Revisiting the competitive storage model as a tool for the empirical analysis of commodity price volatility PhD Defense

Nicolas Legrand

INRA – AgroParisTech – Chaire Économie du Climat

Paris – November 21, 2016

Motivations and Objectives

The high stakes in understanding the commodity price behavior stem from:

- The typical volatility;
- The episodic and recent price spikes;
- The income, political and social stability of countries;
- The importance for economic agents decisions;

Motivations and Objectives

The high stakes in understanding the commodity price behavior stem from:

- The typical volatility;
- The episodic and recent price spikes;
- The income, political and social stability of countries;
- The importance for economic agents decisions;

 \Rightarrow Quantitative analyses of commodity price volatility need a consistent model explaining the commodity price formation.

The storage model in words

- Very basic supply and demand equilibrium model;
- Supply planned with a lag;
- Demand for immediate consumption;
- Speculative demand for storage,
 - \Rightarrow Thereby inducing serial dependence in prices;
- A non-negativity constraint on storage;
- Both supply and demand subject to exogenous additive random shocks;

Able to explain the main features of commodity prices (nonlinearity, positive skewness, volatility clustering,...).

Contributions

This thesis adds to the literature at three levels:

- On the theoretical front:
 - To study the trade-off between inventory and capital accumulation dynamics;
- On the empirical front:
 - To account for the trend without restricting the model's specifications;
 - A Bayesian estimation of the model on prices & quantities for more structural parameters of interest to be identified and estimated (e.g., supply reaction, demand shocks);

The model's empirical performances I

The debate

- The model fails to match the high level of autocorrelation in the observed prices (Deaton & Laroque, JPE 1996);
- A more accurate numerical resolution leads to higher levels of autocorrelation
 - But at the cost of the absence of stockouts over the sample period (Cafiero et al., JoE 2011);
- A maximum likelihood estimator helps reducing biases and improving the model fit (Cafiero et al., AJAE 2015).

The model's empirical performances II

Potential remedies

However, so far,

- Structural estimations relied on prices only;
- Restrictions are needed on parameters left unidentified (e.g., inelastic supply and a single calibrated structural shock);
- Most estimations have been done on real prices without any correction for possible trends.

Dealing with long-run trends I

Trends and cycles decomposition

Source: World Bank

Dealing with long-run trends II

The joint estimation strategy

We take inspiration from the hybrid approach of Canova (2014):

- Observed prices are assumed to be decomposable between
 - A multiplicative trend;
 - A cycle explained by the competitive storage model;
- The trend is assumed to be deterministic, which allows the likelihood to take an explicit expression;
- Joint estimation of the trend and of the storage model by 2 nested algorithms (model resolution and optimization of the ML estimator).

Dealing with long-run trends III

Detrending effects on the parameters

To match the high autocorrelation in prices, stocks should be often present so the estimation results lead to:

- Storage costs higher once accounting for a trend;
- More elastic demand, because the trend capture some of the autocorrelation;
- The storage costs from the best model remain low compared to surveys of storage costs (e.g., World Bank & FAO, 2012);
- Our detrended estimates of elasticities are similar to Roberts & Schlenker (2013) estimates on an aggregate of maize, wheat, rice, and soybeans.

Bayesian inference on quantities I

Towards richer models specifications

Price is the outcome of a supply and demand matching;

 \Rightarrow Reasoning from a price change is unhelpful to improve the quantitative merit of the storage theory.

Even noisy, information on quantities is needed and allow to:

- Disentangle production from consumption shifts;
- Test for the presence/absence of producer's response;
- Estimate a higher number of parameters.

Bayesian inference on quantities II

Estimation results

- New estimation methods for the storage model inspired from the standards in macroeconomics;
- Very inelastic supply and demand estimates but not implausible for such an aggregate of staple food products and consistent with R & S, 2013;
- Large measurement errors call for richer specifications.

Investment and storage dynamics I

The intuition

Storage and investment are the key intertemporal economic decisions and:

- Investment is irreversible and decreasing in uncertainty;
- Uncertainty increases with expected price volatility;
- Storage displaces uncertainty into the future, and thus
 - delays investment in fixed capital;

 \Rightarrow There is a case for understanding the interaction of storage with investment irreversibility with their effects on the commodity prices.

Investment and storage dynamics II

Empirical facts in the oil industry

Percentiles of the storage levels distribution (%)

Sources: NYMEX, Baker Hughes and IEA

Revisiting the competitive storage mode

Investment and storage dynamics III

The missing link

There are two streams of literature which can be reconnected,

- Literature on the capital accumulation focusing on:
 - Investment decisions under price uncertainty;
 - Irreversibility and adjustment costs;
- Literature on the competitive storage model and the term structure of commodity prices which focuses on
 - the mediation effects of storage on the price behavior;

 \Rightarrow Augmenting the storage model on the supply-side to account for the capital accumulation dynamics.

Investment and storage dynamics IV

The crowding-out effect of storage

- Storage and investment are the two main economic mechanisms in most dynamic commodity models;
- The tight link between two consecutive prices through storage arbitrage, translates into higher future uncertainty, rendering the nonnegativity constraint even more binding;
- Ultimately, storage displaces uncertainty into the future which reinforces the irreversibility of investment;
- The strength of the crowding-out effect is linked to the level of uncertainty brought about storage.

Conclusion and perspectives

Theoretical developments

• Supply-side developments

- Effects of capital adjustment costs of various nature (e.g., fix, convex and non-convex);
- Introduction of a second but not predetermined factor of production (for e.g., labor among the very first expendable in times of turmoil);
- Introduction of macroeconomic spillovers
 - Effects of exchange rates and monetary policy in the spirit of the overshooting theory;
 - Addition of financial frictions using the interest rate channel (e.g., heterogeneous agents, behavioral economics).

Conclusion and perspectives

Empirical developments

Full structural estimation of the richer specifications leads to:

- Express the model in a state-space form;
- Increase the set of observed variables augmented with measurement errors;
- Relax the assumption of prices observed without noises;
- Use the particle filter to evaluate the likelihood L(Y^{obs}|θ) given the non-linearities of our state-space system;
- Favor Bayesian techniques in view of the growing number of estimated parameters.

Thank you for your attention