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In October 2015 the European Parliament has established a market 

stability reserve (MSR) in the Phase 4 of the EU-ETS, as part of the 2030 

framework for climate policies. In this paper we model the EU-ETS in 

presence of the Market Stability Reserve (MSR) as it is defined by that 

decision and investigate the impact that such a measure has in terms 

of permits price, output production and banking strategies. To do so 

we build an inter-temporal model in which polluting firms competing 

in an homogeneous good market are price takers in a permits market 

and face an uncertain demand. Our main finding is that the MSR 

succeeds in increasing the permits' price correcting an excess supply 

(and conversely decreasing it in case of excess demand). However, 

when the output demand is stochastic, the MSR may alter the 

arbitrage conditions that determine permits' prices. In some cases 

which depend on the extend of the demand variation, unintended 

effects on the price pattern appear. This in turns may adversely affect 

welfare. * 
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1 Introduction

Tradable emission permits (TEP) can achieve a given pollution reduction tar-
get in a cost-effective manner (Montgomery, 1972) and, in a dynamic perspec-
tive, if these markets have full temporal flexibility (fungibility), firms can op-
timally allocate abatement efforts across time (Cronshaw and Brown-Kruse,
1996). The attractiveness of TEP regulation in relation to environmental taxes
is that the regulator is not required to have information regarding the produc-
tion and abatement technologies available in the sector under regulation for the
cost-effective equilibrium to arise. Such equilibrium is achieved through the
market mechanism itself. However, there is a consensus on the fact that the
European Emission Trading System (EU-ETS) is not working properly in this
regard. Duncan (2016) analysis is unequivocal: “Right now the ETS is like a car

without an engine, we need to ensure it is fit to do the job it should and drive

emissions reductions in Europe”. In fact, several factors have contributed to the
actual situation, in which the price of allowances is low with a very high surplus
of permits, such as the economic crisis, the introduction of renewables and the
use of Kyoto credits. The fact that the current cost of reducing emissions is low
is not a good news since it suggests that the ETS may fail to induce a transfor-
mation away from fossil fuels. For all these reasons, the market design of the
EU-ETS is being reformed on several issues, such as the speed at which the cap
decreases, carbon leakage amendments, rules about innovation funds. So far, a
step forward has been taken by creating a market stability reserve (MSR), by
the Decision (EU) 2015/1814 of the European Parliament and of the Council.

”The purpose of the MSR is to avoid that the EU carbon market operates with

a large structural surplus of allowances, with the associated risk that this prevents

the EU ETS from delivering the necessary investment signal to deliver on the

EU’s emission reduction target in a cost-efficient manner” (EC 2017). The idea
behind such reform is a flexibility mechanism that allows the supply of permits
to be responsive to fundamental changes in permits demand (like technology
advances or economic shocks). The mechanism works as follows: each year the
EC publishes the number of allowances in circulation and, if the number is higher
or equal than 833 million, 12% are placed in the reserve1 (and consequently
withdrawn from next year’s auctions to the electricity sector). Instead, if the
allowances in circulation are below 400 million, or if for six month the price is
more than 3 times the average carbon price during the two preceding years, 100
million are released from the reserve. The number of allowances in circulation is
defined as the number of allowances issued from 2008 (plus international credits
used from 2008) until the year in question minus total emissions since 2008
and minus the number of allowances already in the stability reserve: i.e. firms
accumulated banking of allowances. The first calculation of these allowances has
been released in May 2017 and amounts to 1,693,904,897 allowances. In line with
the agreed MSR rules, no reserve feed is triggered by the indicator published in

1In fact the text says that what is retired is the maximum between 12% of allowances in
circulation and 100 Mt. The proposal of increasing this factor to 24% has been discussed but
not approved yet.
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2017. The next publication will be made in May 2018. This will result in the
determination of the first reserve feed for the period January to August 2019.
Moreover, ”backloaded” allowances (900 million allowances withdrawn from the
market at least until 2019), will be placed in the MSR’s reserve as well as any
remaining allowances not allocated by the end of the current trading phase, that
is 2020.

Several scholars have studied similar flexibility mechanisms that to some
extent are used in the Californian CO2 market and the Regional Greenhouse
Gas Initiative (RGGI).2 Firstly, Pizer (2002) introduces the idea of a ”safety
valve” which consists in coupling a cap-and-trade system is with a price ceiling.
As long as the allowance price is below the safety-valve price, this hybrid system
acts like cap-and-trade, with emissions fixed but the price left to adjust. Instead,
when the safety-valve price is reached the system behaves like a tax, fixing the
price but leaving emissions to adjust. Later, Philibert (2008) and Burtraw, et
al. (2009) have proposed a symmetric safety valve, also known as a price collar,
which would limit price volatility on both the upside and the downside. Fell and
Moregerstern (2010) extend this kind of analysis by introducing uncertainty and
coupling the collar mechanisms to restrictions on banking and borrowing. They
find that adding a price collar to the reserve borrowing proposal can reduce
costs: a price collar can achieve costs almost as low as a tax but with less
emissions variation. The price collar mechanisms outperform their safety valve
counterparts in terms of expected abatement costs at the same level of expected
cumulative emissions.

Traditionally, the literature has analyzed price flexibility measures whereas
the EC has chosen instead to go for a quantity mechanism. Some recent papers
have then analyzed this design. Schopp et al. (2015) show in a computational
model that low EUA prices are observed because current supply exceeds current
demand of the electric industry that use them to hedge emissions associated with
existing 3 to 4 year power contracts. In this view, the MSR is a good solution
since it affects the short-time price without touching to the long-run price signal.
Similarly Trotignon et al. (2016) and Perino and Willner (2016) find that the
MSR reduces the short-medium term price, fostering earlier emission reductions.
This is precisely what Zetterberg et al. (2014) criticize, saying that the risk of
price volatility is higher in the presence of the MSR due to the difficulty of
predicting hedging needs. There is also a concern that the MSR will not erode
the current surplus quickly enough with an excess supply present until 2028
(Mathews et al., 2015). Salant (2016) suggests that low hedging demand from
the power sector is not compensated by other sectors expecting to buy low now
and sell high later due to the lack of credibility of the survival of the system. In
contrast, Fell’s (2016) simulations find that the MSR can decrease price volatility
(but that its performance is very sensitive to parameters). FTL-Lexecon (2017)
suggests that alternative design would improve the performance of the market.
Several results are put to a trial in an experimental setting by Holt and Shobe

2The RGGI covers emissions from the power sector in 9 States of the Unites States of
America (Those states are Connecticut, Delaware, Maine, Maryland, Massachusetts, New
Hampshire, New York, Rhode Island and Vermont) as from January 2009.
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(2016), who find that there is little benefit associated to the MSR but that a
price collar may instead enhance efficiency.

The paper closest to ours is Kollenberg and Taschini (2016) who model
the adjustments in permits availability due to the existence of the MSR using
a stochastic partial equilibrium framework. Their model and scope are very
different from ours but some of the results are in line: the MSR substitutes
private banking and reduces variability in allowance holdings by withdrawing
(reinjecting) when the surplus is too high (low).

In this paper we consider a polluting sector subject to the EU-ETS in the
presence of the MSR (like for instance the electricity sector). To this end,
we study the MSR impact on banking strategies, allowances price and output
production to assess to which extent private banking is crowded out by this
mechanism. Differently from Kollenberg and Tashini (2016) we perform such
exercise for different designs of the flexibility mechanism. We model a ”fixed”
rule, that is, for an MSR mechanism that is set independently of the banking
already accumulated. This rule is similar to the backloading policy already in
place in the EU ETS. We then compare it with a ”proportional” rule in which the
MSR withdraws a given percentage of the accumulated banking. Furthermore,
we study uncertainty under the form of a shock on the output demand, to
understand whether the MSR actually makes the EU ETS price more responsive
to output changes with respect to no intervention. To our knowledge, this is
the first paper that studies to which extent the proposed design of the MSR
interacts with firms’ market strategies under demand uncertainty. To do so,
we assume that firms may delay banking as it was an ”option”, waiting for the
MSR to regulate the market. We then calculate firms’ optimal strategies under
Cournot-like competion, when the regulator modifies the cap, and present a
fully fledged analysis of output pricing and banking behavior.

Our main finding is that the MSR succeeds in increasing the permits’ price
when there is an excess supply (and conversely decreasing it in case of excess
demand). However, when uncertainty on the output demand is factored in, the
MSR may alter the perfect arbitrage conditions. In some cases which depend on
the extend of the demand variation, dynamic inefficiencies in the price pattern
appear. In particular, firms prefer to delay banking for wider valued of the
demand variation compared to the no intervention case. This in turns may
adversely affect not only producers’ profits, but also consumers’ surplus.

The paper is organized as follows. We first explain our modelling strategy
(Section 2), then we develop the model under uncertainty (Section 3). We
introduce the notion of delaying banking. We calculate how backloading and
MSR modify it, including welfare effects (Section 4). Our main results are also
presented by intuitive graphical illustrations. We conclude by pointing out some
policy implications.
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2 Modelling strategy

2.1 Assumptions and notation

We consider n symmetric firms (indexed by i = 1 . . . .n ) that compete in quan-
tities during three periods (t = 0, 1, 2) where (b − d

∑n
i=1 qi,t) is the inverse

demand in t and c is the constant marginal costs. One (some) of the inputs
used for production is polluting (e is the polluting intensity of output in t) and
therefore firms are subject to environmental regulation based on TEP. A regula-
tor fixes a yearly cap on emissions amounting to the pollution reduction target
and sells an equivalent volume of permits in an auction. We denote αtA is the
amount of permits auctioned by the authority each period,3 with αt+1 < αt ≤ 1.
Firms are price takers in the TEP market whose price is σt. Firms maximize
inter-temporal profits over three periods (by discounting with an interest rate
denoted r ), and decide optimal production qi,t and banking zi,t.

4

The regulator also stabilizes the market by setting a supply flexibility mech-
anism: depending on whether there are more (less) permits than those allowed
by a given upper (lower) bound, the regulator will withdraw or inject additional
allowances in the next period.

2.2 Benchmark modelling

The previous assumptions can be summarized as follows: each firm i maximizes
inter-temporal profits:

Max
qi,t,zi,t

Πi =
2∑

t=0

πi,t

(1 + r)
t , (1)

s.t.
n∑

i=1

(eqi,t + zi,t − zi,t−1) ≤ αtA+ xt , (2)

zi,2 = 0. (3)

where for each period t :

πi,t = (b− d
n∑

i=1

qi,t)qi,t − cqi,t − σt(eqi,t + zi,t − zi,t−1). (4)

We assume that banked permits are used in the subsequent period and that
at the end of the regulatory period 2 there is no further incentive to bank.

3Notice that we consider the allocation A, the emission intensity e, demand b, d and cost
parameter c as constant all along the regulatory period.

4Cronshaw and Brown-Kruse (1996), as well as Rubin (1996), show that, when the trad-
able emission permits market is competitive and all firms comply with the environmental
regulation, allowing firms to save permits for future use increases inter-temporal efficiency,
since firms can optimally allocate pollution abatement efforts across time.
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Therefore, for every t, zi,t−1 represent firm i banked permits at the end of t− 1
that is unused permits at that date.5

The MSR can take different forms. If there is excess demand, that is banking
below Z (in the EC decision 400Mt), the MSR rule leads to an injection of a
permits (in the decision 100Mt). In case of excess supply, measured by banking
exceeding a given threshold Z (in the proposal 800Mt), −ζ

∑n
i=1 zi,t−1 is the

amount of permits withdrawn (in the decision 800Mt). Injection of permits is
done in a fixed amount, whereas permits withdrawal is a fraction ζ of the gap
between supply and demand, that is unused permits (in the decision ζ is 12%).

For sake of comparison between the MSR withdrawing rule and the back-
loading measure,6 we also consider the case of a fixed amount of −a permits
withdrawn. Finally, no intervention is needed when unused permits remain
within the corridor defined by Z and Z.

The regulatory intervention will thus be modeled as follows:

xt =





a if
∑n

i=1 zi,t−1 < Z,
0 if Z ≤

∑n
i=1 zi,t−1 ≤ Z,

−a if
∑n

i=1 zi,t−1 > Z,
or

−ζt
∑n

i=1 zi,t−1 if
∑n

i=1 zi,t−1 > Z.

(5)

with zi,2 = 0 ∀i .
The previous cases will be divided in two sub-cases: (i) the case in which the

regulator reinjects a or withdraws an exogenous amount −a, respectively and
that we will call the ”fixed amount rule”; (ii) the case in which the regulator
withdraws a percentage of banking, ζ, that we call from now on the ”proportional
to banking rule”. For simplicity, we will also label these rules as backloading
and MSR respectively.

To assess the functioning of the policy intervention, the fixed withdrawal
rule (or backloading) is formalized as follows:

t Fixed withdrawal rule or Backloading

0
∑n

i=1(eqi,0 + zi,0)≤α0A,
1

∑n
i=1(eqi,1 + zi,1 − zi,0)≤α1A−a,

2
∑n

i=1(eqi,2 − zi,1)≤α2A−a.

(6)

Equations (6) simply say that, in period 0, total permits auctioned must be
enough to cover total emissions due to production and permits banked for period

5This hypothesis might seem in contrast with the literature on banking (see for instance
Schennach 2000 where banking is dont at each period for the entire regulatory time span).
However, the standard formulation and the one we choose result in the same optimal arbitrage
equation, meaning that inter-temporal efficiency holds.

6As a short-term measure to resorb the allowance surplus, the Commission postponed the
auctioning of 900 million allowances until 2019-2020.This backloading of auction volumes does
not reduce the overall number of allowances to be auctioned during phase 3, only the distri-
bution of auctions over the period.The auction volume is reduced by 400 million allowances in
2014; 300 million in 2015 and 200 million in 2016. The backloading was implemented through
an amendment to the EU ETS Auctioning Regulation, which entered into force in 2014.
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1. Then, in period 1, total permits auctioned considered the exogenous permits
withdrawal must be enough to cover emissions and the net variation in the bank
of permits. Finally, in period 2, auctioned permits (again minus withdrawal)
must be enough to cover emissions considering that all banked permits must be
exhausted.

The proportional withdrawal rule (or MSR) takes the form of a smooth
adjustment of the cap, as described by the following conditions:

t Proportional withdrawal rule or MSR

0
∑n

i=1(eqi,0 + zi,0)≤α0A ,
1

∑n
i=1(eqi,1 + zi,1 − zi,0)≤α1A−ζ1

∑n
i=1 zi,0,

2
∑n

i=1(eqi,2 − zi,1)≤α2A−ζ2
∑n

i=1 zi,1 .

(7)

Indeed the first equation is identical for both rules as the MSR does not op-
erate in period 0. Then, the second equation above shows the MSR withdrawal
as a percentage of the banked permits from period 0 and the third equation
models the MSR withdrawal as a percentage of banked permits from period 0
and 1.

To solve the model we apply a two-step-solution (similarly to Chaton et al.

2015):
(i) considering permits price ( σt ) as exogenous, we first find the symmetric

Nash equilibrium in quantities at each period by simply solving the system of

FOCs given by
∂πzi,t

∂qi,t
= 0

qt =
b− c− eσt

(1 + n) dt
; (8)

(ii) secondly, we solve the system of FOCs given by ∂Πi

∂zi,t
= 0 and the permits

market clearing condition in equation, which gives the inter-temporal arbitrage
condition defining the optimal banking strategies that maximize inter-temporal
profits:

σ0 =
σt

(1 + r)
t . (9)

Finally, solving the system of all equations resulting from (i) and (ii) gives the
equilibrium values. Note that (ii) can be done because firms are non-strategic
in the permits market. Finally, we check ex post (strict) positivity constraints
and threshold restrictions that define the functioning of the intervention. In
particular, although the equilibrium can be detailed by the equations below
for any scenario, depending on the specific total inter-temporal permits supply,
each case will be characterized by different constraints on the parameters to
ensure positive quantity and output price, as well as banking. These constraints,
detailed in the Appendix A.2, must be carefully checked when comparing the
different cases to assess the impact of the policy.

2.2.1 Fixed amount rule or backloading

Recall that the quantity of permits injected ( xt = a) or withdrawn ( xt = −a)
from the market in t. The benchmark is obtained with

∑
xt = 0.
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Firms are constrained by the regulation if the total intertemporal supply of
permits auctioned Γ = A (α0 + α1 + α2)+x1+x2 > 0 is lower than the overall
emissions in the 3 periods, when the pollution constraint would not be binding:

Γ <
ne

(n+ 1) d
× 3 (b− c) . (10)

Whatever the functioning of the policy intervention under the fixed amount
rule, the constraint (10) must hold. Notice that the regulator modifies the inter-
temporal cap as long as x1 + x2 6= 0, that is the measure is not cap-preserving.

The mainequilibrium valuesfor the fixed amount rule are as follows:

q∗0 =
1

R

(
Γ

ne
+

(R− 3) (b− c)

(n+ 1) d

)
, (11)

z∗0 =
Aα0

n
−

1

R

(
Γ

n
+

(R− 3) e(b− c)

(n+ 1) d

)
, (12)

z∗1 = −
Aα2 + x2

n
+

1

R

(
(1 + r)

2
Γ

n
−

(
R− 3 + r2

)
e(b− c)

(n+ 1) d

)
, (13)

σ∗

0 =
1

Re

(
3(b− c)−

(1 + n) dΓ

ne

)
, (14)

where

R =
2∑

t=0

(1 + r)
t
. (15)

Note that q∗1 and q∗2 and all other equilibrium variables have similar ex-
pressions (see Appendix A.1). In particular, σ∗

1 and σ∗

2 are obtained by inter-
temporal arbitrage (equation 9). Moreover, due to the structure of the three-
period model, there is no banking at the final stage, that is z∗2 = 0.

Recalling that the total intertemporal permits supply is Γ = A (α0 + α1 + α2)+
x1 + x2, we can easily compute equilibrium values for cap reduction (x1 =
x2 = −a), with two successive withdrawing periods succeeding each other),
cap increase (x1 = x2 = a) and compare them with the no intervention case
(x1 = x2 = 0).7

Comparative statics can also be easily obtained. If the flexibility mecha-
nism operates by reducing the cap, the equilibrium permits price increase. The
mechanism at stake is as follows: banking increases, production decreases and
so does the permits’ demand, explaining the upward shift of the permits’ price.
The opposite occurs when the regulator reinjects permits (or x1 = x2 = a).

2.2.2 Proportional to banking withdrawal rule or MSR

Recall that ζt is the percentage of banking withdrawn from the market at time
t. Similarly to the fixed amount rule, firms are constrained by the regulation as

7Notice that the results hold when the cap is adjusted at period 1 only (x1 = −a and
x2 = 0 or x1 = a and x2 = 0).
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long as the total intertemporal permits supply is tight enough:

Γζ <
ne

(n+ 1) d
× (3− ζ1(1− ζ2)− 2ζ2)(b− c), (16)

where

Γζ = Aαζ , (17)

αζ = α0(1− ζ1)(1− ζ2) + α1(1− ζ2) + α2. (18)

The main equilibrium values in the proportional rule are defined as
follows (see Appendix A.1 for the other values):

q∗0,ζ =
1

D

(
Γζ

ne
+

(R− 3− ζ2r) (b− c)

(n+ 1) d

)
, (19)

z∗0,ζ =
Aα0

n
−

1

D

(
Γζ

n
+

r (3 + r − ζ2) e(b− c)

(n+ 1) d

)
, (20)

z∗1,ζ =
A

D

(1 + r)
2
(α0 (1− ζ1) + α1)− α2 ((1 + r) + (1− ζ1))

n
(21)

−
r (3 + 2r − (2 + r) ζ1) e(b− c)

D (n+ 1) d
,

σ∗

0,ζ =
1

De

(
(3− ζ1(1− ζ2)− 2ζ2)(b− c)−

(1 + n) d

ne
Γζ

)
, (22)

where
D = R− (1− ζ2) ζ1 − (2 + r) ζ2 > 0. (23)

Straightforward calculations show that increasing ζ1 and/or ζ2, that is the
parameters which define the withdrawal rate, increase the permits price σ∗

0,ζ

(and by arbitrage, also σ∗

1,ζ and σ∗

2,ζ) compared to the no intervention case.8

3 Uncertainty on demand and the option to de-

lay banking

In this Section we assume that there is a shock ∆ on the market size at t = 1,
that is, the demand intercept can be bm = b+∆. If ∆ > 0 the demand increases,
and conversely, if ∆ < 0 there is a recession. The demand variation occurs with
a probability (1−λ) ; we denote the expected demand as Eb = λb+(1−λ)bm.

Such uncertainty is resolved at t = 1, where either b or bm realizes, until the
second period.

We consider the decision on banking as a partially reversible investment.
Firms could decide not to bank at period 0 and wait for the uncertainty re-
garding the level of demand to be resolved at period 1. This option to wait or

8Notice that by setting ζ1 = ζ2 = 0 in the equations defining the equilibrium, we get the
no intervention case.
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opportunity to delay the banking decision, denoted by DB, has a value that
must be considered. Since there is no abatement in our model, firms bank per-
mits only if they expect them to be more expensive in the future. In order to
evaluate this option to delay we calculate the difference between the expected
discounted profit when banking is positive at t = 0 (z∗0 > 0) denoted by E(Πi)
and the expected discounted profit under the assumption that banking is delayed
to t = 1 (z0 = 0) denoted by E(Πi/z0 = 0). Therefore, we have:

DB = max(E(Πi/z0 = 0)− E(Πi), 0). (24)

The difference between those expected profits give us the expected gain due
to delaying banking, which is considered as sequential investment (like in Majd
and Pindyck, 1987).

We calculate the equilibrium under uncertainty on demand, by maximizing
the expected discounted intertemporal profits. Similarly to the scenario un-
der certainty, firms are constrained if the total offer of permits is low enough:

A
∑

αt < n
n+1 ×

3(b−c)e+2∆e(1−λ)
d

. This constraint can be expressed in terms
of ∆ = bm − b. The total supply constraint gives a threshold ∆c such that if
∆ > ∆c, the permits price is positive at each period:9

∆ > ∆c =
(n+ 1) dA

2ne (1− λ)

2∑

t=0

αt −
3 (b− c)

2 (1− λ)
. (25)

The main equilibrium values under uncertainty and z∗0 > 0 are as
follows:

q̂∗0 = q∗0 +
2 (1− λ)∆

R (1 + n) d
, (26)

ẑ∗0 = z∗0 +
2 (1− λ)∆e

R (1 + n) d
, (27)

z∗1,b = z∗1 +
2e (1 + r) (1− λ)∆

d (1 + n) (2 + r)R
, (28)

z∗1,bm = z∗1,b +
∆er

(n+ 1) (2 + r) d
, (29)

σ̂∗

0 = σ∗

0 +
2 (1− λ)∆

eR
. (30)

Notice that these values are calculated without any intervention modifying
the cap, that will be introduced in the next Section. The variables with a
hat represent expected values, whereas the others are realized values (once the
uncertainty is resolved, that is when either b or bm realizes).10

9In this Section, we assume α0 = 1, to simplify the calculations.
10The permits prices values for periods 1 and 2 are: σ∗

1,b = σ∗

1 −
2(1−λ)∆
e(2+r)R

, σ∗

1,bm = σ∗

1,b +
2∆

e(2+r)
.

9



We also have to check that the arbitrage condition satisfied with z0 > 0 and
z1 > 0. The following conditions must hold:11

2(1 + r)∆(1− λ) + rRmax(0,∆) ≤

(2 + r)( (n+1)dA
ne

((1 + r)
2

2∑

t=0

αt − α2R)− (2r + 3))r(b− c) , (31)

∆ > ∆0 = ∆c+
R

2 (1− λ)
(b−c−

(n+ 1) dA

ne
)
(n+ 1) dA

ne
((1 + r)

2
2∑

t=0

αt−α2R) .

(32)
Positive quantities imply the following constraint:

∆ < ∆0 =
(R− 3) (b− c)

2(1− λ)
+

(n+ 1) dΓ

2ne (1− λ)
. (33)

The value of delaying the banking decision as an option. The pre-
vious equilibrium allow the calculation of the expected inter-temporal profits
when firm decide to wait until period 1 to bank E (Πi/z0 = 0) or when they
don’t (that is E (Πi)). Under these hypotheses, the value of delaying banking
DB is as follows:

DB =
A2dΛ

e2n2
−

((b− c) r (3 + r)− 2 (1− λ)∆)
2

d(1 + n)2 (1 + r) (2 + r)R
,

where Λ = (
∑

αt)
2
−2R

∑
αt+R2α0

(1+r)(2+r)R .

DB is a quadratic function of the shock ∆ (but also of b, c, A and of the
probability of shock λ). To ease the calculations, we set α0 = 1.

The equation DB = 0 has two roots, namely ∆0[.] and ∆DB [.]:

∆0 = ∆0 −
(n+ 1) dA

2ne (1− λ)
R, (34)

∆DB =
(R− 3) (b− c)

2 (1− λ)
+

(n+ 1) dA

2ne (1− λ)
(R−

2∑

t=0

αt). (35)

Recall that:
1. for all ∆ < ∆0 firms would borrow permits in the first period (z0 < 0),

but this strategy is discarded by the functioning of the EU ETS;
2. for all ∆ > ∆0 firms don’t produce in the first period (q0 = 0) in order

to gain profits when the demand is expected to be high.
Therefore, our analysis is conducted in the interval ∆ ∈ [∆0,∆0] . The

graphical illustrations are obtained by using the following values: b = 1.7; c = 1;
e = 1; d = 1; α1 = 1; α2 = 0.9; α3 = 0.6; r = 0.05; λ = 0.5; n = 6; x3 = 0;
A = 0.18.

11Note that ∆ = 0 gives the same constraints than in the case without demand uncertainty.
This property also holds for the cases developed afterwards.
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Straightforward computations show that for all ∆ ∈ [∆0,∆
DB ], the option to

wait DB is positive. This means that the expected profits when there is no first
period banking exceeds the expected profits when banking at t = 0. Therefore
it would not be optimal for the firms to bank (z0 = 0). The discontinuity in
the banking decision implies that the carbon prices are not linked by the inter-
temporal arbitrage equation. Therefore, for all ∆ ∈ [∆0,∆

DB ] , the equilibrium
carbon price at t = 0 is determined by the fundamentals of the current period
only.12 Moreover, as banking starts at t = 1,carbon prices at t = 1 and t = 2
are arbitraged.

Instead, for all ∆ > ∆DB , banking starts as from the first period (z∗0 > 0) . In
this case, carbon prices follow the inter-temporal arbitrage equation (with σ̂∗

0

defined by equation 30

Figure 1. Delaying Banking as an option to wait

Notice that increasing the allocation, the discounting factor R or the jump
probability λ (see the Figure 2) amplify the interval where the DB is positive,
implying that the interval such that it is optimal to wait is broader, both for
demand increase (∆ > 0) and decrease (∆ < 0) .

12In this case, σ0 = 1
e

(

(b− c)−
(1+n)dA

ne

)

.
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Figure 2. The impact of the jump probability on DB

4 Impact of backloading and MSR policies

The main driver of firms’ choice in their banking strategy is demand uncertainty,
as explained in the previous Section. We now look at the impact of the MSR
and backloading on such strategies. To do so, we study how the intervention
policies modify the DB equation and the interval under which it is optimal for
firms to delay banking (Subsection 4.1). Then we analyze the impact on prices
and welfare (Subsection 4.2).

To summarize our results, stabilization policies have two effects:

• they modify the demand variation interval under which firms prefer to
delay banking until the second period;

• the shift of the demand variation thresholds such that banking is delayed
creates inter-temporal inefficiencies, in particular on the CO2 price.

All the result are analytically proved.13 Whenever useful we illustrate them
graphically. This is for instance the case for the impact of stabilization policies
on consumers’ surplus and firms’ profits.

4.1 Delaying banking under stabilization policies

To simplify the analysis, we assume that the regulator only intervenes at t = 1.
The cap is either tightened (x1 = −a, x2 = 0) under backloading,or released
(ζ1 > 0 , ζ2 = 0) under proportional withdrawing (MSR), with respect to the
benchmark case of no intervention.

13The detailed calculations of production, banking and welfare are available by the authors
upon request, under Mathematica files.
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4.1.1 Backloading

With x1 = −a , the thresholds such that it is optimal for firms to delay
banking, with positive production in the first period, are modified as follows:

∆0,x = ∆0 −
d (n+ 1) a

2ne (1− λ)
< ∆0, (36)

∆DB
x = ∆DB +

d (n+ 1) a

2ne (1− λ)
> ∆DB , (37)

∆0,x = ∆0 −
(n+ 1) da

2ne (1− λ)
< ∆0. (38)

The interval under which it is optimal for firms to delay banking is wider with
respect to the one without intervention: firms wait until the demand variation
is stronger (both with demand boom and boost) to start banking (equations 36
and 37). Producing positive quantities in the first period shrinks (equation 38).
Moreover, the DB value is modified as follows:

DBX = DB +
da(2A (R−

∑
t αt) + a)

e2n2 (1 + r) (2 + r)R
. (39)

In particular DBX lies above DB when both are positive.
Backloading widens the interval over which is optimal to bank, whereas

permits injection has the opposite effects of narrowing the interval of the demand
variation under which firms do not bank.

Figure 3 illustrates these effects, as well as the injection case for comparison.
The black line represents DB under the benchmark, the red line is DBX with
a fixed reduction of permits (x1 = −0.1, x2 = 0), and the dotted line represents
the value of delaying banking under permits injection (x1 = 0.1, x2 = 0). This
latter case has opposite but symmetric effects with respect to backloading. The
demand variation interval over which firms bank shrinks.
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Figure 3. Fixed rules and DB

4.1.2 MSR

We study the impact on the interval variation such that it is optimal to delay
banking under the MSR rule, with positive production in the first period. The
critical thresholds are modified as follows:

∆0,ζ = ∆0, (40)

∆DB
ζ = ∆DB +

dA (n+ 1) ((R− 1)
(∑2

0 αt − ζ1

)
ζ1)

ne(1− λ)(R− 2ζ1 + ζ21 )
> ∆OW , (41)

∆0,ζ = ∆0 −
dA (n+ 1)

2ne (1− λ)
ζ1 < ∆0. (42)

The stability mechanism amplifies the values of the demand gap such that
it is optimal to delay banking (equation 41) on the right side, for demand
booms. The left threshold remains the same (equation 40). Positive quantities
are obtained for a threshold value smaller than in the benchmark case (equation
42).

Let ϑ = (b− c) r (3 + r) − 2 (1− λ)∆; the value of delaying banking writes
as follows:

DBζ = DB +
ζ1(Ad (1 + n)

(
R−

∑2
0 αt

)
− enϑ)

de2n2 (1 + n)
2
R (R− ζ1)

2

×(Ad(1 + n)((2R− ζ1)
2∑

0

αt −Rζ1) + enζ1ϑ). (43)
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The term that adds up to DB is positive. Consequently DBζ> DB when
both are positive, as Figure 4 illustrates. Also notice that the higher the with-
drawal coefficient, the stronger the amplification effect.

Figure 4. MSR (under different withdrawal coefficients) and DB

4.2 Impact of the stabilization policies on the carbon price

The impact on the CO2 price can be calculated in the intervals of demand
variation ∆ .

4.2.1 Backloading

The following effects are at stake:

• If ∆ ∈
[
∆0,x,∆

DB
]
, a backloading policy doesn’t impact the banking

behavior (there is no banking in either case), therefore there is no impact
on the CO 2 price in t = 0 . In the following periods, the cap reduction
increases carbon prices. Notice that in the subinterval ∆ ∈ [∆0,x , ∆0] a
backloading policy has no impact as borrowing is not allowed.

• If ∆ ∈ [∆DB ,∆DB
x ], firms anticipate that the backloading policy will per-

fectly substitute private banking. Therefore they don’t bank in the first
period, which insulates the current allocation from the following ones. At
t = 0, the current allocation is higher than its expected inter-temporal
value. As a consequence, over this interval, at t = 0 , the permits’

15



price is lower than the one without intervention. The profits max-
imising strategy is to produce instead of banking, to saturate the equilib-
rium constraint in the permits’ market.14

• If ∆ ∈ [∆DB
x ,∆0], firms bank as from the first period. Over this interval,

the inter-temporal permits’ allocation tightens the emission constraint.
Therefore, the backloading policy increases CO2 prices for all t.

The following tables detail the above-mentioned effects, by calculating the
differences between the equilibrium prices after and before the intervention.

∆ ∈ t = 0
[∆0,x , ∆0] 0[
∆0 , ∆DB

]
0[

∆DB ,∆DB
x

]
−

Ad(1+n)(R−

∑
αt)−enϑ

e2nR
< 0[

∆DB
x ,∆0,x

]
d(1+n)a

e2nR(R−1) > 0
[
∆O,x,∆O

]
enϑ+d(1+n)(Γ−a)

e2n(2+r)R (1 + r)
t−1

> 0

∆ ∈ t = 1, 2

[∆0,x , ∆0]
d(1+n)a
e2n(2+r) (1 + r)

t−1
> 0

[
∆0 , ∆DB

]
d(1+n)a
e2n(2+r) (1 + r)t−1 > 0

[
∆DB ,∆DB

x

]
d(1+n)(AR−Γ)−enϑ

e2n(2+r)R (1 + r)t−1 > 0
[
∆DB

x ,∆0,x

]
d(1+n)a
e2nR

(1 + r)t > 0[
∆O,x,∆O

]
enϑ+d(1+n)(Γ−a)

e2n(2+r)R (1 + r)
t−1

> 0

Figure 5 illustrates these effects. The red line represents the DB value with
backloading at period t = 1, whereas the benchmark is displayed in black. The
interval over which there is no banking under the policy intervention is enlarged
to focus on the effect of the CO2 price decrease at t = 0.

14See equation (2).
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Figure 5. Backloading and impact on CO2 prices

The short term inefficiencies in the first period are widened in Figure 6.

Figure 6. Carbon price: inefficient decrease

Figures 7.1 and 7.2 display the permits’ price increase at periods 1 and 2,
for all demand realizations (b and bm):

17



Figure 7.1 Carbon price increase Figure 7.2 Carbon price increase

4.2.2 MSR

As in the previous case, the MSR (or proportional withdrawing) may create
dynamic inefficiencies, depending on the extent of the demand variation:

• if ∆ ∈ [∆0 ,∆DB ], the MSR policy does not impact the CO2 price;

• if ∆ ∈ [∆DB ,∆DB
ζ ], at t = 0 the MSR reduces the CO2 price over

the interval where banking is inefficiently delayed with respect to the no-
intervention case;

• if ∆ ∈
[
∆DB ,∆0,ζ

]
, the MSR rises CO2 prices.

The detailed effects are as follows.

∆ ∈ t = 0[
∆0 , ∆DB

]
0

[∆DB ,∆DB
ζ ] −

Ad(1+n)(R−

∑
α)−en((b−c)r(3+r)−2∆(1−λ))

e2nR
< 0

[∆DB
ζ ,∆0,ζ ] (1 + r)

t
×

Ad(1+n)(R−

∑
α)−en((b−c)r(3+r)−2∆(1−λ))

e2n(R−ζ1)
> 0

∆ ∈ t = 1, 2[
∆0 , ∆DB

]
0

[∆DB ,∆DB
ζ ] (1 + r)

t
×

Ad(1+n)(R−

∑
α)−en((b−c)r(3+r)−2∆(1−λ))

e2nR
> 0

[∆DB
ζ ,∆0,ζ ] (1 + r)

t
×

Ad(1+n)(R−

∑
α)−en((b−c)r(3+r)−2∆(1−λ))

e2n(R−ζ1)
> 0

Mixed interventions: proportional withdrawing and fixed injec-
tion. To reflect the full design of the EU decision on the stabilization mecha-
nism, we consider the case of a fixed reinjection of permits and a proportional

18



withdrawal. This case does not differ from the previous ones. There are still
demand interval variation in which firms would bank without intervention but
delay banking when the measure adjusting the cap are operational. Under the
intervals where the optimal strategies differ, the permits’ price decrease.

Figure 8 illustrates this case. The DB value under proportional withdraw-
ing and fixed injection is displayed in red. We compare it both with the no
intervention benchmark (in black) and the case of withdrawing at time t = 1
only (in green).15

Figure 8. Mixed interventions and DB

4.2.3 Stabilization policies and welfare

The calculations above allows to calculate firms’ profits and consumer welfare.
Over the demand interval variation where there is no banking, firms’ profits

follow the demand variation as firms produce up to saturating the permits’
constraint. For higher expected demand variations, firms start banking at t = 0.
In this case, first period production decreases and, due to Cournot competition,
firms’ profit increases much faster. Banking supports firms’ profits maximising
strategies which consist in adjusting to the demand increase (banked permits
release the environmental constraint). With respect to the no intervention case,
we see that if the cap becomes more stringent, firms profit is shifted below the
benchmark case due to higher permits price.

As for the consumers’ surplus, the demand increase dominates all the other
effects, which explains why it increases. High permits price and lower production

15The permits withdrawn and injected do not compensate each other, to ensure that the
policy modifies the overall cap.
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with respect to the no intervention case explain why consumer surplus lies always
below the no intervention case when the permits’ supply is restricted. At the
value of demand variation such that there is a discontinuity in banking decisions,
consumers’ surplus is discontinuous too, due to a jump in production.

Over the interval of demand variation where banking is delayed due to the
cap modification, firms profits remain almost constant instead of increasing, and
the consumer surplus changes the slope at the point where the banking decision
changes and increases more slowly than in the no intervention case. However,
consumer surplus slightly increases even in the zone of zero banking as demand
increases too.

Figures 9.1 and 9.2 illustrate these effects. The no intervention case is dis-
played in black, the backolading in red. We have added injection (dotted line),
to see mirror effects when the cap increases.

Figure 9.1 Fixed rules: firms’ profit Figure 9.2 Fixed rules: consumers’ surplus

Under the MSR rule, the expected profits and consumer surplus display the
same properties than in the case of the fixed withdrawal. Similar inefficiencies
arise at t = 0 when private banking is discouraged.

In Figure 10, we focus on the impact of the increase of the withdrawing pa-
rameter, which is actually under discussion. The benchmark case is represented
by the black line, the case of withdrawal at 12% by the green line and the case
where the parameter is doubled is represented by the dotted line. We easily
see that the higher the withdrawing parameter, the stronger the MSR effect.
The discontinuity in the consumer surplus at the value of ∆ where firms start
banking is in this case very neat.
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Figures 10.1 MSR: firms' profits under different 

withdrawing rates

Figure 10.2 MSR: consumers' surplus under 

different withdrawing rates

5 Conclusions

The MSR, as it is to be implemented, withdraws (or reinjects) a percentage of
allowances in circulation. Contrarily to what is expected, withdrawing permits
does not simply crowds out private banking it affect production decisions, permit
prices and output prices. Most importantly, the stabilization policy interaction
with the uncertainty on output demand generates (under some conditions) an
option to delay banking permits. To the light of our results, we conclude that
policy makers should be aware of eventual unintended effects of the measures
adjusting the cap, as they modify firms’ banking strategies. As long as banking
is discouraged and it is replaced by some form of supply restriction, the permits
price may not increase as it should. Simulating the effect of the MSR under
demand shocks seems to be a critical factor to ensure the success of the EU ETS
quantitative flexibility mechanisms.

As Burtraw (2015) affirmed: ”Theory and some evidence suggest that, so

far, the MSR will have a limited effect in fixing the problem directly. However,

to the credit of EU regulators, the MSR signals that the doctor has not given up

on the patient. The European Union has a long-term commitment to emissions

trading—the MSR may buy enough time for prices in the ETS to recover as

the economy recovers. If that does not happen, I believe the European Union

may ultimately replace the MSR with a more direct and simpler instrument—a

reserve price in auctions for emissions allowances that will instill a minimum

price in the market”. In the follow up of our work, we would like to compare
the impact of a price floor on firms’ banking behavior, or to include investment
decisions (that would impact pollution intensity) in firms’ strategies.
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7 Appendices

Appendix A.1 Equilibrium values
Benchmark modelling

Exogenous case. The other equilibrium values not presented in the text
for shortness are:

q∗1 =
1

R

(
(1 + r) Γ

ne
+

r2(b− c)

(n+ 1) d

)
, (44)

q∗2 =
1

R

(
(1 + r)

2
Γ

ne
−

(
R− 3 + r2

)
(b− c)

(n+ 1) d

)
. (45)

Endogenous rule. The other equilibrium values not presented in the text
for shortness are:

q∗1,ζ =
1

D

(
(1 + r) Γζ

ne
+

(
r2 + r ((1− ζ2) ζ1 + ζ2)

)
(b− c)

(n+ 1) d

)
, (46)

q∗2,ζ =
1

D

(
(1 + r)

2
Γζ

ne
−

r (3 + 2r − (2 + r) ζ1) (1− ζ2) (b− c)

(n+ 1) d

)
. (47)

Equilibrium under uncertainty
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Exogenous rule.

σ∗

2,b = σ∗

2 −
2 (1 + r) (1− λ)∆

e (2 + r)R
, (48)

σ∗

2,bm = σ∗

2,b +
2 (1 + r)∆

e (2 + r)
, (49)

= σ∗

2 +
2 (1 + r) (λ+ (2 + r) (1 + r))∆

e (2 + r)R
, (50)

q∗1,b = q∗1 +
2 (1− λ)∆

(3 + r (3 + r)) (2 + r) (1 + n) d
, (51)

q∗1,bm = q∗1,b +
r∆

(2 + r) (1 + n) d
, (52)

q∗2,b = q∗2 +
2 (1 + r) (1− λ)∆

R (2 + r) (1 + n) d
, (53)

q∗2,bm = q∗2,b −
r∆

(2 + r) (1 + n) d
. (54)

Endogenous rule.

σ∗

2,b,ζ = σ∗

2,ζ −
(1− ζ1) (1− ζ2) (2− ζ2) (1 + r) (1− λ)∆

e (2 + r − ζ2)D
, (55)

σ∗

2,bm,ζ = σ∗

2,b,ζ +
(2− ζ2) (1 + r)∆

e (2 + r − ζ2)
, (56)

q∗1,b,ζ = q∗1,ζ +
(1− ζ1) (1− ζ2) (2− ζ2) (1− λ)∆

(1 + n) (2 + r − ζ2) dD
, (57)

q∗1,bm,ζ = q∗1,b,ζ +
r∆

(2 + r − ζ2) (1 + n) d
, (58)

q∗2,b,ζ = q∗2,ζ +
(1 + r) (1− ζ1) (1− ζ2) (2− ζ2) (1− λ)∆

(1 + n) (2 + r − ζ2) dD
, (59)

q∗2,bm,ζ = q∗2,b,ζ −
r (1− ζ2)∆

(2 + r − ζ2) (1 + n) d
. (60)

Appendix A.2 Equilibrium constraints

Exogenous rule.

Withdrawal case. When nz∗0 < Z and nz∗1 < Z , the MSR reinjects
permits. The absence of arbitrage opportunities given by (9) holds if z∗0 >

0, z∗1 > 0 , i.e.

A ≥
ne

(n+ 1) d
×

(R− 3) (b− c)

α0R−
∑2

t=0 αt

+
x1 + x2

α1R−
∑2

t=0 αt

(61)
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and

A >
ne

(n+ 1) d
×

(2r + 3) r(b− c)

(1 + r)
2∑2

t=0 αt − α2R
+

(2 + r)x2 − (1 + r)
2
x1

(1 + r)
2∑2

t=0 αt − α2R
. (62)

Backloading case. The withdrawal case is defined by x1 < 0 and x2 < 0,
if nz∗0 > Z and nz∗1 > Z. The constraints associated to this case are as follows:

A >
ne

(n+ 1) d
×

(R− 3) (b− c)

α0R−
∑2

t=0 αt

+
x1 + x2

α1R−
∑2

t=0 αt

+
RZ

α1R−
∑2

t=0 αt

, (63)

A >
ne

(n+ 1) d
×

(2r + 3) r(b− c)

(1 + r)
2∑2

t=0 αt − α2R
+

(2 + r)x2 − (1 + r)
2
x1

(1 + r)
2∑2

t=0 αt − α2R

+
RZ

(1 + r)
2∑2

t=0 αt − α2R
. (64)

Endogenous case. The absence of arbitrage opportunities given by (9) holds
if z0 > 0, z1 > 0, i.e.

A ≥
ne

(n+ 1) d
×

(3 + r − ζ2) r (b− c)

Dz0
+

Z (R− ζ1 (1− ζ2)− (2 + r) ζ2)

Dz0
, (65)

since nz∗0 > Z and

A ≥
ne

(n+ 1) d

r (3 + 2r − (2 + r) ζ1) (b− c)

Dz1
, (66)

where16

Dz0 =
(
(1 + r)

2
+ (1 + r) (1− ζ2)

)
α0 − (1− ζ2)α1 − α2, (67)

Dz1 = (1 + r)
2
((1− ζ1)α0 + α1)− ((1 + r) + (1− ζ1))α2. (68)

No intervention case. The constraints such that there is no intervention,
that is Z < nz∗0 < Z and Z < nz∗1 < Z are as follows:

RZ

α1R−
∑2

t=0 αt

< A−
ne

(n+ 1) d
×

(R− 3) (b− c)

α0R−
∑2

t=0 αt

<
RZ

α1R−
∑2

t=0 αt

, (69)

RZ

(1 + r)
2∑2

t=0 αt − α2R
< A−

ne

(n+ 1) d
×

(2r + 3) r(b− c)

(1 + r)
2∑2

t=0 αt − α2R

<
RZ

(1 + r)
2∑2

t=0 αt − α2R
. (70)

16Notice that Dz0 > 0 and for r ∈ [0, 1], 0 ≤ α2 ≤ α1 ≤ α0 ≤ 1 we have Dz1 > 0. Given the
structure of the MSR in the proportional rule, (65) does not depend on ζ1 and the constraint
(66) is independent from ζ2.
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