

The functioning of the EU-ETS and the flexible mechanisms

EU-ETS between textbook and reality

Christian de Perthuis

European Parliament, Tuesday 22 March 2011

Textbook :

A cap & trade scheme :

$7 \underline{\text{Gives}}$ a price to CO_2	YES
↗ <u>Triggers</u> abatement	.YES
↗ Incites low carbon investments	TBC
Affects competitiveness of capped entities	TBC
↗ Works independently of allocation rules	NO
↗ Doesn't need specific regulation	NO

The European carbon market has developed rapidly (See annex II to IV for more information)

- From 5 bill€ traded in 2005 to over 70 bill€/year since 2008
- CO₂ has became a commodity traded on a liquid market with medium or low volatility (except during the 1st period);
- **7** The CO_2 price reflects a new scarcity of the right to emit CO2
- The EU-ETS is an international reference :
 - ↗ It covers more than 80 % of carbon traded worldwide
 - So far, the main source of demand of international Kyoto offsets credits
 - ↗ A reference for low carbon project developers worldwide

Ex-post evaluation (1st period 2005-2007) : (Source : Ellerman, Convery, De Perthuis)

→ Estimated reductions of 120-300 Mt (2-6%) over three years

- Primarily from fuel switching in the electric sector
- ↗ Primarily in EU-15
- No reliable ex-post evaluation on the second period as yet
- Ex ante evaluation (period 2008-2012) :

(Source : ZEPHYR Model)

- A CO₂ price of 20 €/T reduces emission by 35-50 Mt/Year
- A CO₂ price of 30 €/T reduces emissions by 60-75 MT/Year

Most of the potential abatement results from :

- Energy efficiency gains
- Fuel switching or biomass co-firing in existing plants

Specific incentives exist for low carbon investments :

- → Feed-in tariffs for renewables
- Subsidies for CCS (financed by allowances auctions)

Three conditions for triggering low carbon investments :

- Anticipation by market players of higher CO₂ prices in the long term
- Long term credibility of the carbon constraint
- Increased confidence in market regulations

Empirical observation during the 1st period :

- No empirical evidence of "carbon leakage" in : cement, steel & oil refining industries
- No empirical evidence of "carbon leakage" in aluminum industry (big industrial electricity buyer)

Drawing general conclusions would be premature :

- The observation period was too short and at the height of the business cycle for very cyclical industries
- Capped industries got generous free allowances which incited to locate production in the EU (including the so-called "New Entrants Reserve").

Pricing carbon has two major economic impacts

- The creation of a new "price signal" which incites emissions reductions independently of allocation rules
- ↗ The creation of a new value or "Carbon Rent"

Definition, measure and impact of the "Carbon Rent"

- The right to emit 2 bill tCO₂ has a value of 30-50 bill€ depending on the CO₂ price on the market. This value is a new artificial scarcity rent : the carbon rent
- So far the carbon rent has been freely allocated to companies, with major distributional and wealth impacts
- With auctioning, the carbon rent will be captured by public authorities providing them with additional resources

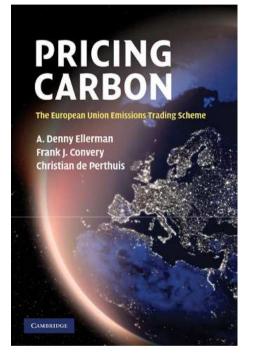
- In textbooks, the public authority has to set up the cap
 - => trading will spontaneously emerge
- In reality a much stronger regulation of the carbon market is needed :
 - **7** The carbon market is an instrument of public policy
 - The Carbon Rent, several billions of Euros, has to be protected against fraudsters : security of registries
 - Existing energy and financial European regulations can help but aren't sufficient.
 - The carbon market needs a specific regulatory framework.

The functioning of the EU-ETS and the flexible mechanisms

Thank you for your attention!

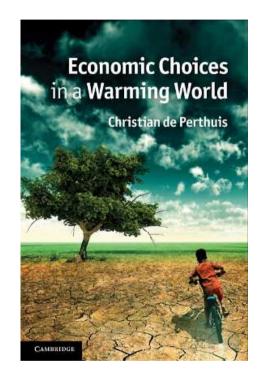
For further information please visit our website :

www.chaireeconomieduclimat.org



- Annex I : Two textbooks on carbon economics
- Annex II : Main data on EU-ETS trading
- Annex III : CO₂ and energy price volatility
- Annex IV : CO₂ price on the EU-ETS

Two texbooks on carbon markets



Pricing Carbon: The European Union Emissions Trading Scheme

> Denny Ellerman Frank J. Convery Christian de Perthuis

11

Cambridge University Press

Economic Choices in a Warming World

Christian de Perthuis

Cambridge University Press

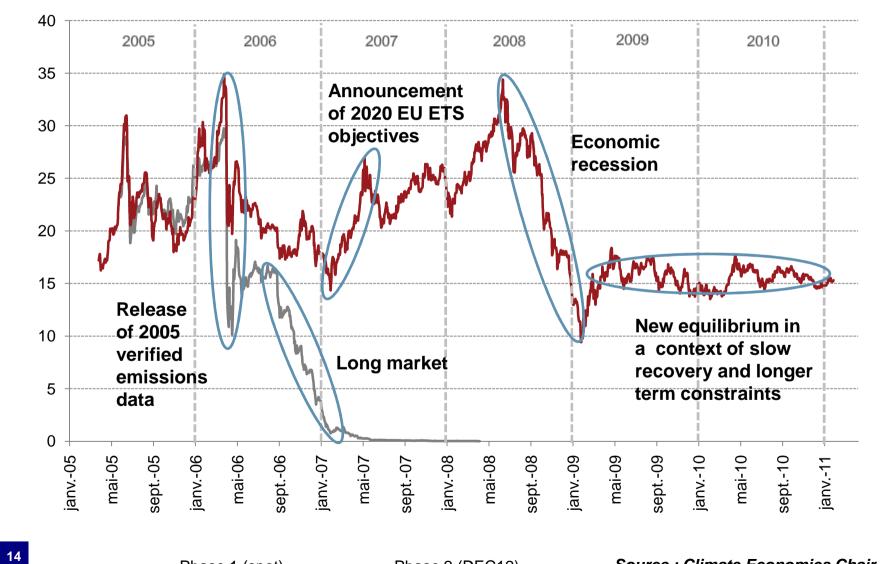
Trades on the EU-ETS

EUA transaction volumes and values

	Volumes exchanged (millions of EUAs)	Value exchanged (millions of euros)	Average EUA price, period 1 (spot price, €/t)	Average EUA price, period 2 (Dec. 2012 contract, €/t)
2005	262	5,659	22.5	21.6
2006	809	18,283	17.3	22.6
2007	1,455	31,574	0.7	21.7
2008	2,713	69,724	-	25.7
2009	4,952	75,766	-	15.3
2010	4,834	74,444	-	15.4

Source : Author's calculations using data from Point Carbon, BlueNext and ECX.

An unstable price?


Volatility of energy commodities (in %)

	EUA spot period 1	EUA Dec. 2012	Natural gas	Coal	Oil
2005	39	43	83	13	29
2006	57	44	102	16	25
2007	160	34	88	15	25
2008	-	33	51	34	49
2009	-	43	73	28	44
2010	-	26	50	23	25
Range	39-160	26-44	50-102	13-34	25-49

What does the allowance price reflect?

— Phase 1 (spot)

-Phase 2 (DEC12)