

Raphael Trotignon - PhD Defense Under the supervision of Professor Christian de Perthuis

IN SEARCH OF THE CARBON PRICE

THE EUROPEAN UNION CO₂ EMISSION TRADING SCHEME: FROM *EX ANTE* AND *EX POST* ANALYSIS TO THE PROJECTION IN **2020**

October 17th, 2012 – Paris Dauphine University (D520) Climate Economics Chair - <u>raphael.trotignon@chaireeconomieduclimat.org</u>

- This thesis is the result of five years studying the European Emission Trading Scheme, the most complete experience of carbon pricing to date
- An **empirical analysis** based on *ex ante/ex post* comparison
- Supplemented by the creation of **a simulation model**, an original approach
- In a context full of uncertainties, nobody knows the "right" carbon price: it is necessary to combine the **three core flexibility mechanisms** associated to the EU ETS to understand the market development (Chapter I)
- Analysis build by progressively integrating in the model: baseline emissions and abatement (Chapter II), the use of offsets (Chapter III), and banking and borrowing (Chapter IV)

• Eventually, shift from an *ex post* use to a **prospective** use of the model to 2020 (Chapter V)

I. *Ex ante* vs. *ex post*

- Difference between initial expectations and actual outcome:
 - Past emission reductions (carbon price and economic crisis)
 - Decentralized use of offsets, supplemental to the cap
 - Interactions with other policies
 - Weakened anticipations

- The price is very different from initial expectations
- A "classic" for cap-andtrade programs (SO₂, Kyoto, RGGI)
- Capacity to drive short term and long term reductions in this context?
- Given uncertainties, the key for understanding the market is the dynamics provided by the three flexibility mechanisms

Source: Climate Economics Chair

I. Methodology

Climate

Economics Chair aris-Dauphine University

Outline

Part I - Emissions trading: the key role of flexibility

Part II - A prototype of ZEPHYR-Flex based on abatement and trading

Part III - The use of carbon offsets: Good or Evil?

Part IV - The calibration of ZEPHYR-Flex and the results on the first two trading periods

Part V - Looking ahead: a multi-level regulation challenge

- Scenarios based on the past relationship between GDP growth and emissions
- Using production indexes as a sectoral breakdown of gross production rates
- And an elasticity of emissions to production (0.6 in general; 1.2 in case of economic choc) Limit: Not differentiated by sector

Relationship between growth and emissions

Climate

conomics hair ris-Daunhine Universit CDC Clima

II. Abatement

- In the model, abatement is done instantly
- Perfect recognition of opportunity cost
- A share of reductions are removed from the emission baseline the following years
- Hypothesis on abatement costs of participating entities, by sector

$$E_p = E_0 \left(1 - \frac{\alpha}{\alpha} \left(1 - e^{-\left(\frac{p}{\tau}\right)^{\beta}} \right) \right)$$

Cost can evolve over time

Relationship between price and abatement

Reductions below the baseline

II. Results with trading only

With **trading only** (no banking, no borrowing, no offsets):

- Does not replicate observations
- Despite the existence of a net surplus, trades are necessary for short installations to be compliant
- Trading is very efficient to lower compliance costs
- → price is zero as soon as baseline emissions are below the cap (assumption of zero transaction costs in the model)

Outline

Part I - Emissions trading: the key role of flexibility

Part II - A prototype of ZEPHYR-Flex based on abatement and trading

Part III - The use of carbon offsets: Good or Evil?

Part IV - The calibration of ZEPHYR-Flex and the results on the first two trading periods

Part V - Looking ahead: a multi-level regulation challenge

• Major characteristic of the EU ETS: articulation with the Kyoto Protocol's flexibility mechanisms, with quantitative and qualitative restrictions

• The attitude towards offsets has changed: initially worshiped, Kyoto offsets are now perceived as aggravating "disequilibrium" on the EUA market

- In the thesis:
 - Observation of prices
 - Use of offsets at the installation level
 - \rightarrow Effect on past EUA equilibrium price with ZEPHYR-Flex
 - \rightarrow Scenario for the use of offsets up to 2020

III. Price evidence

Climate Economics Chair Paris-Dauphine University COC Climat

• Existence of spot discount depends on whether the limit is binding or not

• Different time discounts if offsets and allowances are not perceived as fully equivalent for future use

III. Observed and forecasted use

		2	2	2	2					
Average		0	0	0	0	2008	2009	2010	2011	Average use of
intensity of		8	9	0	1					annual limit
	Constant users	\bigcirc	Ø	0	\bigcirc	83%	73%	92%	98%	86%
offsets use, by	All except 2011	\bigcirc	Ø	\bigcirc	8	108%	118%	127%		118%
	All except 2010	\bigcirc	\bigcirc	\otimes	\bigcirc	118%	96%		128%	114%
category of		\bigcirc	\bigcirc	8	\otimes	86%	70%			78%
	All except 2009	\bigcirc	\otimes	\odot	\bigcirc	91%		148%	147%	129%
hohavior		\bigcirc	\otimes	\bigcirc	8	83%		151%		117%
Dellavioi		\bigcirc	\otimes	8	\bigcirc	85%			182%	133%
etc	Only in 2008	\bigcirc	\otimes	8	8	133%				133%
	All except 2008	\otimes	Ø	\bigcirc	\bigcirc		116%	115%	104%	112%
		\otimes	Ø	\bigcirc	8		127%	71%		99%
		\otimes	\bigcirc	8	\bigcirc		95%		109%	102%
	Only in 2009	\otimes	\bigcirc	8	8		135%			135%
		8	\otimes	\bigcirc	\bigcirc			171%	186%	179%
	Only in 2010	8	\otimes	\bigcirc	\otimes			281%		281%
	Only in 2011	8	\otimes	8	\bigcirc				256%	256%
	Absent users	8	\otimes	8	8					0%

+ Assumptions :

- •Phase 3 rules
- •Phase 3 offset supply
- •Evolution of behavior

Climate

Economics Chair

- Legacy from the Kyoto framework: relying on outside standards can raise regulatory issues
- Applying *ex post* restrictions: intervention on the rules/criteria can have an opposite effect in the short term
- Clearly an arbitrage by participants on the market, leading to a relatively high use of offsets (550Mt in four years), and lower compliance costs
- Nevertheless, economic optimum not fully established
 - information problems
 - reputational concerns
 - transaction costs

Climate

conomics hair

Outline

Part I - Emissions trading: the key role of flexibility

Part II - A prototype of ZEPHYR-Flex based on abatement and trading

Part III - The use of carbon offsets: Good or Evil?

Part IV - The calibration of ZEPHYR-Flex and the results on the first two trading periods

Part V - Looking ahead: a multi-level regulation challenge

We add the time flexibility into ZEPHYR-Flex: the banking and borrowing provisions

Time flexibility mechanisms implies to represent the **anticipations of participants** which play an essential role in our calibration exercise. Three decision criteria (see behavior table in Annex):

1/ Present **internal position** (EUA Stock – Baseline Emissions) *Perfectly known*

2/ Anticipated **future internal position** (Expected growth compared to free allocations) over an anticipation period *Imperfectly anticipated*

3/ **Market position** through anticipation of bullish or bearish price *Random (parameterized)*

IV. Results after calibration

Climate

conomics Chair

• The EU ETS induced a cumulated amount of **emission reduction of about 1,540 Mt** over the first two Phases. **60%** have been obtained outside the scheme's perimeter through the use **of carbon offsets** (900 Mt)

• The total compliance costs are estimated at **30 bn**€ (reductions, offsets and auctions); exchange of allowances between participants represents a value of **18 bn**€ over the first two phases

• Given the level of the allowance cap, the cumulated **net banking is close to 2,000 Mt** at the end of 2012

 \rightarrow Anticipations are preventing the price from being zero

→ Dynamic of behavior in the future ? (shift to auctions, change of behavior following an intervention from public authority...)

Outline

Part I - Emissions trading: the key role of flexibility

Part II - A prototype of ZEPHYR-Flex based on abatement and trading

Part III - The use of carbon offsets: Good or Evil?

Part IV - The calibration of ZEPHYR-Flex and the results on the first two trading periods

Part V - Looking ahead: a multi-level regulation challenge

Renewable Energy and Energy Efficiency policies can affect EU ETS perimeter's emissions independently from the EUA price:

Integration in the model as a progressively lowered elasticity between production growth and baseline emissions growth (average of 60 Mt/yr in Phase 2 to 100 Mt/yr in 2020) 20

Three intervention scenarios are tested with the model:

- The introduction of a reserve price of $20 \in /t$ at auctions
- \bullet A back-loading (or set-aside) of allowances as proposed by the Commission on July, $25^{\rm th}$ 2012
- A reevaluation of the allowance cap to 2020 and 2030 compatible with the Roadmap 2050

• Some intervention measures can induce more uncertainty and instability, as they would not allow firms to set up "correct" anticipations by themselves

• It is very difficult to send the "right" incentives to market players in the absence of explicit **long term targets that are connected with the current and medium term cap** (US SO₂ trading program included a 30 years cap)

• The unforeseen evolution of the macro-economic context, the state of international carbon markets and the link with an offsetting mechanism are factors which can be extraordinarily **stimulating but also undermining** if not dealt with "appropriately"

Abatement

- The abatement costs curves by sectors, and their potential shift over time
- The effect of abatement on the baseline, and on cost curves: short term versus long term reductions, innovation effect...

Baseline emissions

- Sector elasticities
- Interactions with other policies
- Explicit link with relevant drivers (energy prices, country growth etc.)

Compliance and hedging behavior

- Transaction data (banking, borrowing, maybe more)
- Identification to a decision model ?

Modeling and Linking other markets

• Aviation, Australia, California?

Thank you for your attention

October 17th, 2012 – Paris Dauphine University (D520) Climate Economics Chair - <u>raphael.trotignon@chaireeconomieduclimat.org</u>

- Trotignon, R. and Delbosc, A. (2008), Allowance Trading Patterns During the EU ETS Trial Period: What does the CITL reveal?, Climate Report n°13, CDC Climat Research, June 2008
- Ellerman, A. D. and Trotignon, R. (2009), Cross Border Trading and Borrowing in the EU ETS, *The Energy Journal*, Volume 30 (Special Issue 2), Climate Change Policies After 2012, 2009
- Trotignon, R. and Leguet, B. (2009), How Many CERs by 2013?, Mission Climat of Caisse des depots, Working Paper n°2009-5, August 2009
- Trotignon, R. and Solier, B. (2011), The European Market on the Road to Phase 3, in De Perthuis, C. and Jouvet, P-A., eds. (2011), Climate Economics in Progress 2011, Chapter 2, Economica, October 2011
- Trotignon, R (2012), Combining cap-and-trade with offsets: lessons from the EU-ETS, *Climate Policy*, Vol. 12, Iss. 3, 2012
- De Perthuis, C. and Trotignon, R. (2012), The European CO_2 allowances market: issues in the transition to Phase III, Climate Economics Chair, Information and Debates n°14, March 2012

Complete version of ZEPHYR-Flex

UPHINE ERSITÉ PARIS

26