contract, each year
in Bcm

uipi quantity of gas bought by trader i from producer p on the long-term contract, each year
in Bcm

yωmid quantity of gas sold by i to the market d, scenario node ω, season m
in Bcm

ipωfp producer p’s increase of field f ’s production capacity, due to investments in production, scenario node ω
in Bcm/time unit

qωmfp production of producer p from field f , scenario node ω, season m
in Bcm

pωmd market d’s gas price, result of the Cournot competition between all the traders, scenario node ω, season m
in $/cm

ηpi long-term contract price contracted between producer p and trader i
in $/cm

rωis amount of storage capacity reserved by trader i at site s, scenario node ω
in Bcm

inωis volume injected by trader i at site s, scenario node ω
in Bcm

isωs increase of storage capacity at site s, scenario node ω due to the storage operator investments
in Bcm/time unit

ikωa increase of the pipeline capacity through arc a, scenario node ω, due to the TSO investments
in Bcm/time unit

fpωm,p,a gas quantity that flows through arc a from producer p
scenario node ω, season m
in Bcm

fiωm,i,a gas quantity that flows through arc a from trader i
scenario node ω, season m
in Bcm

τωm,a the dual variable associated with arc a capacity constraint
scenario node ω, season m
in Bcm/season. It represents the congestion transportation cost over arc a

6



The previous table is divided into two parts. The upper half represents the exogenous pa-
rameters or functions whereas the lower half represents the different decision variables and the
inherent retail prices.

The indices p, d, i, f , n, s, a, m, ω and t are such that p ∈ P , d ∈ D, i ∈ I f ∈ F , n ∈ N ,
s ∈ S, a ∈ A, m ∈ M , ω ∈ Ω and t ∈ T . In the remainder of the paper and according to the
context, a node can either represent a geographical location (of a production field, a consumption
market or a storage site) or a location in the scenario tree.

The long-term contract between producer p and trader i fixes both a unit selling price and
an amount to be purchased by the independent trader i each year from producer p. Both price
and quantity will be specified endogenously by the model.
Matrix O is such that Ofp = 1 if producer p owns field f and Ofp = 0 otherwise.

Figure 1 represents a schematic overview of S-GaMMES.

Dedicated traders
Producers

Independent traders Independent traders

Final users Final users

Storage

Upstream 
market

Downstream 
market

Dedicated traders
Producers

Production fields Production fields

Time

Ω

Figure 1:
The market representation in S-GaMMES
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2.3 The inverse demand function

We need to specify a functional form for the inverse demand function which links the price pd
at market d to the quantity brought to the market. Most of the natural gas models [49], [48],
[41], [14] do not take into account fuel substitution. Let hωmd be the specific inverse demand
function in market d, season m of scenario node ω. We assume that the long-term contract
quantities do not directly influence the market competition price, which is to say that pωmd =
hωmd(

∑
i y
ω
mid+

∑
f

∑
p x

ω
mfpd). (Actually, this assumption is necessary to guarantee the concavity

of the objective functions of each strategic player’s maximization problem, regardless of the
quantities decided by the other competitors. Otherwise, this assumption can be dropped if
linear functions are used).
As mentioned in the introduction, we want to capture the inter-fuel substitution in the global
energy consumption. To be able to do so, we used a system dynamics approach that models
the behavior of the consumers who have to decide whether they invest in new burners that
use either oil, coal or natural gas. The model is fully developed in [3]. If we denote by Qωmd
the quantity

∑
i y
ω
mid +

∑
f

∑
p x

ω
mfpd, the gas demand study [3] provides the following inverse

demand function:

pωmd = pcωmd + 1
γωmd

atanh
(
δωmd+βωmd−Q

ω
md

δωmd

)
if Qωmd ≥ βωmd +

δωmdβ
ω
md

δωmd+βωmd

p′cωmd + 1
γ′ωmd

atanh
(
δ′ωmd+β′ωmd−Q

ω
md

δ′ωmd

)
if Qωmd ≤ βωmd +

δωmdβ
ω
md

δωmd+βωmd

(1)

where the parameters δ, β, γ and pc, which are time- and season-dependent must be calibrated.

The distinction between the domains Qωmd ≥ βtmd +
δωmdβ

ω
md

δωmd+βωmd
and Qωmd ≤ βωmd +

δωmdβ
ω
md

δωmd+βωmd
is

needed to take into account the anticipated scrapping of burners and to avoid absurd situations
where the price rises toward +∞ (and also to guarantee the concavity of the objective functions).
The parameters δ′, β′, γ′ and p′c are calculated to guarantee the continuity of h and its derivative
h′. To make the price converge toward 0 when the quantity goes to +∞, we need to force β′ = 0.

The function atanh is such that:

∀x ∈ (−1, 1) atanh(x) =
1

2
ln
(

1 + x

1− x

)
To calibrate the demand function for the future, we need to specify a scenario for the global

fossil energy demand and the oil and coal market prices. Our system dynamics approach [3] will
allow us to understand how the global demand is going to be shared between the consumption
of the three fuels and explicitly find the natural gas demand function.

Figure 2 gives the typical shape of the demand function used.

In order to have an algorithm convergence in a reasonable time, the inverse demand function
has been linearized in S-GaMMES.

2.4 The scenario tree

This section specifies how the scenario tree is constructed in the model. The demand is made
random in order to capture the strong fluctuations of the oil price in Europe. The oil price’s
dynamic evolution will influence the inverse demand function parameters δ, β, γ and pc. Indeed,
if the oil price is high in a certain year, consumers will invest more in natural gas burners (the
substitute) and therefore, the future demand for natural gas will rise 2. On the contrary, a low

2This argument holds for a constant evolution of the coal price.
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Standard scrapping of 
burners

Anticipated scrapping of 
burners

ktoe

$/toe

Figure 2:
The demand function

oil price will reduce the future demand for natural gas. The study of the coal price’s evolution
over time indicates that its fluctuation is negligible compared to the oil one [10]. Therefore, the
coal price is not taken as random. To simplify the model, the total gross fossil energy demand
is also deterministic.

Let us denote by pb the chain of the Brent price, with a six-month time-step 3 and ζb the
corresponding logarithmic percentage price change:

ζb =
ln(pb+1)− ln(pb)

ln(pb)
(2)

The data base we use for the Brent price is given in [10].
More precisely, pb is the mean value, over six months, of the Brent price and ζb the six-month
logarithmic percentage change.

Figure 3 gives the evolution of the price pb and ζb, b ∈ {1, 2, ...64}. b = 1 corresponds to the
period July 1977 to December 1977 and b = 64 to the period January 2009 to June 2009.

Figure 4 is a histogram of the variable ζb. A visual inspection of the correlogram shows no sign
of linear auto-correlation between the variables ζb, b ∈ {1, 2, ...64}. In addition, the variables’
independence has been checked using the BDS test [11] (the BDS statistics with two dimensions
0.008 with probability 0.52). The ζb variables can therefore be considered as independent and
identically distributed random variables. The Kolmogorov-Smirnov [43] test allows us to state
that they have a normal distribution. Indeed, the test did not reject the 0-hypothesis of normality

3This time-step is the one that gives the best correlation in our study.
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(Adj. value 1.04 with probability 0.22). The Gaussian fit is provided in Figure 4. This fit is
obtained by minimizing the normalized error between a Gaussian distribution and the histogram
points of ζb. The normalized error is given by the following: if (xi, yi), i ∈ {1, 2...n} are the
histogram points and Nx0,σ a Gaussian distribution, the error ex0,σ is:

ex0,σ =
1

n

n∑
i=1

|yi −Nx0,σ(xi)

yi
| (3)

0

2

4

6

8

10

12

14

16

-0,2 -0,15 -0,1 -0,05 0 0,05 0,1 0,15 0,2

Histogram

Gaussian fit

Figure 4:
The histogram of ζ and the Gaussian fit.

The statistical study we carried out provided a normalized error of 0.2, for the Gaussian fit
shown in Figure 4. The other numerical results (mean value, variance) will be provided later.

In the representation of the European natural gas trade, we may need to use a time-step
longer than six months 4. Hence, it is worthwhile to explain how we can deduce the new log
percentage change’s probability density that can be used directly by the model. Let us assume
that the model’s study time-step is κ× 6 months where κ ∈ N, and call λ the new log percentage
change:

λb =
ln(pb+κ)− ln(pb)

ln(pb)
(4)

λb takes into account the κ×6 months offset. In our case, κ=10 (relation between five years
and six moinths time-steps). The relationship between λb and ζb is given using the following
lemmas and theorems:

4Like in the deterministic version, we typically use a five-year time-step in the stochastic version.
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Lemma 1. ∀b ∈ N, pb+κ = p
Πκ−1
i=0 (1+ζb+i)

b

Proof. Theorem 1’s proof is straightforward: using equation (2), we can deduce that:

∀b, pb+1 = p1+ζb
b (5)

Hence

pb+κ = p
1+ζb+κ−1

b+κ−1

= p
(1+ζb+κ−2)(1+ζb+κ−1)
b+κ−2

= p
(1+ζb+κ−3)(1+ζb+κ−2)(1+ζb+κ−1)
b+κ−3

= ...

= p
Πκ−1
i=0 (1+ζb+i)

b

The previous equation can be rewritten as follows:

ln(pb+κ) = Πκ−1
i=0 (1 + ζb+i) ln(pb) (6)

Figure 4 shows that the random variable ζ is such that |ζ| ≤ 0.05 with a more than 90%
probability. Hence, we can write that, in first approximation, ∀b ∈ N, ζb << 1 and

Πκ−1
i=0 (1 + ζb+i) ' 1 +

κ−1∑
i=0

ζb+i (7)

The approximation error can be bounded via the following theorem:

Theorem 1. If we denote by ε = Πκ−1
i=0 (1 + ζb+i) −

(
1 +

∑κ−1
i=0 ζb+i

)
the error and ζmax the

maximum absolute value of ζk: ζmax = Max{|ζk|, k ∈ {b, ..., b+ κ− 1}}, then:

|ε| ≤ (1 + ζmax)κ − 1− κζmax (8)

Theorem 1 allows us to state that this approximation is valid with an error of 10%, with a
90% probability. Its proof is as follows:

Proof. If we develop Πκ−1
i=0 (1 + ζb+i), we find:

Πκ−1
i=0 (1 + ζb+i) =

κ∑
j=0

∑
ζk1ζk2 ...ζkj

(k1, k2, ..., kj) ∈ {b, ..., b+ κ− 1}
k1 < k2 < ... < kj

(9)

In the sum, the term that corresponds to j = 0 is 1 and to j = 1 is
(∑κ−1

i=0 ζb+i

)
. Therefore,

we can write:

κ−1∑
i=0

(1 + ζb+i) =

(
1 +

κ−1∑
i=0

ζb+i

)
+

κ∑
j=2

∑
ζk1ζk2 ...ζkj

(k1, k2, ..., kj) ∈ {b, ..., b+ κ− 1}
k1 < k2 < ... < kj

(10)

Therefore, we have:

|ε| =

∣∣∣∣∣∣
κ∑
j=2

∑
ζk1ζk2 ...ζkj

(k1, k2, ..., kj) ∈ {b, ..., b+ κ− 1}
k1 < k2 < ... < kj

∣∣∣∣∣∣ (11)
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and we can write :

|ε| ≤
∑κ

j=2

∑
|ζk1 ||ζk2 |...|ζkj |

(k1, k2, ..., kj) ∈ {b, ..., b+ κ− 1}
k1 < k2 < ... < kj

≤
∑κ

j=2

∑
ζjmax

(k1, k2, ..., kj) ∈ {b, ..., b+ κ− 1}
k1 < k2 < ... < kj

=
∑κ

j=2

(
κ
j

)
ζjmax

= (1 + ζmax)κ − 1− κζmax
The last equality is obtained exploiting the Newton binomial theorem.

As said before, Figure 4 shows that the random variable ζmax is such that ζmax ≤ 0.05 with a
more than 90% probability. Therefore, |ε| ≤ 0.1 with more than 90% probability.

Using equations (6) and (7), we can deduce that:

λb =

κ−1∑
i=0

ζb+i (12)

Since we assumed that ζb are independent and identically distributed random variables and
since we know that they follow the Gaussian distribution Nx0,σ, then we can derive that λb
are also independent and identically distributed and follow a Gaussian probability distribution
Nκx0,√κσ.

In order to solve the model in a reasonable time, we decided to use only two scenarios for
the oil price at each time-step. Therefore, we have to approximate the logarithmic yield λ’s
Gaussian probability density Nκx0,√κσ by a two-value probability law. Let us call λ1 and λ2 the
two possible values of the random variable λ that will be used by the model, p and 1 − p the
associated probabilities. The goal now is to find λ1, λ2 and p.

The mean value and the standard deviation of λ are respectively κx0 and
√
κσ. Therefore,

we can write:

Lemma 2. λ1, λ2 and p verify

pλ1 + (1− p)λ2 = x0 (13a)
pλ2 + (1− p)λ2

2 − x2
0 = κσ2 (13b)

Proof. Equation (13a) equates the average of the two value probability law (λ1, λ2, p) and the
Gaussian distribution. Equation (13b) does the same with the variance.

Equations (13a) and (13b) allow us to state that (assuming that p /∈ {0, 1}):

λ1 = x0 +
σ
√
p

√
1− p (14a)

λ2 = x0 −
σ
√
p

(
1√

1− p
−
√

1− p
)

(14b)
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Since we are looking for three variables (λ1, λ2, p), we need to impose a third equation. In
our case, we added the following relation:

λ1 = −λ2

in order to capture the increasing and decreasing fluctuations of the oil price. A nonnegative
value for λ implies an increase of the oil price, whereas a negative value means a decrease of the
oil price. In our case, λ1 ≥ 0 and λ2 ≤ 0 correspond respectively to an increase and decrease of
the Brent price.

The study of the Brent price between 1977 and 2009 gives the follwing values for λ1, λ2 and p:

λ1 0.1

λ2 −0.1

p 0.15

These values have been calculated for a five-year evolution of the Brent price.
To summarize, the oil price evolves via the following formula:

pb+κ = p1+λ1
b with probability p (15a)

pb+κ = p1+λ2
b with probability 1− p (15b)

Relations (15a) and (15b) suggest that the oil price is modeled as a Markov chain. This
assumption has been verified and used in some statistical studies of the oil price [53].

To calibrate the demand function for the future, we need to specify a deterministic scenario
for the global fossil energy demand and the coal markets’ prices. The oil price evolution will
create the scenario tree as follows: at each time-step the oil price can follow respectively equation
(15a) or (15b) with probability p and 1 − p. In the stochastic version, the model’s time scope
is 2000-2035, with a time resolution of five years. In order to keep the model solvable in a
reasonable time, we considered randomness only for the first five time-steps, until 2025. Starting
from 2025, the oil price follows the trend forecast by the European Commission [18]: an increase
by 3.7% per year. The corresponding log-change percentage in that case is called µ.

Figure 5 gives a schematic description of the scenario tree for the oil price and therefore for
the demand function parameters. There are 31 nodes and seven time-steps (35 years). Node
0, which is the top of the scenario tree corresponds to the 2000-2004 time period. Note that
randomness occurs starting from 2010.

Figure 6 gives the values of the different scenario nodes weights π(ω) of the tree.

2.5 The mathematical description

This section details the mathematical description of the model. It presents the optimization
problems of all the supply chain players.5

Each node of the scenario tree represents the intersection of randomness with time. The first-
stage variables are all the ones decided by all the players at node 0 and 1, which are deterministic.

5Note that the dual variables are written in parentheses next to their associated constraints.
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The scenario tree.
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Figure 6:
The scenario tree weights.
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Once these variables have been chosen, they cannot be changed later, in the rest of the time
periods (or nodes). Similarly, the decisions made at nodes 2 and 3 will influence the market
outcome at all the forthcoming nodes ω ∈ {4, 5, ...31} especially the production, transport, and
storage investments. More generally, an investment or a contractual decision made at node ω
will remain unchanged and will influence the market structure at all the nodes ω′ that follow ω.
In the rest of the paper, when two scenario nodes ω and ω′ are related, we will write:

ω ≤ ω′

if ω′ is a successor of ω (or ω is a predecessor of ω′). For example, in the scenario tree,
node 4 ≤ node 4 and node 25.

In order to take into account the different investment delays, we need to consider the strict
successors of a particular node. When two scenario nodes ω and ω′ are related, we will write:

ω < ω′ ⇔ ω ≤ ω′ and ω 6= ω′

if ω′ is a strict successor of ω (or ω is a strict predecessor of ω′). For example, in the scenario
tree, node 4 < node 8 and node 25.

Using this scenario tree approach, we do not need to take into account non-anticipativity
conditions, because we define a relation between the nodes (successors and predecessors). From
the programming perspective, these relations have been included by using incidence matrices
M7 and M8: M7(ω, ω′) = 1 if and only if ω ≤ ω′, otherwise, M7(ω, ω′) = 0 and M8(ω, ω′) = 1
if and only if ω < ω′, otherwise, M8(ω, ω′) = 0.
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Producer p’s maximization program is given below. The corresponding decision
variables are zpωmfpi, x

ω
mfpd, ip

ω
fp, q

ω
mfp and uppi.
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Max ∑
ω,m,f,i

π(ω)δt(ω)(ηpi)(zp
ω
mfpi)

+
∑

ω,m,f,d

π(ω)δt(ω)
(
pωmd(x

ω
mfpd + xωmfpd)

)
xωmfpd

−
∑
ω,f

π(ω)δt(ω)Pcf

∑
ω′≤ω

∑
m

qω
′

mfp, Rff


+
∑
ω,f

π(ω)δt(ω)Pcf

(∑
ω′<ω

∑
m

qω
′

mfp, Rff

)
−
∑
ω,f

π(ω)δt(ω)Ipf (ipωfp)

−
∑
ω,m,a

π(ω)δt(ω)((Tca + τωm,a)fp
ω
m,p,a)

such that:

∀ω, f,
∑
p

∑
ω′≤ω

∑
m

qωmfp −Rff ≤ 0 (φωf ) (16a)

∀ω, f, m,
∑
p

qωmfp −Kff (1− depf )t(ω)

−
∑
p

∑
ω′<ω

ipω
′

fp(1− depf )t(ω)−t(ω′) ≤ 0 (χωmf ) (16b)

∀ω, m, f, − qωmfp +

(∑
i

zpωmfpi +
∑
d

xωmfpd

)
≤ 0 (γωmfp) (16c)

∀ω, f, p,
∑
m

((−1)mqωmfp)− flf ≤ 0 (ϑ1ωfp) (16d)

∀ω, f, p, −
∑
m

((−1)mqωmfp)− flf ≤ 0 (ϑ2ωfp) (16e)

∀ω, f, d, m, xωmfpd −OfpH ≤ 0 (ε1ωmfpd) (16f)

∀ω, f, i, m, zpωmfpi −OfpH ≤ 0 (ε2ωmfpi) (16g)

∀ω, f, m, qωmfp −OfpH ≤ 0 (ε3ωmfp) (16h)

∀ω, f, ipωfp −OfpH ≤ 0 (ε4ωfp) (16i)

∀ω, f,
∑
p

ipωfp − LffKff (1− depf )t(ω)

− Lff
∑
p

∑
ω′<ω

ipω
′

fp(1− depf )t(ω)−t(ω′) ≤ 0 (ιpωf ) (16j)

∀ω, m, n,
∑
a

M6anfp
ω
m,p,a(1− lossa)−

∑
a

M5anfp
ω
m,p,a

+
∑
f

qωmpfM1fn −
∑
d

∑
f

xωmfpdM3dn

−
∑
i

∑
f

zpωmfpiM2in = 0 (αpωm,p,n) (16k)

(16l)

19



∀ω, i, uppi −
∑
f,m

zpωmfpi = 0 (ηpωpi) (17a)

∀ p, i, uipi − uppi = 0 (ηpi) (17b)
∀ω, m, d, i, f, zpωmfpi, x

ω
mfpd, ip

ω
fp, q

ω
mfp, uppi ≥ 0

We denote by xωmfpd the total amount of gas brought at node ω, season m to the market d
by all the players different from producer p.

The term∑
ω,m,f,i

π(ω)δt(ω)(ηpi)(zp
ω
mfpi) +

∑
ω,m,f,d

π(ω)δt(ω)
(
pωmd(x

ω
mfpd + xωmfpd)

)
xωmfpd

is the revenue, which is obtained from the sales from the long-term contract sales to the inde-
pendent traders or directly from the retail markets.
The term

∑
ω,f

π(ω)δt(ω)Pcf

∑
ω′≤ω

∑
m

qω
′

mfp, Rff

−∑
ω,f

π(ω)δt(ω)Pcf

(∑
ω′<ω

∑
m

qω
′

mfp, Rff

)

is the actualized production cost. This term’s explanation is as follows:
The production cost (at field f) Pcf depends on two variables, the total quantity produced,
which will be denoted q and the natural gas resources Rff . The Golombek production cost
function we used is as follows:

∀q ∈ [0, Rff ), P cf (q,Rff ) = afq + bf
q2

2
− Rffcf

(
Rff − q
Rff

ln
(
Rff − q
Rff

)
+

q

Rff

)
(18)

or if written for the marginal production cost

∀q ∈ [0, Rff ),
dPcf
dq

= af + bfq + cf ln
(
Rff − q
Rff

)
(19)

In our model, the production cost function is dynamic. The gas volume available to be
extracted is dynamically reduced at each period, taking into account the exhaustivity of the
resource.
If at time-step 1, the production is q1 and at time-step 2 q2, the total cost is hence:

cost = Pcf (q1, RESf ) + δ(Pcf (q1 + q2, RESf )− Pcf (q1, RESf ))

Thus, to estimate the cost at scenario node ω, we need to calculate the production cost of the
sum over all the extracted volumes until node ω and subtract the cost we have cummulated at
all the strict predecessor nodes to ω.

The term ∑
ω,f

π(ω)δt(ω)Ipf (ipωfp)

is the investment cost in production at the different production fields.
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The term ∑
ω,m,a

π(ω)δt(ω)((Tca + τωm,a)fp
ω
m,p,a)

is the transport and congestion costs charged by the pipeline operator to producer p. The dual
variable τωm,ar is associated with the pipeline capacity constraint through the arc a. It repre-
sents the congestion price on the corresponding pipeline (see the transport operator optimization
problem for a more detailed explanation).

The explanation of the constraints is straightforward:
The constraint (16a) bounds each field’s production by its reserves.
The constraint (16b) bounds the seasonal quantities produced by each field’s production capacity,
taking explicitly into account the different dynamic investments, that decrease with time because
of the production depreciation factor. To take into consideration the investment delays, we
account only for the invested capacities at the strict predecessor nodes. This corresponds to a
five-year investment delay (the time-step of the model).
The constraint (16c) states that the total production must be greater than the sales (to the
long-term and spot markets). The constraints (16d) and (16e) can be rewritten as follows:

∀ω, f, p, |
∑
m

((−1)mqωmfp)| ≤ flf

This fixes a maximum spread between the off-peak/peak production at each field. (−1)m is equal
to 1 in the off-peak season and -1 in the peak season.
The constraint (16k) is a market-clearing condition at each node, regarding the flows from pro-
ducer p depending on whether this node is a production field, an independent trader location or
a demand market.
The constraint (16j) bounds the capacity expansion of each production node f : each year, the
investment decided to increase the production capacity is less than 100 × Lff percent the in-
stalled capacity at that year. A historical study of the capacity expansion of some production
nodes allowed us to calibrate the value of Lff : Lff = 0.20.
The constraint (17a) equates the sales of producer p for the long-term contracts to the contracted
volume uppi, each scenario node.
The constraint (17b) describes the following: For each pair of producer/independent trader (p, i),
the gas quantity sold by p in the long-term contract market must be equal to the gas quantity
purchased by i. Therefore, this is a supply/demand equation in the long-term contracts mar-
ket. The associated dual variable ηpi is the corresponding contract unit selling/purchase price,
because we do not assume the existence of market power in the long-term contract trade. Using
this technique, it is possible to make the long-term contract prices and volumes endogenous to
the description so that they become an output of the model.
The constraint (and the similar other ones) (16f) allows producer p to use only the fields he
owns (for production, investments, sales, etc.). We recall that the incidence matrix O is such as
Ofp = 1 if and only if producer p owns field f , otherwise, Ofp = 0.

Independent trader i’s maximization program is given below. The corresponding
decision variables are ziωmpi, y

ω
mid, r

ω
is, in

ω
is and uipi.
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Max ∑
ω,m,d

π(ω)δt(ω)
(
pωmd(y

ω
mid + yωmid)y

ω
mid

)
−
∑
ω,p,m

π(ω)δt(ω)
(
ηpizi

ω
mpi

)
−
∑
ω,s

π(ω)δt(ω) (Rcs(r
ω
is))

−
∑
ω,s

π(ω)δt(ω) ((Ics +Wcs)in
ω
is)

−
∑
ω,m,a

π(ω)δt(ω)
(
Tca + τωm,a

)
fiωm,i,a

such that:

∀ω, m,
∑
p

ziωmfpi −

(∑
d

yωmid + (−1)m
∑
s

inωis

)
= 0 (ψωmi) (20a)

∀ω, s, inωis − rωis ≤ 0 (µωis) (20b)

∀ω, m, n,
∑
a

M6anfi
ω
m,i,a(1− lossa)−

∑
a

M5anfi
ω
m,i,a

−
∑
d

yωmfidM3dn +
∑
p

ziωmpiM2in

− (−1)m
∑
s

M4sn

(∑
i

ijωis

)
= 0 (αiωm,p,n) (20c)

∀ω, p, uipi −
∑
m

ziωmpi = 0 (ηiωpi) (20d)

∀ p, i, uipi − uppi = 0 (ηpi) (20e)

∀ω, m, p, i, − ziωmpi +minpi
∑
m

ziωmpi ≤ 0 (υωmpi) (20f)

∀ω, m, s, d, ziωmpi, y
ω
mid, r

ω
is, in

ω
is, uipi ≥ 0

The term ∑
ω,m,d

π(ω)δt(ω)
(
pωmd(y

ω
mid + yωmid)y

ω
mid

)
−
∑
ω,p,m

π(ω)δt(ω)
(
ηpizi

ω
mpi

)
is the net profit.
The term ∑

ω,s

π(ω)δt(ω) (Rcs(r
ω
is))

is the storage capacity reservation cost.
The term ∑

ω,s

π(ω)δt(ω) ((Ics +Wcs)in
ω
is)

are the storage/withdrawal costs. 6

6There are no storage losses in the model. They can easily be taken into account by increasing the tansportation
losses of the arcs that start at the storage nodes.
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The term ∑
ω,m,a

π(ω)δt(ω)
(
Tca + τωm,a

)
fiωm,i,a

is the transport and congestion costs charged by the pipeline operator to the independent trader i.

As for the feasibility set, it is also easy to specify :

The constraint (20a) is a gas quantity balance for each trader. The term (−1)m is equal to 1
in the off-peak season and -1 otherwise. An implicit assumption we use in the description is that
all the storage sites must be "empty" (regardless of the working gas quantitities) at the end of
each year.
The equation (20b) implies that each independent trader has to pay for a storage reservation
quantity, each year and at each storage site s, to be able to store his gas.
The constraint (20d) forces each trader to purchase the same quantity, in long-term contracts,
from each producer and scenario node.
The constraint (20e) is similar to the constraint (17b) of the producers’ optimization program.
For each pair of producer/independent trader (p, i), the gas quantity sold by p in the long-term
contract market must be equal to the gas quantity purchased by i. Therefore, this is a sup-
ply/demand equation in the long-term contracts market. The associated dual variable ηpi is the
corresponding contract unit selling/purchase price, because we do not assume the existence of
market power in the long-term contract trade. Using this technique, it is possible to make the
long-term contract prices and volumes endogenous to the description so that they become an
output of the model.
The constraint (20f) fixes a minimum percentage of the contracted volume, per time unit, minpi
that has to be exchanged between p and i each season of each scenario node. Obviously, this
constraint is expected to be more saturated in the summer when there is little need for the
traders to have an important amount of gas supply.

On the transportation side of our model, we will assume that the producers pay the transport
costs to bring natural gas from the production fields to the independent traders’ locations and the
end-use markets. The traders support the transport costs to store/withdraw gas or bring it to the
end-users for their sales. All the distribution costs are implicitly included in the transportation
costs we use.

The pipeline operator optimization (cost minimization) program is given below. The
corresponding decision variables are fpωm,p,a, fiωm,i,a and ikωa .
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Min ∑
ω,m,a

π(ω)δt(ω)
(
Tca + τωm,a

)∑
p

fpωm,p,a

+
∑
ω,m,a

π(ω)δt(ω)
(
Tca + τωm,a

)∑
i

fiωm,i,a

+
∑
ω,a

π(ω)δt(ω)Ika(ik
ω
a )

such that:

∀ω, m, a,
∑
p

fpωm,p,a +
∑
i

fiωm,i,a −

(
Tka +

∑
ω′<ω

ikω
′

a

)
≤ 0 (τωm,a) (21a)

∀ω, a, ikωa − Laa

(
Tka + Laa

∑
ω′<ω

ikω
′

a

)
≤ 0 (ιaωa ) (21b)

∀ω, m, p, n,
∑
a

M6anfp
ω
m,p,a(1− lossa)−

∑
a

M5anfp
ω
m,p,a

+
∑
f

qωmpfM1fn −
∑
d

∑
f

xωmfpdM3dn

−
∑
i

∑
f

zpωmfpiM2in = 0 (αpωm,p,n)

(21c)

∀ω, m, i, n,
∑
a

M6anfi
ω
m,i,a(1− lossa)−

∑
a

M5anfi
ω
m,i,a

−
∑
d

yωmfidM3dn +
∑
p

ziωmpiM2in

− (−1)m
∑
s

M4sn

(∑
i

ijωis

)
= 0 (αiωm,p,n) (21d)

∀ω, m, a, p, i, fpωm,p,a, fi
ω
m,i,a, ik

ω
a ≥ 0

The objective function contains both the transport/congestion and invesment costs.
The congestion cost through arc a, τωm,a, is the dual variable associated with the constraint
(21a). This constraint concerns the physical seasonal capacity of arc a, including the possible
node-dependent investments.
The constraint (21b) bounds the capacity expansion of each arc a: each year, the investment
decided to increase the transport capacity is less than 100 × Laa percent the installed capacity
at that year. In GaMMES, we used the value Laa = 0.2.
The other constraints are market-clearing conditions at each node, depending on whether this
node is a production field, an independent trader location, a demand market or a storage site,
and depending on whether the transportation costs are supported by the producers or the inde-
pendent traders.
We consider both pipeline and LNG routes for transport. The liquefaction and regasification
costs are included in the transportation costs on the LNG arcs. We assume, in the representa-
tion that the physical losses occur at the end nodes of the arcs.
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The storage operator optimization (cost minimization) program is given below. The
corresponding decision variable is isωs .

Min∑
ω,s

π(ω)δt(ω)Iss(is
ω
s ) +

∑
i,ω,s

π(ω)δt(ω) ((Ics +Wcs)in
ω
is +Rcsr

ω
is)

such that:

∀ω, s,
∑
i

rωis −Kss −
∑
ω′<ω

isω
′

s ≤ 0 (βsωs )

(22a)

∀ω, s, isωs − LssKss − Lss
∑
ω′<ω

isω
′

s ≤ 0 (ιsωs )

(22b)

∀ω, s, isωs ≥ 0

The storage operator only controls the different investments that dynamically increase the
storage capacity of each storage node. The incentive this player has to invest is due to the
constraint he must satisfy: the capacity available at each storage site must be sufficient to meet
the volumes the independent traders have to store each year in the off-peak season. Capacity
expansion is bounded and we used the value Lss = 0.2.

If we take a closer look at the optimization program of a producer, we will notice that his
feasibility set depends on the decision variables of the independent traders. Also, the feasibility
set of any independent trader’s optimization program depends on the producers’ decision vari-
ables. The situation is similar for the pipeline and storage operators. This particularity makes
our formulation (the KKT conditions) a Generalized Nash-Cournot problem. Similarly,
the Generalized Nash-Cournot problem can also be formulated as a Quasi Variational Inequality
problem (QVI). In order to solve the problem, we look for the particular solution that makes the
problem a VI formulation [29].

When the KKT conditions are written, we obtain the Mixed Complementarity Problem given
in Appendix 2.

2.6 Theoretical results

We refer to Appendix 2 for the MCP formulation of S-GaMMES. This section uses the appendix’s
equations numbers.
One of the S-GaMMES model’s key features is that it cpatures the markets’ long-term aspects in
an endogenous way, for both long-term contract prices and volumes. In the deterministic version
of GaMMES, it can be proved that long-term contracts’ prices, or LTC prices, are smaller than
the spot market prices.7 Indeed, since long-term contracts are the only means for the independent
traders to obtain gas, LTC prices are to be considered as supply costs for them. Besides, they
make a profit by selling natural gas directly to the consumers, in the spot markets. Therefore,
if the traders have an incentive to sell gas to the consumers, their revenue must be greater than

7Though this situation is less realistic nowadays, given the current high, long-term contract gas prices that are
indexed on the oil price.
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their costs and consequently, spot prices should be, on average, greater than LTC prices.

These conclusions still hold for the stochastic version of GaMMES. They are explained in the
following theorems.

First we prove that our representation of the long-term contracts leads to nonnegative LTC
prices.

Theorem 2. If producer p and trader i contract on the long-term, then the long-term contract
price ηpi is such as ηpi ≥ 0

Proof. We assume that producer p contracts on the long-term with trader i. This means that
the LTC volume uppi is such that uppi > 0. Let us denote by d the market where i is located,
i.e., d is the only market such as Bid = 1. Hence, we can write that

∀n ∈ N, M2in = M3dn

.
We already know from equation (49i) that:

∀ω, uppi −
∑
f,m

zpωmfpi = 0

Hence we can deduce that:

∀ω, ∃f(ω) ∈ F and m(ω) ∈M such as zpωm(ω)f(ω)pi > 0

where we denote by f(ω) the particular field that producer p may use, at scenario node ω to
respect the LTC volume he has to sell to i in season m(ω).

Because of relation (51e), we can deduce that

∀ω, ∃f(ω) ∈ F such as ∀m ∈M, zpωmf(ω)pi > 0

Using the complementarity condition of equation (48a), we can deduce that: ∀ω, ∃f(ω) ∈ F
such as ∀m ∈M ,

π(ω)δt(ω)ηpi − γωmf(ω)p − ε2
ω
mf(ω)pi − ηp

ω
pi −

∑
n

M2inαp
ω
m,p,n = 0 (23)

Since zpωmf(ω)pi > 0, producer p owns the particular field f(ω) and constraint (16g) is not
saturated. Therefore, ε2ωmf(ω)pi = 0 and

π(ω)δt(ω)ηpi − γωmf(ω)p − ηp
ω
pi −

∑
n

M2inαp
ω
m,p,n = 0 (24)

To simplify the notation we will denote the term(
pωmd(x

ω
mf(ω)pd + xωmf(ω)pd) +

∂pωmd
∂xωmfpd

(xωmf(ω)pd + xωmf(ω)pd)x
ω
mf(ω)pd

)
by (

pωmd +
∂pωmd
∂xωmfpd

xωmf(ω)pd

)
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Using relation (48b) we have:

π(ω)δt(ω)

(
pωmd +

∂pωmd
∂xωmfpd

xωmf(ω)pd

)
− γωmf(ω)p − ε1

ω
mf(ω)pd −

∑
n

M3dnαp
ω
m,p,n ≤ 0 (25)

Since producer p owns the particular field f(ω), constraint (16f) is not saturated. Therefore,
ε1ωmf(ω)pd = 0 and

π(ω)δt(ω)

(
pωmd +

∂pωmd
∂xωmfpd

xωmf(ω)pd

)
− γωmf(ω)p −

∑
n

M3dnαp
ω
m,p,n ≤ 0 (26)

Combining equations (24) and (26) and using the fact that ∀n ∈ N, M2in = M3dn
8, we

obtain:

π(ω)δt(ω)

(
pωmd +

∂pωmd
∂xωmfpd

xωmf(ω)pd − ηpi

)
+ ηpωpi ≤ 0 (27)

We know by equation (48e) and the fact that uppi > 0, that:

ηpi =
∑
ω

ηpωpi (28)

Therefore, since equation (27) is satisfied for all ω ∈ Ω, summing it over ω and using relation
(28) gives:

ηpi

(∑
ω

π(ω)δt(ω) − 1

)
+
∑
ω

π(ω)δt(ω)

(
pωmd +

∂pωmd
∂xωmfpd

xωmf(ω)pd

)
≤ 0 (29)

Since
(∑

ω π(ω)δt(ω) − 1
)
< 0, we have:

ηpi ≥
−
∑

ω π(ω)δt(ω)
(
pωmd +

∂pωmd
∂xωmfpd

xωmf(ω)pd

)
(∑

ω π(ω)δt(ω) − 1
) ≥ 0 (30)

The next theorem allows us to compare LTC and spot prices. Before, let us define the LTC
constraints cost supported by an independent trader i. From the point of view of an independent
trader, long-term contracts constrains him to purchase gas from the producers (he contracts with)
each year, with a minimum proportional amount each season. In S-GaMMES, this is taken care
of by constraints (20d) and (20f). Using the KKT conditions and the Lagrangian formulation, it
is possible to define a cost inherent to the respect of these LTC constraints. Obviously, this cost
that depends on the scenario node ω, the season m and the producer p involved in the contract,
is function of the dual variables associated with constraints (20d) and (20f): ηiωpi and υ

ω
mpi.

Definition 1. The LTC cost between trader i and producer p is defined at each scenario node ω
and each season m by:

LTCcostωmpi = ηiωpi − (1−minpi)υωmpi
8We recall that trader i is located at market d.
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In the LTC cost definition, the term ηiωpi takes care of the annual LTC constraint (i.e.,
the trader must purchase the same volume from the producer, at each scenario node) and the
term −(1−minpi)υωmpi captures the seasonal LTC constraint (i.e., the trader must buy at least
100 ×minpi percent of the annual LTC volume, at each season). Since the variable ηiωpi is free
(it is associated with an equality constraint), the LTC cost can be positive or negative.

In the following theorem and proof, we consider a particular pair of producer p and inde-
pendent trader i who contract on the long-term. We will denote by d the consumption market
where i is located.

Theorem 3. If producer p and trader i contract on the long-term and LTCcostωmpi is nonnegative
then the spot price at market d is greater than the LTC price as long as trader i sells gas to market
d:

∀ω, m, yωmid > 0 =⇒ pωmd ≥ ηpi

Proof. Producer p and trader i are assumed to contract on the long-term. Hence, uipi > 0. We
already know, using equation (51c), that

∀ω, uipi =
∑
m

ziωmpi

Thus, ∀ω, ∃m(ω) ∈M such as ziωmpi > 0. Because of equation (51e), the previous inequation
holds for all the seasons:

∀ω,∀m, ziωmpi > 0

Using equation (50a), it is possible to write: ∀ω,m

−π(ω)δt(ω)ηpi − ηiωpi + ψωmi +
∑
n

M2inαi
ω
min + (1−minpi)υωmpi = 0 (31)

If we assume that trader i sells gas to market d, then using equation (50b) and by denoting
(for the sake of simplicity)

pωmd +
∂pωmd
∂yωmid

yωmid

the term
pωmd(y

ω
mid + yωmid) +

∂pωmd
∂yωmid

(yωmid + yωmid)y
ω
mid

we find that:

π(ω)δt(ω)

(
pωmd +

∂pωmd
∂yωmid

yωmid

)
− ψωmi −

∑
n

M3dnαi
ω
m,i,n = 0 (32)

Since trader i is located at market d, we can write:

∀n ∈ N, M3dn = M2in

Combining equations (31) and (32), we find that:

π(ω)δt(ω)

(
pωmd +

∂pωmd
∂yωmid

yωmid − ηpi
)
− ηiωpi + (1−minpi)υωmpi = 0 (33)

or

π(ω)δt(ω)

(
pωmd +

∂pωmd
∂yωmid

yωmid − ηpi
)

= ηiωpi − (1−minpi)υωmpi = LTCcostωmpi (34)
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In particular, if the LTC cost is nonnegative, we find that:

π(ω)δt(ω)

(
pωmd +

∂pωmd
∂yωmid

yωmid − ηpi
)
≥ 0 (35)

or

π(ω)δt(ω) (pωmd − ηpi) ≥ −π(ω)δt(ω)

(
∂pωmd
∂yωmid

yωmid

)
(36)

Since the inverse demand function is decreasing, we can deduce that:

∂pωmd
∂yωmid

≤ 0 (37)

Hence,

π(ω)δt(ω) (pωmd − ηpi) ≥ −π(ω)δt(ω)

(
∂pωmd
∂yωmid

yωmid

)
≥ 0 (38)

and

ηpi ≤ pωmd (39)

From the point of view of an independent trader i, it may be interesting to study the variation
of the LTC price among the different producers. Intuitively, since LTC prices are modeled as
supply marginal costs for the trader i and since we assume that no market power is exerted by
the producers on the LTC trade, we can deduce that all the producers will contract at the same
price with i. The LTC price will therefore be correlated to the spot price because the latter is
related to the profit earned by i, whereas the former is related to his supply cost. The following
theorem details the relation between the different LTC prices.

Theorem 4. If trader i contracts with producers p and p′ on the long-term, then the LTC prices
are equal:

ηpi = ηp′i

Proof. We assume that trader i has LTCs with producers p and p′, which means that uipi > 0 and
uip′i > 0. To simplify the proof, we will assume that constraint (20f) is not binding. Therefore,
the corresponding dual variables are such as:

∀ω,m, υωmpi = 0

and

∀ω,m, υωmp′i = 0

Let us demonstrate that ηpi = ηp′i.
Since uipi > 0 and uip′i > 0, we can use equation (50e) to deduce that∑

ω

ηiωpi + ηpi = 0 (40)

and ∑
ω

ηiωp′i + ηp′i = 0 (41)
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Since i contracted on the long-term with p and p′, we can deduce, like in the previous proofs
that:

∀ω, m, ziωmpi > 0 and ziωmp′i > 0

Hence, using equation (50a), it is possible to write:

∀ω, m, −π(ω)δt(ω)ηpi − ηiωpi + ψωmi +
∑
n

M2inαi
ω
min = 0 (42)

and

∀ω, m, −π(ω)δt(ω)ηp′i − ηiωp′i + ψωmi +
∑
n

M2inαi
ω
min = 0 (43)

Summing equations (42) and (43) over ω and m and using relations (40) and (41), we can deduce
that: (

(
∑
ω

π(ω)δt(ω))− 1

)
ηpi =

(
(
∑
ω

π(ω)δt(ω))− 1

)
ηp′i (44)

or

ηpi = ηp′i

The following theorem concerns the stored volumes decided by the independent traders and
the related reservation capacity.

Theorem 5. The stored and reserved capacities for storage are such as:

∀ω, ∀i, s, rωis > 0⇒ rωis = inωis

The previous theorem allows us to assert that at each scenario node, each storage site, the
capacity reserved by an independent trader is always equal to the volume he actually decides to
store. This result is very intuitive because the independent traders do not take care of storage
investments. Hence, they are not affected, in their storage decision variables by the randomness
of the demand. Theorem 5’s proof is straightforward:

Proof. Let us assume that a trader i decides to make a storage reservation at storage site s:
rωis > 0.
If he does not use completely the reserved capacity rωis > inωis, then using equation (51b), we
deduce that:

µωis = 0 (45)

If we consider relation (50c), we find that:

−π(ω)δt(ω)Rcs = βsωs (46)

Since βsωs ≥ 0 (using equation (54b)), we would have:

−π(ω)δt(ω)Rcs ≥ 0 (47)

which is absurd because Rcs > 0.
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3 Conclusion

This paper presents a Stochastic Generalized Nash-Cournot model in order to describe the nat-
ural gas markets’ evolution, taking into account the fluctuations of the oil price. The demand
representation takes into consideration the possible energy substitution that can be made be-
tween oil, coal, and natural gas. The exhaustivity of the resource is taken care of by the use of
specific production cost functions (Golombek production cost functions).

The long-term contracts’ prices and volumes are endogenously taken into account with the
use of dual variables. This aspect makes our formulation a Generalized Nash-Cournot model,
or similarly a QVI formulation. In order to solve it, we derived the VI formulation that usually
presents a unique solution.

The demand is made random by considering the oil price’s fluctuation with time. The model
uses a scenario tree representation to capture the oil price fluctuation. The oil price’s dynamic
evolution is modeled as a Markov chain. The transition probabilities have been calibrated using
an econometric study of the Brent price’s historical evolution. The scenario tree representation
allows us to not take care of non-anticipativity conditions. The consequence is that the model’s
formulation is very similar to the deterministic version GaMMES, with a bigger number of vari-
ables.

We have presented, proved and discussed a set of results and theorems related to our formula-
tion. Most of these concern a comparison between the long-term contracts and spot markets gas
prices. They allow one to understand the economic correlation between LTC and spot prices. Be-
sides, when considering an independent trader, a comparison between all the LTC prices among
all his possible supply sources is provided in order to understand the competition between the
producers, in the upstream market.

S-GaMMES has been applied in order to study the evolution of the northwestern European
gas trade. The results are gathered in another paper.
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4 Appendix 1

This appendix demonstrates the concavity of all the players’ objective functions.
We will demonstrate that the production cost function is convex with respect to the quantity
produced. The storage/withdrawal/investments costs are convex functions because they are lin-
ear.

Let’s consider a producer p. First we demonstrate the convexity of the Golombek production
cost function. We consider a production field f . To simplify the notation, let us denote by q
the produced volume (a variable) and by Rff the reserve (a constant). We recall that the cost
function Pcf is as follows:

d Pcf
d q : [0, Rff ) −→ R+

q −→ af + bfq + cf ln
(
Rff−q
Rff

)
where cf ≤ 0 and bf ≥ 0.

Theorem 6. The Golombek production cost function Pcf is convex.

Proof. Pcf is a C2([0, Rff )) function (twice continuously differentiable) and we have :

∀q ∈ [0, Rff )
d2Pcf
d2q

= bf −
cf

Rff − q
≥ 0

Thus, Pcf is convex because cf ≤ 0 and bf ≥ 0.

Producer p’s objective function is:∑
ω,m,f,i π(ω)δt(ω)ηpi(zp

ω
mfpi)

+
∑

ω,m,f,d π(ω)δt(ω)
(
pωmd(x

ω
mfpd + xωmfpd)

)
xωmfpd

−
∑

ω,f δ
t(ω)

(
Pcf

(∑
ω′≤ω

∑
m q

ω′
mfp, Rff

)
− Pcf

(∑
ω′<ω

∑
m q

ω′
mfp, Rff

))
−
∑

ω,f δ
t(ω)Ipf (ipωfp)

−
∑

ω,m,p,a δ
t(ω)((Tca + τωm,a)fp

ω
m,p,a)

Theorem 7. Producer p’s objective function is concave with respect to his decision variables.

Proof. As mentioned before, the inverse demand function has been linearized. Let’s write the
natural gas price in market d, season m and node ω as follows:

pωmd = aωmd − bωmd(xωmfpd + xωmfpd)

where bωmd > 0. The function
∑

ω,m,f,d π(ω)δt(ω)
(
pωmd(x

ω
mfpd + xωmfpd)

)
xωmfpd is therefore a con-

cave function of the variables xωmfpd. Indeed, the Hessian matrix Hω
md associated with the spot

market profit is diagonal and such that the diagonal terms are Hω
md = −2bωmd < 0. Hence, the

Hessian matrix is negative definite.

Let us consider the global cost function GP :
qωmfp −→ GP (qωmfp) =

∑
ω,f δ

t(ω)
(
Pcf

(∑
ω′≤ω

∑
m q

ω′
mfp, Rff

)
− Pcf

(∑
ω′<ω

∑
m q

ω′
mfp, Rff

))
.

And let’s demonstrate that GP is convex. Let us consider two variable vectors q1ωmd and q2ωmd
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and λ ∈ [0, 1].
We denote by Ωl the subset of Ω that contains all the leaves of the tree.

GP (λq1ωmd + (1− λ)q2ωmd)
=∑

ω,f δ
t(ω)

(
Pcf

(∑
ω′≤ω

∑
m(λq1ω

′
md + (1− λ)q2ω

′
md), Rff

))
−
∑

ω,f δ
t(ω)

(
Pcf

(∑
ω′<ω

∑
m(λq1ω

′
md + (1− λ)q2ω

′
md), Rff

))
=∑

f

∑
ω∈Ω δ

t(ω)
(
Pcf

(∑
ω′≤ω

∑
m(λq1ω

′
md + (1− λ)q2ω

′
md), Rff

))
−
∑

f

∑
ω/∈Ωl

δt(ω)+1
(
Pcf

(∑
ω′≤ω

∑
m(λq1ω

′
md + (1− λ)q2ω

′
md), Rff

))
=∑

f

∑
ω/∈Ωl

(δt(ω) − δt(ω)+1)
(
Pcf

(∑
ω′≤ω

∑
m(λq1ω

′
md + (1− λ)q2ω

′
md), Rff

))
+
∑

f

∑
ω∈Ωl

δNum
(
Pcf

(∑
ω′≤ω

∑
m(λq1ω

′
md + (1− λ)q2ω

′
md), Rff

))
=∑

f

∑
ω/∈Ωl

δt(ω)(1− δ)
(
Pcf

(∑
ω′≤ω

∑
m(λq1ω

′
md + (1− λ)q2ω

′
md), Rff

))
+
∑

f

∑
ω∈Ωl

δNum
(
Pcf

(∑
ω′≤ω

∑
m(λq1ω

′
md + (1− λ)q2ω

′
md), Rff

))
Since 0 ≤ δ ≤ 1 and Pcf is convex, we can write:

∑
f

∑
ω/∈Ωl

δt(ω)(1− δ)
(
Pcf

(∑
ω′≤ω

∑
m(λq1ω

′
md + (1− λ)q2ω

′
md), Rff

))
+
∑

f

∑
ω∈Ωl

δNum
(
Pcf

(∑
ω′≤ω

∑
m(λq1ω

′
md + (1− λ)q2ω

′
md), Rff

))
≤
λ
∑

f

∑
ω/∈Ωl

δt(ω)(1− δ)
(
Pcf

(∑
ω′≤t

∑
m q1

ω′
md, Rff

))
+(1− λ)

∑
f

∑
ω/∈Ωl

δt(ω)(1− δ)
(
Pcf

(∑
ω′≤t

∑
m q2

ω′
md, Rff

))
+λ
∑

f

∑
ω∈Ωl

δNum
(
Pcf

(∑
ω′≤ω

∑
m q1

ω′
md, Rff

))
+(1− λ)

∑
f δ

Num
(
Pcf

(∑
ω′≤ω

∑
m q2

ω′
md, Rff

))
=
λGP (q1ωmd) + (1− λ)GP (q2ωmd)

Hence, the cost function is convex. The rest of the profit is made of linear functions of the
decision variables. The concavity of the producers’ objective function is thus demonstrated.

Theorem 8. The independent traders’ objective function is concave with respect to his decision
variables.

Theorem 9. The pipeline and storage operators objective functions are convex.

Theorem 10. All the players’ constraint sets are convex.

Proof. The proof of the independent traders’ concavity of their objective function is similar to
the previous proof. Like for the producers, the spot market benefit is in particular concave.
The pipeline and storage operators objective functions are convex because they are linear.
The feasibility sets are all convex due to linearity of the constraint functions.
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5 Appendix 2

This appendix presents the KKT conditions derived from S-GaMMES. Once the KKT conditions
written, we get the Mixed Complementarity Problem (MCP) given below.
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The producers’ KKT conditions

∀ω, m, f, p, i, 0 ≤ zpωmfpi ⊥ π(ω)δt(ω)ηpi − γωmfp − ε2ωmfpi − ηpωpi ≤ 0

(48a)

−
∑
n

M2inαp
ω
m,p,n

∀ω, m, f, p, d, 0 ≤ xωmfpd ⊥ π(ω)δt(ω)pωmd(x
ω
mfpd + xωmfpd) ≤ 0

(48b)

+ π(ω)δt(ω) ∂pωmd
∂xωmfpd

(xωmfpd + xωmfpd)x
ω
mfpd

− γωmfp − ε1ωmfpd −
∑
n

M3dnαp
ω
m,p,n

∀ω, m, f, p, 0 ≤ qωmfp ⊥ −
∑
ω′≥ω

π(ω′)δt(ω
′)∂Pcf

∂q
(
∑
ω′′≤ω′

∑
m

qω
′′

mfp, Rff ) ≤ 0

(48c)

+
∑
ω′>ω

π(ω′)δt(ω
′)∂Pcf

∂q
(
∑
ω′′<ω′

∑
m

qω
′′

mfp, Rff )

−
∑
ω′≥ω

φω
′

f − χωmf + γωmfp

− (−1)m(ϑ1ωfp − ϑ2ωfp)− ε3ωmfp
+
∑
n

M1fnαp
ω
m,p,n

∀ω, f, p, 0 ≤ ipωfp ⊥ − π(ω)δt(ω)Ipf − ε4ωfp ≤ 0

(48d)

+
∑
m

∑
ω′>ω

χω
′

mf (1− depf )t(ω
′)−t(ω)

− ιpωf + Lff
∑
ω′>ω

ιpω
′

f (1− depf )t(ω
′)−t(ω)

∀ p, i, 0 ≤ uppi ⊥
∑
ω

ηpωpi − ηpi ≤ 0

(48e)

∀ω, f, 0 ≤ φωf ⊥
∑
p

∑
ω′≤ω

∑
m

qω
′

mfp −Rff ≤ 0

(48f)

∀ω, m, f, 0 ≤ χωmf ⊥
∑
p

qωmfp − Tkf (1− depf )t(ω) ≤ 0

(48g)

−
∑
p

∑
ω′<ω

ipω
′

fp(1− depf )t(ω)−t(ω′)
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∀ω, m, f, p, 0 ≤ γωmfp ⊥ − qωmfp +
∑
i

zpωmfpi +
∑
d

xωmfpd ≤ 0

(49a)

∀ω, f, p, 0 ≤ ϑ1ωfp ⊥
∑
m

(−1)mqωmfp − flf ≤ 0

(49b)

∀ω, f, p, 0 ≤ ϑ2ωfp ⊥ −
∑
m

(−1)mqωmfp − flf ≤ 0

(49c)

∀t, f, 0 ≤ ιpωf ⊥
∑
p

ipωfp − LffKff (1− depf )t(ω) ≤ 0

(49d)

− Lff
∑
p

∑
ω′<ω

ip
t(ω′)
fp (1− depf )t(ω)−t(ω′)

∀ω, f,m, p, d, 0 ≤ ε1ωmfpd ⊥ xωmfpd −OfpH ≤ 0

(49e)

∀ω, m, f, p, i, 0 ≤ ε2ωmfpi ⊥ zpωmfpi −OfpH ≤ 0

(49f)

∀ω, m, f, p, 0 ≤ ε3ωmfp ⊥ qωmfp −OfpH ≤ 0

(49g)

∀ω, f, p, 0 ≤ ε4ωfp ⊥ ipωfp −OfpH ≤ 0

(49h)

∀ω, p, i, free ηpωpi uppi −
∑
f,m

zpωmfpi = 0

(49i)

∀ p, i, free ηpi uipi − uppi = 0
(49j)
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The independent traders’ KKT conditions

∀ω, m, p, i, 0 ≤ ziωmpi ⊥ − π(ω)δt(ω)ηpi − ηiωpi ≤ 0 (50a)

+ ψωmi

+
∑
n

M2inαi
ω
min

+ (1−minpi)υωmpi

∀ω, m, i, d, 0 ≤ yωmid ⊥ π(ω)δt(ω)pωmd(y
ω
mid + yωmid) ≤ 0 (50b)

+ π(ω)δt(ω) ∂p
ω
md

∂yωmid
(yωmid + yωmid)y

ω
mid

− ψωmi −
∑
n

M3dnαi
ω
m,i,n

∀ω, i, s, 0 ≤ rωis ⊥ − π(ω)δt(ω)Rcs + µωis − βsωs ≤ 0 (50c)

∀ω, i, s, 0 ≤ inωis ⊥ − π(ω)δt(ω)(Ics +Wcs) ≤ 0 (50d)

− µωis −
∑
m

(−1)mψωmi

−
∑
n

M4snαi
ω
m,i,n(−1)m

∀p, i, 0 ≤ uipi ⊥
∑
ω

ηiωpi + ηpi ≤ 0 (50e)

∀ω, m, i, free ψωmi
∑
p

ziωmpi −
∑
d

yωmid + (−1)m
∑
s

inωis = 0 (51a)

∀ω, i, s, 0 ≤ µωis ⊥ inωis − rωis ≤ 0 (51b)

∀ω, p, i, free ηiωpi uipi −
∑
m

ziωmpi = 0 (51c)

∀p, i, free ηpi uipi − uppi = 0 (51d)

∀ω, m, p, i, 0 ≤ υωmpi ⊥ − ziωmpi +minpi
∑
m

ziωmpi ≤ 0 (51e)

The pipeline operator’s KKT conditions

40



∀ω, m, p, a, 0 ≤ fpωm,p,a ⊥ − π(ω)δt(ω)(Tca + τωm,a)− τωm,a ≤ 0 (52a)

+
∑
n

M6anαp
ω
p,m,n(1− lossa)

−
∑
n

M5anαp
ω
p,m,n

∀ω, m, i, a, 0 ≤ fiωm,i,a ⊥ − π(ω)δt(ω)(Tca + τωm,a)− τωm,a ≤ 0 (52b)

+
∑
n

M6anαi
ω
i,m,n(1− lossa)

−
∑
n

M5anαi
ω
i,m,n

∀ω, a, 0 ≤ ikωa ⊥ − π(ω)δt(ω)Ika ≤ 0 (52c)

+
∑
ω′>ω

τω
′

m,a

− ιaωa + Laa
∑
ω′>ω

ιaω
′

a

∀ω, m, a, 0 ≤ τωm,a ⊥
∑
p

fpωm,p,a +
∑
i

fiωm,i,a ≤ 0 (52d)

− Tka −
∑
ω′<ω

ikω
′

a

∀ω, a, 0 ≤ ιaωa ⊥ ikωa − Tka −
∑
ω′<ω

ikωa ≤ 0 (52e)

∀ω, m, p, n, free αpωm,p,n
∑
a

M6(a, n)fpωm,p,a(1− lossa) = 0 (52f)

−
∑
a

M5anfp
ω
m,p,a +

∑
f

qωmpfM1fn

−
∑
d

∑
f

xωmfpdM3dn

−
∑
i

∑
f

zpωmfpiM2in
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∀ω, m, i, n, free αiωm,i,n
∑
a

M6anfi
ω
m,i,a(1− lossa) = 0 (53a)

−
∑
a

M5anfi
ω
m,i,a −

∑
d

yωmpdM3dn

+
∑
p

ziωmpiM2in

− (−1)m
∑
s

∑
i

inωisM4sn

The storage operator’s KKT conditions

∀ω, s, 0 ≤ isωs ⊥ − π(ω)δt(ω)Iss +
∑
ω′>ω

βsω
′

s ≤ 0 (54a)

− ιsωs + Lss
∑
ω′>ω

ιsω
′

s

∀ω, s, 0 ≤ βsωs ⊥
∑
i

rωis −Kss −
∑
ω′<ω

isω
′

s ≤ 0 (54b)

∀ω, s, 0 ≤ ιsωs ⊥ isωs − LssKss − Lss
∑
ω′<ω

isω
′

s ≤ 0 (54c)
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