Revisiting the competitive storage model as a tool for the empirical analysis of commodity price volatility

PhD Defense

Nicolas Legrand

INRA – AgroParisTech – Chaire Économie du Climat

Paris – November 21, 2016
Introduction
Motivations and Objectives

The high stakes in understanding the commodity price behavior stem from:

- The typical volatility;
- The episodic and recent price spikes;
- The income, political and social stability of countries;
- The importance for economic agents decisions;
Introduction
Motivations and Objectives

The high stakes in understanding the commodity price behavior stem from:

- The typical volatility;
- The episodic and recent price spikes;
- The income, political and social stability of countries;
- The importance for economic agents decisions;

⇒ Quantitative analyses of commodity price volatility need a consistent model explaining the commodity price formation.
Introduction
The storage model in words

- Very basic supply and demand equilibrium model;
- Supply planned with a lag;
- Demand for immediate consumption;
- Speculative demand for storage,
 ⇒ Thereby inducing serial dependence in prices;
- A non-negativity constraint on storage;
- Both supply and demand subject to exogenous additive random shocks;

Able to explain the main features of commodity prices (nonlinearity, positive skewness, volatility clustering,...).
Introduction

Contributions

This thesis adds to the literature at three levels:

- **On the theoretical front:**
 - To study the trade-off between inventory and capital accumulation dynamics;

- **On the empirical front:**
 - To account for the trend without restricting the model’s specifications;
 - A Bayesian estimation of the model on prices & quantities for more structural parameters of interest to be identified and estimated (e.g., supply reaction, demand shocks);
The model’s empirical performances I

The debate

- The model fails to match the high level of autocorrelation in the observed prices (Deaton & Laroque, JPE 1996);
- A more accurate numerical resolution leads to higher levels of autocorrelation
 - But at the cost of the absence of stockouts over the sample period (Cafiero et al., JoE 2011);
- A maximum likelihood estimator helps reducing biases and improving the model fit (Cafiero et al., AJAE 2015).
However, so far,

- Structural estimations relied on prices only;
- Restrictions are needed on parameters left unidentified (e.g., inelastic supply and a single calibrated structural shock);
- Most estimations have been done on real prices without any correction for possible trends.
Dealing with long-run trends I

Trends and cycles decomposition

![Graph showing trends and cycles](image)

Source: World Bank
Dealing with long-run trends II

The joint estimation strategy

We take inspiration from the hybrid approach of Canova (2014):

- Observed prices are assumed to be decomposable between
 - A multiplicative trend;
 - A cycle explained by the competitive storage model;
- The trend is assumed to be deterministic, which allows the likelihood to take an explicit expression;
- Joint estimation of the trend and of the storage model by 2 nested algorithms (model resolution and optimization of the ML estimator).
Dealing with long-run trends III
Detrending effects on the parameters

To match the high autocorrelation in prices, stocks should be often present so the estimation results lead to:

- **Storage costs higher** once accounting for a trend;
- **More elastic demand**, because the trend capture some of the autocorrelation;
- The storage costs from the best model remain low compared to surveys of storage costs (e.g., World Bank & FAO, 2012);
- Our detrended estimates of elasticities are similar to Roberts & Schlenker (2013) estimates on an aggregate of maize, wheat, rice, and soybeans.
Bayesian inference on quantities I
Towards richer models specifications

Price is the outcome of a supply and demand matching;
⇒ Reasoning from a price change is unhelpful to improve the quantitative merit of the storage theory.

Even noisy, information on quantities is needed and allow to:

- Disentangle production from consumption shifts;
- Test for the presence/absence of producer’s response;
- Estimate a higher number of parameters.
Estimation results

- New estimation methods for the storage model inspired from the standards in macroeconomics;
- **Very inelastic supply and demand estimates** but not implausible for such an aggregate of staple food products and consistent with R & S, 2013;
- **Large measurement errors** call for richer specifications.
Investment and storage dynamics I

The intuition

Storage and investment are the key intertemporal economic decisions and:

- Investment is irreversible and decreasing in uncertainty;
- Uncertainty increases with expected price volatility;
- Storage displaces uncertainty into the future, and thus delays investment in fixed capital;

⇒ There is a case for understanding the interaction of storage with investment irreversibility with their effects on the commodity prices.
Investment and storage dynamics II
Empirical facts in the oil industry

Sources: NYMEX, Baker Hughes and IEA
There are two streams of literature which can be reconnected,

- Literature on the capital accumulation focusing on:
 - Investment decisions under price uncertainty;
 - Irreversibility and adjustment costs;
- Literature on the competitive storage model and the term structure of commodity prices which focuses on
 - the mediation effects of storage on the price behavior;

⇒ Augmenting the storage model on the supply-side to account for the capital accumulation dynamics.
Storage and investment are the two main economic mechanisms in most dynamic commodity models;

The tight link between two consecutive prices through storage arbitrage, translates into higher future uncertainty, rendering the nonnegativity constraint even more binding;

Ultimately, **storage displaces uncertainty into the future** which reinforces the irreversibility of investment;

The strength of the crowding-out effect is linked to the level of uncertainty brought about storage.
Conclusion and perspectives

Theoretical developments

- **Supply-side developments**
 - Effects of capital adjustment costs of various nature (e.g., fix, convex and non-convex);
 - Introduction of a second but not predetermined factor of production (for e.g., labor among the very first expendable in times of turmoil);

- **Introduction of macroeconomic spillovers**
 - Effects of exchange rates and monetary policy in the spirit of the overshooting theory;
 - Addition of financial frictions using the interest rate channel (e.g., heterogeneous agents, behavioral economics).
Conclusion and perspectives
Empirical developments

Full structural estimation of the richer specifications leads to:

- Express the model in a **state-space form**;
- Increase the set of observed variables augmented with measurement errors;
- Relax the assumption of prices observed without noises;
- Use the particle filter to evaluate the likelihood $L(Y^{obs}|\theta)$ given the non-linearities of our state-space system;
- **Favor Bayesian techniques** in view of the growing number of estimated parameters.
Thank you for your attention