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delivered in seven countries during 1980-2010. This quality index is built 

using a Latent Factor Model (LFM) that synthesizes the information 

contained in patent documents. We capture a unique measure of 

patents quality, defined here as the economic value that is imputable to 

the technological advance resulting from the patented invention. A 

robust measure of the inventive performance of each country in the 

LCETs is obtained using the quality index. Several insights are derived from 

this measure about the technical advantages of countries and the 

dynamics of technologies' quality.* 
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1 Introduction

In 2010, the energy supply sector was responsible for 46% of energy-related greenhouse gas emissions

(GHG) (Intergovernmental Panel on Climate Change, IPCC, 2014, [34]). In order to achieve a reduction

of GHG emissions consistent with a limitation of the planetary global warming to 2 degrees Celsius,

a deep transformation of energy systems is necessary, with additional policies aiming at reducing the

demand for energy. To decarbonise energy mixes, fossil technologies must be progressively phased out,

as attested by the increase from approximately 30% in 2010 to more than 80% by 2050 of the share of

low-carbon electricity supply in stringent mitigation scenarios (IPPC, 2014, [34]). For that purpose,

several technological options exist, e.g. nuclear power, renewable energies or Carbon Capture and

Storage (CCS). Except for the first one, these are not yet developed at a large scale. To remedy this,

innovation is expected to improve the attractiveness of these technologies in comparison with fossil ones.

To this end, environmental and technology policies should be jointly implemented to foster low carbon

innovation. As stated by the IPCC, ‘Technology support policies have promoted substantial innovation

and diffusion of new technologies, but the cost-effectiveness of such policies is often difficult to assess’

(IPCC, 2014, [35]). A robust measure of innovation in LCETs is a prerequisite for such an assessment.

In order to fill this gap, this article provides a robust measure of the inventive performance, defined

by Hagedoorn and Cloodt as ‘the achievements of companies in terms of ideas, sketches, models of new

devices, products, processes and systems’ (2003, [23]).

Two approaches are generally considered to measure innovation in particular technology fields:

input-based measure built using R&D expenses data, and output-based measure that relies on patent

data (Jaffe and Palmer, 1997, [37]). The first option accounts for the efforts made to foster innovation

whereas the second one measures their results. As our aim is to quantify the effective knowledge

accumulated in LCETs, patent data is preferred. Patents have been extensively used in the literature

on innovation and the count of patents was initially considered as a satisfactory measure of innovation

(Scherer, 1965, [71]). This approach however does not take into account the fact that the distribution

of the value of patented inventions is positively and highly skewed (Schankerman and Pakes, 1986,

[70]). To solve this problem, researchers have considered several indicators of the patent quality in

order to be able to discriminate low and high-value inventions (e.g. the citations received by the patent,

the number of patents that protect the same invention, the number of claims made by the patent).

Although the links between patent metrics and the quality of protected inventions are well established,
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the relationship may be noisy when a single metric is used (Harhoff et al., 1999, [25]). In order to

improve the accuracy of the measure of patent quality, Lanjouw and Schankerman propose a composite

index built with several metrics (2004, [49]). The quality index accounts for both the technological

and the economic value dimensions of an invention by synthesizing information from different metrics

associated to its patent(s). We follow this approach and estimate a quality index for a data set of 28,951

LCET-related inventions patented by seven countries over the period 1980-2010. In line with Lanjouw

and Schankerman (2004, [49]), we find that using several metrics provides for a robust measure of the

inventive performance.

We discuss the relative roles of countries and technologies in low carbon innovation over the period

1980-2010. Although our approach is mainly descriptive, several insights emerge. First, we observe that

taking into account the quality of patented inventions allows for a finer representation by correcting the

bias from heterogeneous propensity-to-patent. It appears, for instance, that the lower propensity-to-

patent of the UK is compensated by inventions of higher quality. Second, we compute a modified form

of the Revealed Technical Advantages (RTA) index by using our measure of low carbon innovation. It

allows us to derive the innovation profiles of the countries we study. Finally, we observe that there are

marked differences in the dynamics of patent quality between technologies. Older technologies such as

nuclear, solar thermal or geothermal energy, have seen the average quality of their inventions decrease

or stagnate. On the contrary, the average quality of inventions related to more recent technologies

(e.g. solar PV power or wind power) have increased. Moreover, the potential of nuclear technology

to reach high quality inventions has decreased over time. R&D investments in nuclear technology are

thus on average, of lower values and have a lower chance to reach a higher quality. The fact that

the number of patents is strongly correlated with R&D expenses suggests the existence of diminishing

returns. Considering wind power and solar PV technologies we conclude that their potential for high

value inventions have been higher during 2001-2010, compared to 1980-2000.

The paper is organized as follows: Section 2 reviews the empirical literature that deals with patent

data. Within section 3, subsection 3.1 presents the Latent Factor Model (LFM) used to estimate

the quality index. Subsection 3.2 presents the data set. Subsection 3.3 examines the results of our

estimates. Section 4 analyzes the inventive performances of countries and technologies. Section 5

concludes .
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2 Measuring Inventive Performance with patent data

A preliminary step in the analysis of technical change is to clearly define the several concepts that will

be mobilized. A good starting point is the well-known Schumpeter’s trichotomy that considers that

technical change consists of three stages: invention, innovation and diffusion (1911, [73]). The invention

stage is the act of creation of a new technology, the innovation stage represents its introduction on

the market, and the diffusion characterizes the gradual adoption of the new technology. A patent, by

representing the expectations of a company about the commercial success of an invention, is an indicator

of the transition from the invention stage to the innovation stage. There is a vast amount of literature

that deals with patent data to analyze innovation. Rather than providing for an exhaustive review

of this literature we emphasize the early use by researchers of patent metrics in subsection 2.1. We

will then focus on the body of the literature that analyzes environmental innovation in subsection 2.2.

We point that environmental innovation is generally analyzed by using noisy measures of the inventive

performance. The last subsection 2.3 discusses several articles that present a synthetic indicator of the

quality of patents aiming at increasing the robustness of the measure of innovation.

2.1 Patent metrics as indicators of the quality of inventions

Initially, patents count was considered as an appropriate proxy of technological innovation (Scherer,

1965, [71]). This approach has proven to be limited as it gives to every patented inventions equal

importance. This is a serious pitfall because empirical studies observe a highly skewed distribution of

the value of protected inventions, with a high share of low-value patents (Dernis et al., 2001, [18]).

This heterogeneity calls to take into account the quality or the value of inventions and researchers have

investigated several ways to provide for more realistic measures of innovation based on patent data

(for an early survey of these studies, see Griliches, 1990, [22]). As a consequence, patent metrics were

called to play an increasingly important role as they provide information on the patented inventions.

For a given patented invention, there are several metrics. We discuss here the links between the quality

of an invention and the most commonly used metrics.

An invention may be protected by a family of patents1. Because protecting an invention with

1A patent confers to the applicant(s) the sole right, during a limited period of time, to exclude others from making,
using or selling the patented invention. The protection is guaranteed only within the geographical area of the patent
authority that delivers the patent. A patent family is defined as the set of patents granted by different patent authorities
that protect the same invention.
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multiple patents is costly for the applicant who bears the additional cost of each application, the

size of the family partly reflects the invention’s expected value. This metric has been widely used

in the literature. An early contribution by Putnam exploits data on patent families to estimate the

distribution of patent quality across countries (Putnam, 1996). In the same vein, Harhoff et al. estimate

the values of a set of patents by surveying patent holders and compare their results with several patent

metrics among which family size (Harhoff et al., 2002, [26]). They conclude that it represents a good

approximation of patent value. Nonetheless, family size is also influenced by other factors such as the

strategy of the patentee with respect to its competitors or the peculiarities of the markets where the

invention is protected.

Valuable information about patent quality is provided by citations. For a given patent, there are two

types of citations. Citations made by a patent document to previous patents, as well as to non-patent

literature when a broader definition is retained, are known as its backward citations. When innovators

apply for a patent, they have to detail prior knowledge on which they have relied by citing older patent

documents and scientific publications (OECD, 2009, [59]). Backward citations have been used to study

knowledge spillovers (Jaffe et al., 1993, [38]; Criscuolo and Verspagen, 2008, [12]) and have been found

to be positively correlated to the patent value (Harhoff et al., 2002, [26]). The second type of citations

is the forward citations. These are the citations received by a patent after its publication. Counting the

number of forward citations is a useful measure of quality as it indicates to what extent an invention

has contributed to future knowledge creation. Literature has emphasized a positive correlation between

the number of forward citations received by a patent and its social value (Trajtenberg, 1990, [76]), or

its private value when the analysis is coupled with renewal data (Schankerman and Pakes, 1986 [70];

Harhoff and Wagner, 2009, [27]), survey of patent-holders (Harhoff et al., 1999, [25]; Harhoff et al.,

2002, [26]) or market stock valuation of the firms (Lerner, 2004, [52]; Hall et al., 2005, [24]).

There are other metrics that contribute to our understanding of patent quality or value. For

instance, the claims establish the scope of the protection granted by a patent. Several papers have

considered the relation between patent claims and its value. Lanjouw and Schankerman show that

patents with more claims are more likely to be involved in litigation which indicates that these are

of higher value (Lanjouw and Schankerman, 2001, [48]). Another metric is the time lag between

the application for a patent and, when successfully, its grant. It is considered as an indicator of

patent quality as applicants try to accelerate the granting of a patent for their best inventions. Thus,

4



they will bear an additional cost for providing a well-documented application and push forward the

granting of the protection. This additional cost is expected to be justified by an invention of higher

value. It is confirmed by Harhoff and Wagner who find evidence that application processing of most

valuable patents are accelerated by applicants (Harhoff and Wagner, 2009, [27]). However, the positive

correlation between this metric and the value of a patent is controversial. Indeed, Johnson and Popp

(2003, [41]) find that the application process is longer for patents that are more cited. An explanation

for these opposite results is given by Régibeau and Rockett (2010, [68]) who take into account the

position of the patent in the innovation cycle when studying the relation between the application

process length and the patent quality. They confirm the result of Harhoff and Wagner (2009, [27]) by

finding a positive relation between these two features. The technological scope of a patent has also been

used as a measure of its quality. When a patent is granted it is classified following the International

Patent Classification (IPC) depending on the function(s) of the invention or its field(s) of application

(OECD, 2009, [59]). Hence, the number of technological classes has been considered as a good proxy

of the patent scope and suspected to be representative of its quality. A first study by Lerner finds a

positive correlation between the technological scope and the market value of a patent in the sector of

biotechnology (Lerner, 2004, [52]). However, the link between this metric and the value of a patent

remains questionable as it is refuted by several studies (Lanjouw and Schankerman, 1997, [47]; Harhoff

et al., 2002, [26]).

2.2 Patent data and environmental technologies

In the field of environmental economics patent data has attracted an increasing attention over these

last years. An early study on environmental technologies has been realized by Lanjouw and Mody

who estimate the international diffusion of environmental technologies using patent data (Lanjouw

and Mody, 1996, [46]). They attempt to analyse how environmental innovation reacts to regulation

and to do so they use pollution abatement expenditures as indicators of the effective demand for

pollution control. They conclude that regulation and innovation are positively correlated. In order to

measure environmental innovation they compute the share of environmental-related patents in the total

amount of patents for 17 countries. Another early attempt to understand environmental innovation

has been performed by Jaffe and Palmer who estimate the impact of abatement cost on two measures

of innovation: R&D expenditures and patent counts (Jaffe and Palmer, 1997, [37]). Their results
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indicate that these two measures do not identically react to higher lagged abatement cost; the impact

is strong and positive for R&D expenditures but little evidence is found about the link with the

number of patents. However, they focus on the impact of environmental regulation on the overall

innovation as they use the total number of granted patents and the total amount of R&D expenditures.

Brunnermeier and Cohen reduce the scope to strictly environment-related innovation and investigate

how US manufacturing firms’ abatement expenditures influence the amount of successful environmental

patents (Brunnermeier and Cohen, 2003, [8]). They find a significant positive relationship between the

two variables although they recognize the limits of a simple count of patents due to the asymmetric

distribution of their quality.

Counting environmental patents remains the privileged way to measure environmental innovation.

Haščič et al. use patent counts to question the theoretical assertion according to which a greater flex-

ibility of policy instruments leads to more innovation and find that it is empirically supported (Haščič

et al., 2009, [28]). Similar approaches, based on patent counts, are adopted to measure innovation

by Bointner (2014, [7]), Noailly and Smeets (2015, [57]) and Lindman and Söherholm (2015, [53]).

In order to avoid the pitfalls of counting patents, low value patents can be excluded to reduce the

heterogeneity of inventions quality. In this vein, Johnstone et al. examine the effects on innovation of

several policy instruments based on a panel of patents filed in 25 countries over the period 1978-2003

(Johnstone et al., 2010, [40]). They consider the patents filed at the European Patent Office (EPO) to

ensure that the protected inventions meet a minimum level of quality that justify the higher patent fee

paid at the European level. The bias of the count is reduced but the heterogeneity of the inventions

in terms of quality remains above the minimum threshold of quality that implies the higher cost of an

EPO application. A similar approach is chosen by Aghion et al. (2016, [1]). In order to overcome the

problem of low-value patents, only triadic inventions are included in their data set. Triadic inventions

are inventions protected at the three main patent offices: the Japanese Patent Office (JPO), the EPO

and the United States Patent and Trademark Office (USPTO). Due to the higher cost of filing a patent

in these three offices, counting only triadic patents excludes less valuable inventions. The authors con-

sider several alternatives to test for the robustness of their results by counting only biadic patents

(filed at the EPO and the USPTO) and counting patents weighted by the number of forward citations

they have received. Their results are robust to the types of count. An assessment of the impact of

the European Union Emission Trading Scheme (EU ETS) on technological change is conducted by
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Calel and Dechezleprêtre (2016, [10]). The causal impact of the EU ETS on innovation is estimated

by considering a sample of 5,500 EU ETS firms in 18 countries. Technological change is measured

with EPO patents in order to avoid counting low value inventions. Two options are considered by the

authors to test the robustness of their results: 1/ a count of patents weighted by the number of forward

citations; 2/ a count of patents weighted by the size of their families. They conclude that nearly 1%

of the increase of the innovative activity in environmental technologies in the European Union can be

attributed to the EU ETS. Popp summarizes several lessons about environmental technologies drawn

from his empirical work with patent data (Popp 2005, [63]).

2.3 Capturing the heterogeneity of patented inventions with composite in-

dexes

Over time, the empirical literature has emphasized that if the quality of a patent is unobservable

by essence, metrics provide for different viewing angles from which researchers can partly capture it.

Starting from this idea, a significant step in the measure of innovation using patent data has been

made by Lanjouw and Schankerman (2004, [49]). They build a composite index of the quality of a

patent. It is called ’composite’ because it takes into account the information on the quality embodied

in the different metrics of a patent document. The idea is the following: for each patented invention

a latent factor commonly affects the value of the observed metrics. This latent factor is considered to

be a measure of the quality since it is the only feature of the patented invention that simultaneously

impacts the four metrics they consider in their study, namely the size of patent family, the forward

citations, the number of claims and the backward citations. It is clear that what measures the latent

factor depends on the metrics that are retained. Building on Lanjouw and Schankerman (2004, [49]),

Squicciarini et al. compute two versions of a quality index with four and six metrics (2013, [75]). In

their study however, they do not rely on factor analysis and equal weights are assigned to each metric.

Dumont implements a LFM to estimate the aggregated quality of patents involved in litigation cases

in order to test whether they are of better quality or not (2014, [19]). For each litigation case, a quality

index is estimated based on eight characteristics of the patents involved in the case that are expected to

capture the technological and economic values of patents. All these studies consider that the observed

metrics of a patent are simultaneously influenced by only one common latent factor 2. A more recent

2This assumption is statically tested and validated in Lanjouw and Schankerman (2004, [49]).
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article written by de Rassenfosse and Jaffe improves the one latent factor model by estimating a two

latent factor model that allows distinguishing between the technological quality and the economic value

of an invention (2014, [67]). This distinction is made possible by hypothesizing that the technological

quality of an invention does not influence the size of the patent family protecting an invention. In our

case, because the economic value of energy technologies is hardly separable from their technological

quality we do not make any ex ante assumption 3. Indeed, we estimate both a one latent and a two

latent factor models and we retain the most relevant based on a statistical criterion (see subsection

3.3.2).

3 A quality index for Low Carbon Energy Technologies

3.1 The latent factor model (LFM)

For each invention of our data set we observe a vector of p metrics. The metrics we use are discussed

in subsection 3.2.5. We assume they follow a multivariate log-normal distribution of dimension p

with mean µ + αZ and non-singular covariance matrix Σ. The first term of the mean, µ, is a p × 1

vector of constants. The second term expresses the effects of the k dummy variables contained in Z,

with α is a p × k matrix of coefficients. Dummy variables are included in the model to control for

the effects of cohorts, technologies and delivering offices. For instance, the technological class of an

invention may influence the duration of the examination process, regardless of the quality; more recent

cohorts of inventions are susceptible to cite more than older ones due to the advances in information

and communication technology; and some offices ask for a more detailed patent’s bibliography that

increases the number of backward citations. We log-transform the patent metrics4 and obtain what is

called in the LFM terminology the manifest variables. The first ingredient of the model is simply the

distribution of the set of manifest variables X:

X ∼ Np(µ+ αZ,Σ). (1)

Based on the empirical studies reviewed in subsection 2.1, we assume that the p metrics of each

3Considering for instance a wind turbine that works in very windy areas, the inventor will be tempted to protect the
inventions in every geographical zone where the turbine could be installed. Hence, the size of the patents family that
protects this invention is influenced both by the economic value and the technological quality of the invention.

41 is added to citations metrics as they can take null values.
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patent are influenced by a unique common factor5 representing the quality of the patented invention. As

stated by Lanjouw and Schankerman, the common factor represents quality as no other characteristic

is suspected to jointly influence the values of all the patent metrics (Lanjouw and Schankerman, 2004,

[49]). Even if we do not use exactly the same set of manifest variables their demonstration applies

to our study. As the quality of a patent cannot be observed we assume that it follows a log-normal

distribution with zero mean and unit variance. The log-normal distribution is a good candidate that

reflects the distribution asymmetry of patents quality. It is reasonable to consider that an invention

quality and its reward are similarly distributed. Scherer et al. test several sets of data and find

that a log-normal distribution provides for the best fit of the distribution of the rewards realized

on technological innovations (Scherer et al. 2000, [72]). The quality index is log-transformed to be

normally distributed. Once the model is estimated, the values of the log-transformed quality index

are transformed back using the reciprocal. It should be noted that there is no loss of generality from

assuming a zero mean and a unit variance, the key part of the assumption being about the type of

distribution (Bartholomew et al. 2011, [4]). The second ingredient of the model is the distribution of

the log-transformed index of quality denoted Y

Y ∼ N(0, 1). (2)

Using basic results of the distribution theory we can derive the model we want to estimate by

computing the distribution of the X conditional to the Y . It is written X|Y ∼ N(µ+αZ+ΛY,Σ−ΛΛ′),

or equivalently

X = µ+ αZ + ΛY + e, (3)

where Λ is p × 1 vector of factor loadings and e is a normally distributed error term with zero

mean and variance matrix Ψ = Σ − ΛΛ′. The vector of factor loadings Λ is the covariance between

the manifest variables X and the latent factor Y . Similarly, we can write the distribution of the Y

conditional to the X that allows us to make inferences about the value of Y on the basis of the observed

variables. The posterior distribution of the Y is

Y |X ∼ N
(
Λ(ΛΛ′ + Ψ)−1(X − µ− αZ), (Λ′Ψ−1Λ + 1)−1

)
. (4)

5This assumption is tested in subsection 3.3.2
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The mean term generates the most probable value of the latent factor given the observed metrics

and the variance term indicates how precise is the inference. An interesting property of the model is

that the variance of each manifest variable can be divided into two terms

var(Xj) = ΛΛ′ + ψj , (j = 1, 2, ..., p). (5)

The first term of (5) represents communality, i.e. the parts of the variances accounted for by the

common factor. The second term is the variance specific to the jth metric. This property will allow

us to measure to what extent a metric is an accurate measure of the quality of a patent. The model is

estimated by maximum likelihood using the E-M algorithm. The E-M is a powerful tool for estimating

a model by maximum likelihood with missing data. It has been generalized by Dempster et al. (1977,

[16]). We present here the successive steps of the algorithm and we provide for a complete description

in Appendix A. The first application of the E-M algorithm to latent factor modeling has been proposed

by Rubin and Thayer (1982, [69]). We start by writing the joint log-likelihood function of the manifest

variables and the latent factor. Its score functions are derived. Then, as its name indicates, the E-M

proceeds in two steps:

(i) Expectation step: the expected values of the score functions, conditional to xi where i = 1, ..., p,

are computed for a given set of parameters taken from the previous iteration of the algorithm.

(ii) Maximization step: the score functions are set to zero to maximize the joint log-likelihood.

They are solved and a new set of parameters is deduced.

For the next iteration, the new set of parameters estimates is integrated into the score functions and

the operation is repeated. The convergence toward a global maximum is not guaranteed but Dempster

et al. (1977, [16]) demonstrate that the marginal log-likelihood of the Xs is non-decreasing on each

iteration. In order to control for the robustness of our results with respect to the initial conditions

we proceed as follows. We estimate by maximum likelihood the model (1) and we use the results to

initialize µ, α and Σ. For Λ we choose arbitrary non-zeroes components. A first estimation with the

E-M is conducted. Then, we change the initial conditions with several sets of values and check whether

the estimates vary or not. For each combination of initial values, the algorithm runs until a maximum

is found. We find that the estimators are not sensitive to the initial conditions. The results of the

estimation are presented in subsection 3.3.
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3.2 Data presentation

3.2.1 The PATSTAT database

We use the data from the Worldwide Patent Statistical Database (PATSTAT) created and maintained

by the European Patent Office (EPO). PATSTAT contains almost 75 millions of patent documents.

Our dataset is extracted from the online 2015 Autumn version of PATSTAT. To avoid counting multiple

patents that protect the same invention we extract patent families and their corresponding metrics.

These are defined later in this subsection. The PATSTAT database proposes two definitions of a patent

family: DOCDB family and INPADOC family. We use the former definition of family as the latter

represents an extended definition of the family concept. In fact, an INPADOC family might covers

several DOCDB families linked by prior applications, and also by technical links enlighten by patents

examiners. The definition family we use, also called the DOCDB simple family, considers patents

as belonging to the same family when they claim exactly the same prior application. Nonetheless,

there are some exceptions to this general rule as the EPO reserves the right to classify an application

that is not a priority filing into a simple family (PATSTAT Data Catalog, p.127, 2009, [60]). Hence,

it is possible that several patent families have the same prior applications. In our initial dataset, we

find that 12.7% of the families share the same priority filing with another family (or more). This is a

problem as the protected inventions will be counted several times6. To address this issue, when multiple

families claim the same priority filing we retain the largest one and exclude the other from the data

set. Our final data set comprises 28,951 patents families, or inventions, of seven nationalities belonging

to 15 different technological fields and granted between 1980 and 2010. Only families with a granted

priority filing are extracted as we let apart the applications that did not succeed in obtaining a patent

right. We detail further how nationality, technological classification and year of count are determined

before giving precise definitions of the patent metrics included in the model. The distribution of the

inventions between technologies is given in Table 1.

3.2.2 Classification of inventions per technology

The technological classification of inventions is of critical importance when one works with patent

data. This is particularly true when the focus is on narrow technological fields such as LCETs. Indeed,

6For instance, the application identified in Patstat as 315604701 is the prior application of 16 different DOCDB
families. This (extreme) example illustrates the importance of a data treatment aiming at suppressing patent families
claiming the same prior filings.
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Bio-fuels CCS Sea energy Energy storage
1019 1065 655 3955

Fuel from waste Geothermal energy Hydro energy Hydrogen
1186 394 1243 1416

Nuclear PV energy Smart grids Solar thermal
3656 3748 1567 4050

Wind energy Combustion efficiency Combustion mitigation Total
3162 630 1205 28951

Table 1: Number of inventions per technology (all countries, 1980-2010).

there are risks to: (i) extract inventions that do not pertain to the targeted technological class (ii)

exclude relevant inventions by narrowing too much the technological scope. In PATSTAT, each patent

document is referenced following two classifications: the International Patent Classification (IPC) and

the Cooperative Patent Classification (CPC). From now, the IPC has been preferred by researchers

working on environmental technologies and several papers provide for the classification codes that

should be used and explain how to combine them to extract the relevant patents depending on the

targeted technological fields (see Johnstone et al., 2010, [40]; Lanzi et al. 2011, [51]; Popp et al., 2011,

[64] and Dechezleprêtre et al., 2011, [13]). Patents related to LCETs can be found in many areas

of technology and it increases the risks evoked above. According to Veefkind et al., using the IPC

classification generally creates too much ’noise’ and the extracted data sets are frequently incomplete

(Veefkind et al., 2012, [78]). The EPO has completed in December 2015 the CPC system that now

covers environmental technologies to address this issue. This new scheme improves the classification

quality by including technologies that were difficult to extract in the IPC. Hence, it strongly enhances

the quality of our data. For a presentation of the CPC scheme of classification of environmental

technologies and its advantages, see Veefkind et al. (2012, [78]). The technologies we analyze and the

corresponding CPC codes are detailed in Table 2. To our best knowledge, only few papers have already

use this classification in the literature (Calel and Dechezleprêtre, 2016, [10]; Haščič and Migotto, 2015,

[29]).

3.2.3 The cohort of an invention

For each invention (i.e. patent family), several options are possible: to choose the year at which the

priority filing is filed, or the year at which it is published. The first possibility is considered as being the

closest to the invention date and the second one as being the date at which the knowledge embodied in

the patent becomes publicly available (OECD, 2009, [59]). The second option is retained to measure
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Technology Description CPC codes

Biofuels Combined Heat and Power turbines for biofeed, gas turbines for biofeed,
bio-diesel, bio-pyrolysis, torrefaction of biomass, bio-ethanol. Y02E 50/1

Carbon Capture Capture by biological separation, chemical separation, by absorption,
and Storage by adsorption. Subterranean or submarine CO2 storage. Y02C 10/
Sea Energy Oscillating water column, ocean thermal energy conversion,

salinity gradient, wave energy. Y02E 10/3
Energy Storage Battery technologies, ultracapacitors, supercapacitors,

pressurized fluid storage, mechanical energy storage,
pumped storage. Y02E 60/1

Fuel From Waste Synthesis of alcohol or diesel from waste, production
of methane (fermentation, landfill gas). Y02E 50/3

Geothermal Earth coil heat exchangers, systems injecting medium into
Energy ground or into a closed well. Systems exchanging fluids in pipes. Y02E 10/1
Hydro Conventional (dams, turbines or waterwheels),
Energy tidal stream or damless hydropower. Y02E 10/2
Hydrogen (incl. Hydrogen storage, distribution, production
hydrogen storage) from non-carbon sources. Y02E 60/3
Nuclear Fusion reactors (Magnetic Plasma Confinement (MPC),

inertial plasma confinement), nuclear fission reactors
(reactors, fuel, control of nuclear reactions). Y02E 30/

PV Energy PV systems with concentrators, materials technologies,
power conversion electric or electronic aspects. Y02E 10/5

Smart Grids Systems integrating technologies related to power
network operation, communication or information
technologies for improving the electrical power generation,
transmission, distribution, management or usage. Y04S

Solar Thermal Tower concentrators, dish collectors, fresnel lenses,
heat exchange systems, through concentrators, conversion
into mechanical power. Y02E 10/4

Wind Power Wind turbines (rotation axis in wind direction
and perpendicular to the wind direction), power conversion
electric or electronic aspects. Y02E 10/7

Combustion Heat utilization in combustion or incineration of
Efficiency waste, Combined Heat and Power generation, Combined Cycle

Power Plant, Combined Cycle Gas Turbine. Y02E 20/1
Combustion Direct (use of synair or reactants before or
Mitigation during combustion, segregation from fumes) and

indirect(cold flame, oxyfuel and unmixed combustion)
CO2 mitigation, heat recovery other than air pre-heating. Y02E 20/3

Table 2: Description of the technologies and their classification codes (CPC).
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the evolution of common knowledge in particular technology fields. Thus, a cohort of inventions brings

together all the inventions that received their first patent the same year.

3.2.4 Nationality of inventions

Finally, we have to sort inventions depending on their nationality. There are two types of agents in-

volved in patenting process: applicants and inventors. The nationality(ies) of applicant(s) represent(s)

the ownership of the protected knowledge, independently of the location of research laboratories. Hence,

the best option when one wants to measure the new knowledge discovered within a country is to sort

inventions by inventors’ country of residence (OECD, 2009, [59]).

If there are multiple inventors residing in different countries, a fractional count is applied (De

Rassenfosse et al., 2014, [17]). For instance, when two Danish inventors and one French inventor have

taken part in an invention we consider that two-thirds of the invention belong to Denmark and one-

third to France. In some cases, the inventor’s country of residence is not referenced in PATSTAT. By

default we consider the priority office nationality as the inventors’ nationality. There is only a minor

risk of doing so for two reasons:

• when information on inventor’s nationality is available, 96.3% of the inventions of our dataset are

first protected in the office of the same nationality (share computed after excluding inventions

first filed at the EPO).

• In the case the invention is first filed at the EPO (1.547 % of the inventions), the country of

residence of inventors is available in almost every cases. For the few for which it is not, an online

research on Espacenet.com provides for the nationality of inventors.

Our choice of the countries that are included in the study is motivated by the availability of

information on metrics. In PATSTAT, a default value of variables when information is not available

is zero7. Consequently there is a risk to include countries with low data coverages and to bias the

analysis. Based on several extractions and after cautious examination of the data we choose to include

France, the United States of America (USA), Spain, Germany, the United Kingdom (UK), Denmark

and the Netherlands.

7For instance a vast majority of the patents filed at the SIPO, the Chinese patent authority, show zero backward
citations. Obviously, it does not mean that Chinese inventions do not rely on past knowledge but rather that PATSTAT
does not contain the information.
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3.2.5 Invention Metrics

We come now to patent metrics. As discussed above, literature has emphasized the links between the

quality of a patent and its metrics. In this study we run several estimates of the LFM on the basis of:

• The size of the patent family (family size). As new patents may be added to the priority filing’s

family after its publication, this metric might increase over time. Hence, we consider as belonging

to an unique family the patents published during the five years that follow the priority filing’s

publication.

• The number of citations received by a priority filing before five years have elapsed after its

publication (forward citations). In order to suppress the bias of the family size, we only count

the citations made by patents from other families.

• The number of citations made to other patent families (backward citations).

• The number of IPC classes of the priority filing (technological scope)8.

• the normalized difference between the granting date and the application date of the priority filing

(grant lag). The metric is normalized because the conditions of examination vary depending on

granting authorities and years of examination. It is divided by the average examination time

took for patents delivered by the same office to the same cohort and technological class .

These are the metrics containing information about the quality of an invention. In the next sub-

section we detail how the optimal set of metrics is chosen.

3.3 Metrics choice and estimation results

3.3.1 Number of metrics included in the LFM

Choosing what metrics to include in the model is of major importance. Indeed, depending on the

set of metrics considered the correlation structure of the data could reveal the existence of more than

one latent factor. In our case, it would be problematic to conclude that the optimal number of latent

factors is larger than one as our aim is to capture an unique measure of quality. Hence, we choose the

set of metrics that corresponds to a unique latent factor. We start by considering the largest set of

8Contrary to the Y02 scheme that focuses on the use which might be made from the invention, the IPC scheme
provides for a more technologically-oriented system of classification and is closer to the technological scope of a patent.
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Family Forward Technological Backward
size citations scope citations

µi 1.13 1.83 1.21 2.93
λi 0.25 0.17 0.16 0.45
ψi 0.17 0.55 0.17 0.37

Table 3: Estimated coefficients in the Latent Factor Model

available patent metrics (forward citations, backward citations, family size, normalized grant lag and

technological scope) and search for the number of latent factors that are common to these variables.

To do so we use the Kaiser-Guttman criterion. The principle is that the number of latent factors

must be equal to the number of eigenvalues of the correlation matrix greater than one. Including

the five manifest variables, the criteria points to two latent factors. To solve this issue, we exclude

each manifest variable from the data set and we question the number of latent factors within the five

combinations. Computing the eigenvalues of the correlation matrix of each combination of normalized

we find that the number of latent factor decreases from two to one when we exclude the grant lag,

in the four other cases the criteria indicates two latent factors. It appears that the need for a second

latent factor is generated by the inclusion of the grant lag.

To conclude, we estimate a LFM with one latent factor to build an index measuring the quality

of 28,951 patents granted between 1980 and 2010 to seven countries in fifteen LCETs. The manifest

variables included in the model are the number of forward citations received within five years from the

publication date, the number of backward citations, the number of technological classes of the patent

and the size of its family. We present below the estimation results.

3.3.2 Estimation results

The estimation results of the model 3 are presented in Table 3. The second row contains the factor

loadings λi of the p metrics. Their variances are presented in the third row. The estimation of the

modem with the E-M algorithm generates no heteroskedasticity. We test the existence of a common

factor. As the previous subsection discusses the existence of more than one common latent factor,

we must consider the case of no common factor. Considering that there is no common factor means

that the observed variables are mutually independent. Under this hypothesis the estimator of Σ would

be the diagonal elements of the data set covariance matrix. It is tested with a likelihood ratio test.

The test statistic increases as the estimator of Σ diverges from the observed covariance matrix. In the
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Family Forward Technological Backward
size citations scope citations

Weights 0,68 0,14 0,42 0,58
Share of communality

26.65 4.82 12.3 35.48
in the variance (%)

Table 4: Factor loadings and share of metrics’ variances attributable to the common factor.

particular case of zero common factor the test statistic reduces to −nln|R| where R is the correlation

matrix of X (Mardia et al., 1979, [55], pp. 267-268). The statistic follows a chi-square distribution

with p(p − 1)/2 degrees of freedom. The null hypothesis of zero common factor is rejected at the 1%

level of confidence. We test the significance of parameters by conducting a sequence of likelihood ratio

test of nested models. The principle is to test the significance of the difference between the maximized

log-likelihoods of two competing models: M0 and M1. The former is a more restricted model setting

parameters to a null vector, while the latter includes all the parameters. Under the null hypothesis

the two models are equivalent and we conclude that the parameters that are not free in M0 are not

significant (Bentler and Bonett, 1980, [5]). The test statistic is −2(L∗(M0) − L∗(M1)), where L∗(.)

is the maximized log-likelihood of a model. The statistic test follows a chi-square distribution. The

degrees of freedom are the number of parameters that are not free in M0 compared to M1. We test

the significance of µ and find that it is highly significant at the 1% level. We question the relevancy of

introducing dummies in the model. They take into account the effects of the technological class, the

cohort and the office on the values taken by manifest variables. We find that all the dummies of the

model are statistically significant at the 1% level. Hence, they are maintained.

We now discuss the inverted relation between the observed variables and the common factor de-

scribed by the model (4). The weights of manifest variables in the common factor are presented in

Table 4. They are now demeaned to control for cohort, technology and office9. These weights repre-

sent how the metrics influence the level of the latent factor. We find that the two metrics with the

larger weights are the size of the family and the number of backward citations. The small weights of

forward citations is explained by several factors. First, we only consider the citations received by an

invention within the five years after its publication. This truncation introduces a bias in the metric

as high-quality inventions can be identify by other inventors after a longer period. Second, forward

citation is a noisy indicator of quality. The essence of LFMs is to reduce dimensionality without loss

9To control for all the effects that are not linked to the quality of the patent, the new set of manifest variables is
computed as xi − µ− αzi for i = 1, ..., n.
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of information. As explained in subsection 3.1, the two terms of equation (5) are the communality and

the specific variance of each metric. The weights of communality in the total variance of the metrics

are given in the second row of Table 4. They represent how much the variance of each metric is affected

by the common factor. Hence the lower it is, the more noisy is a metric with respect to the common

factor. We observe that forward citation is the metric with the smaller share of variance explained by

commonality. The communality represents only 4.8% of forward citations variance whereas the size of

the family and the count of backward citations have the highest shares with respectively 26.63% and

35.48% of their variances attributable to communality. Hence, once the specific variance of forward

citations is deducted, there remains little information about the quality. When using only one metric

to measure patent quality, one should consider the high variance of forward citations that is not linked

to communality. This feature of forward citations metric has been already emphasized10 by Harhoff et

al. (1999, [25]). The small weight of forward citations contrasts with Lanjouw and Schankerman (2004,

[49]) who find that forward citations are the less noisy indicator among the four they consider in their

model. In their study they log-transform the metrics they use and set to zero the observations that

received no forward citations. They explain that their results are the same when excluding patents

with no forward citations from their data set. Hence, their data treatment is equivalent to ignore

non-cited inventions and may overestimate the influence of forward citations on quality.

We measure the gain of information from using simultaneously several patent metrics to capture

quality. To do so, the percentage difference between the normalized latent factor variance and the

conditional variance is computed. We find that it decreases by 52.48% when using our set of manifest

variables. This result is in line with Lanjouw and Schankerman (2004, [49]) who find variance reductions

of 47.6% and 53.5% in electronics and mechanical; the two technological classes they investigate that

are the closer to LCETs. As explained at the beginning of subsection 3.1, the estimated values of the

latent factor are exp-transformed in order to find back a log-normal distribution. Hence, inventions

with a latent factor on the negative side of the normal distribution will have, after being transformed

back, a weight lower than one and at the contrary inventions with a positive latent factor will have a

quality index higher than one. This is an advantage as we want to emphasize the contrast between a

simple count of inventions and a quality-weighted one.

10It can be illustrated by an example taken from their study. Based on a survey realized among patent owners, the
authors estimate a model predicting that patents valued at $ 100 million will receive 13.7 forward citations with a two
standard error range from 1.2 to 156.
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4 Measuring the inventive performances in the Low Carbon

Energy Technologies

4.1 The time path of low carbon innovation

Before comparing the inventive performances among the countries and the technologies we study, we

give an overall view of low carbon innovation. We compute the annual flows of inventions weighted

by their quality index, all countries and technologies taken together. These quality-weighted flows are

represented on Figure 1 and capture both the quantity and the quality of LCETs inventions11. On

Figure 1, the dashed line represents the annual average Brent crude oil spot prices, in $2014/bbl, taken

from the BP statistical review of world energy 2015. The similar shape of the two curves illustrates the

response of innovation to the evolutions of the oil price and it supports the assumption of price-induced

innovation12.
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Figure 1: Quality-weighted flows of inventions, all countries and technologies taken together.

It is interesting to observe that the level of produced knowledge related to LCET reached in 1981 will

not be achieved before 2008. In order to investigate the variations of the average quality of inventions,

we compute the average values of the quality index from year to year and obtain that it varies between

1.22 and 1.48. Hence, the quality of LCETs inventions is rather stable over time when including all the

11As explained above a fractional count is applied so that we do not overestimate the ‘share’ of an invention belonging
to a country.

12The ’induced innovation’ hypothesis has been first proposed by Sir John Hicks (Hicks, 1932, [30], pp 124-125). It
states that technical change is directed by the relative prices of production factors. Innovators will find new production
processes and products to substitute more expensive factors by cheaper ones. As fossil fuel price rises, innovation in
energy low-carbon technologies should increase.
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countries and technologies of our dataset. This stability however conceals several differences among

countries and technologies as discussed in the two next subsections13.

4.2 Assessing countries’ inventive performances

We compare the inventive performances of the seven countries we study on the basis of the quality

and the quantity of the inventions they produce. An accurate measure of the inventive performance

must also take into account countries’ size. On Figure 2, the relation between the cumulative Gross

Domestic Product (GDP) and the number of inventions over the period 2001-2010 is represented on a

logarithmic scale. In addition, the average quality of countries’ inventions is represented by the size of

the bubbles. Only the inventions of cohorts 2001-2010 are considered14.
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Figure 2: Relation between the cumulative GDP, the quantity of LCETs inventions and their average
quality over 2001-2010.

The relation between the cumulative GDP and the fractional count of inventions is almost linear.

Our measure of the quality of patented inventions however offers a more precise view of countries’

inventive performances. Indeed, the average quality of patented inventions over 2001-2010 is higher in

the USA, Denmark and the UK. We can derive two insights from this description. First, it confirms the

fact that Denmark is a leader in the LCETs when compared to its European neighbors. Second, a cross-

13It should be kept in mind that the comparison of the quality of inventions between technologies, cohorts and countries
is made possible by the introduction of dummy variables in the LFM that neutralize the effects of these features on patent
metrics.

14For each country, we compute the share of LCETs in the total amount of priority filings and observe that it has
stayed rather stable between 1985 and 2000. Then, the growth of LCETs shares in the overall patenting activity has
started around 2000 in all the analyzed countries, except in Denmark and Spain where one-off increases were observed
previously. Here, we focus on the growth phase rather than the business-as-usual patenting activity.
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country comparison made on the basis of a fractional count of inventions, relative to the cumulative

GDP, would lead to underestimate the inventive performances of the UK and the USA. It is particularly

clear for the UK that exhibits a lower ratio of its number of inventions relative to its cumulative GDP,

compared to the other countries. This lower propensity-to-patent however is compensated by a higher

average quality of patented inventions as shown by the size of the bubbles on the figure.

4.3 The technical advantages of countries

Figure 2 depicts countries’ performances in the LCETs. It does not however make any distinction

between technologies. Due to the strong heterogeneity of the technologies included in our dataset, it

is relevant to analyze separately each technology and to examine how much countries are specialized

in these specific sectors.

To do so, we adopt an approach similar to the Revealed Technology Advantages (RTA) index. RTA

index is a measure of the degree of specialization of a country in a particular technology field. It is

computed as a country’s share of patent in a technology field divided by the country’s share in all patent

fields. A major advantage of this measure is to neutralize the heterogeneity of the propensity-to-patent

among countries by expressing the performance of a country relative to its overall patenting activity.

The RTA index however does not take into account the quality of the patents used for its computation;

for instance a country with a high amount of low quality patents in a technology field where there

are few patents will be judged as specialized even if it fails at producing high-quality inventions. To

overcome this issue we compute a slightly modified form of the RTA index that expresses the weights

of a country in the 10% best inventions of a technological field relative to its patenting activity in the

LCETs. The modified RTA of country i in technology j is denoted RTAi,j and computed as follows:

RTAi,j =
Si,j

Si
.

Si,j is the share of patents owned by country i in the 10% of patents with the higher quality index

belonging to technology j. It is divided by the share of patents owned by the country i in the total

patents of the dataset, denoted Si. Figure 3 depicts the values of the national RTA index for four

key LCETs. The more the RTA exceeds one, the more the country is specialized in a technological

field. At the contrary, a country with a RTA lower than one in a technology has a disadvantage. This

frontier between technical advantages and disadvantages is represented by the dotted lines on Figure
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3. These charts show that there are very few countries that are specialized in the solar PV and the

energy storage sectors. Moreover, the countries that have technical advantages in these technologies

remain at low degrees of specialization (close to one). Only the Netherlands and the UK are (weakly)

specialized in the solar PV technology, followed closely by Germany and the USA. It appears that

France, Spain and Denmark are less effective in this technology relatively to their overall patenting

activity in the LCETs. In the energy storage sector, the only country that has a technical advantage

is the USA as indicated by a RTA index of 1.2. France and the UK are able to perform as well in this

technology than in the other LCETs as indicate their RTA indexes close to one.
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Figure 3: The Revealed Technical Advantages of countries in four major LCETs.

At the contrary, wind power and nuclear power technologies are both dominated by a single player.

As can be expected, Denmark exhibits a very high degree of specialization in wind power technology

with a RTA index of 9.34, indicating that there are more than nine times more Danish patents in the

high-quality wind power patents than in the LCETs patents. Despite this leadership, several countries

are also specialized in wind power technology: Germany, the UK, the Netherlands and Spain. Their
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technical advantages remain however smaller than those of Denmark. Regarding the nuclear power

technology, it is dominated by France which is the only country that is highly specialized in this

field (RTA index of 3.41). It should be noted however that Germany has accumulated some technical

advantages in this technology as shows its RTA of 1.33.

Radar charts allow to identify how countries are specialized in the fifteen LCETs included in our

dataset. These are depicted for each country in the Appendix B. We observe that countries with a low

level of patent production tend to be highly specialized in few technologies (e.g. Denmark). As the

level of patent production grows, additional technical advantages are developed in other technological

fields as it is the case for the UK and the Netherlands. Countries that patent the most, i.e. the USA,

Germany and France, tend to patent in a wide array of technologies. They do however still present

technical advantages in some technologies: nuclear technology in France (RTA of 3.4), wind power in

Germany (1.81) and smart grids in the USA (1.35).

4.4 The dynamics of inventions quality in the LCETs

A higher technical specialization is a necessary condition to reach a leadership position in a particular

sector. It may be a risky strategy however to favor a single technology since it can lead to a situation

of technological lock-in. The technical advantages of a country must be assessed by taking into account

the dynamics of each technology. Although we have observed that the average quality of inventions

remained almost stable when all technologies are considered together, there have been major substi-

tutions between technologies. The question arises whether the average quality of inventions in each

technical field has changed over time. The computation of the average quality of patented inventions

in each technology indicates that depending on the technology, the inventions may increase or decrease

in quality over time. This is illustrated by representing the evolution of the simple count of inventions

versus the quality-weighted one. It is represented on Figure 4 for nuclear power. The evolutions of

the two types of counts for the 14 other technologies are given in Appendix C. We focus on nuclear

technology as it is illustrative of a decoupling between the quality and the quantity of inventions.
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Figure 4: Evolutions of quality-weighted flow versus unweighted flow of nuclear-related inventions, all
countries taken together.

Between 1980 and 1987, before the number of inventions in nuclear technology has dropped, the

quality-weighted count has stayed above the simple count indicating that inventions were on average

of relatively high quality. During 1980-1986, there have been on average 162.28 nuclear inventions

per year. In 1987, 291.25 nuclear inventions were patented. The average quality of the inventions

patented in 1987 was 1.21 while it was equal to 1.51 over 1980-1986. After 1987, a slow convergence

between the two counts began before their overlap started around 1999. It illustrates the decrease of

the quality of nuclear-related inventions, relative to other technologies, and indicates that knowledge

in this technology is overestimated when approximated by a simple count of inventions. It should be

noted that it is the only technology among the fifteen studied in this article for which a decreasing

average quality is so striking.

Considering solar thermal power and geothermal power we observe no clear signs of a decrease (or

an increase) of the annual average quality. For geothermal energy there have been some jumps in the

quality-weighted count and this is explained by few inventions of high quality that are weighting heavily

in the low amount of inventions. Still, geothermal energy is used and commercially viable for more

than a century using mature techniques, the main obstacle to its development being the scarcity of

exploitable sites (IPCC, 2012, [33]). This barrier could explain the low amount of inventions patented
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in this technological field. The technological paradigm of solar thermal energy has remained fairly

unchanged over the analyzed period. For instance, most of the installed capacities at the end of the

2000s have a similar design compared to the first operating commercial plants installed in California

in the 1980s (IEA, Technological report on solar thermal). In the mid-late 2000s, concentrated solar

power has opened a new area for innovation and it has contributed to a growing number of patented

inventions. Nonetheless, there is no clear sign that these new inventions were, on average, of better

quality.

Contrary to solar thermal and geothermal energies, a clear decoupling between the quality and the

quantity occurred for more recent technologies since there has been an increase of the average quality

of patented inventions. The most vivid examples are wind power, solar PV power and energy storage.

In the energy storage technological area, patented inventions have seen their annual average quality

substantially increased at the beginning of the 1990s. It came later for solar PV power and wind power

for which patented inventions have gained in quality since the beginning of the 2000s. Consequently,

the knowledge related to these three technological fields is underestimated if the role of quality is let

apart.

The technologies’ relative shares in the annual flows of quality-weighted inventions have changed

considerably over 1980-2010. One can expect the dynamics of substitution between older and newer

technologies to be led by the evolutions of the returns to R&D. As they decrease in a particular

technological field the investment will be redirected towards technologies with higher returns15. This

assertion is supported by the decreasing number of nuclear patents that goes hand in hand with

a decreasing average quality. At the contrary solar PV power and wind power technologies have

experienced a growing average quality per cohort and have seen their shares in the annual flows of

quality-weighted inventions considerably increasing over time.

4.5 Distribution of inventions quality

The previous part investigates how the average quality of technologies has evolved. Reasoning on

average levels hides however an important feature of innovation: the uncertainty of research outcomes.

According to Popp et al., models may suffer from two major limits: 1/ to consider a composite low

15As Popp et al. (2013, [65]) underline, as the returns to research in a particular technology decrease over time and
make the technology obsolete, research efforts will move to more productive technologies. Hence, increasing returns to
research may be observed at the macroeconomic level despite there are decreasing returns in particular research areas.
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carbon technology neglects the differences between technologies in terms of outcomes ; 2/ to reason

on the basis of average returns omits the uncertainty associated to R&D and may underestimate the

potential innovation of high value (Popp et al., 2013, [65]). In order to obtain a patent protection

an invention must meet a minimum level of quality and adds new knowledge to the existing stock.

Above this minimum level, the distribution of inventions in terms of quality reflects the breadth of

the new technological opportunities that open up through new knowledge. Descriptive statistics are

presented in the Appendix D and indicate rather stable values of the average level of quality among

technologies. The higher value being 1.39 (fuel from waste) and the lower 1.27 (solar thermal and

geothermal energy). However, differences are more marked when comparing the shapes of distribution

among technologies. The propensity of a technology to reach high values of quality is reflected by

the skewness and the kurtosis of the distribution. The larger they are, the more the distribution is

skewed to the right and the thicker are the distribution tails. On this basis, the technologies with the

higher potential for high quality inventions are fuel from waste, solar thermal and energy storage. At

the contrary, nuclear power, combustion efficiency and CCS exhibit the less skewed distributions with

a stronger concentration of inventions around the distributions modes. It reflects that there are less

uncertainties in terms of research outcomes for this last group of technologies.

The distributions of the quality index for a given technology have evolved over time and it sup-

ports the idea that the uncertainty on the R&D outcomes depends on the current technological state.

Computing the distributions of the quality index for three time periods: 1980-1990, 1991-2000 and

2001-2010, we find contrasted results between technologies. They are computed for the seven technolo-

gies that have the larger amounts of patents at the end of 2010: namely solar PV, wind power, energy

storage, hydrogen, solar thermal, smart grids and nuclear technologies. They are shown on Figure 5

for wind and nuclear technologies; the other can be found in Appendix D 16.

16All the distributions are truncated to the right for a value of the quality index of 5. The shares of inventions that
exceed this value are given between brackets on the figures under the names of the technologies.
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Figure 5: Distributions of the quality of inventions for three decades (Nuclear and Wind technologies).

Wind power, solar PV and hydrogen are a group of technologies that presents a common feature:

the shapes of quality distributions have changed over the three decades but it has only impacted the

distribution of high quality inventions. Indeed, the left side of the distributions stayed rather similar

whereas the right-side tail has became longer and thicker. A growing uncertainty is associated with a

higher number of high-quality inventions, compared to older inventions.

The shape of the distributions of wind-related inventions is getting flatter over the three decades

suggesting that the potential for significant inventions has grown: chances to reach higher quality levels

have increased with the cumulative number of inventions. This is illustrated on the graph at the bottom

of the Figure 5. This result is in line with the cumulative of wind power innovation: technical change

in this field occurs through a series of successful innovations rather than some breakthrough inventions

(Popp et al., 2013, [65]). This is not what we observe for solar PV and hydrogen technologies. For the

latter, the decade experiencing the larger share of high value inventions is 1991-2000. It has decreased

during the last decade but stayed above the levels of 1980-1990. In the case of solar PV technology,

the concentration around low quality was the larger during 1991-2000. Then, the right-tail of the

distribution has grown longer during 2000-2010. This is the decade during which innovative activity

in solar PV technology has been the more successful.

Consistent with the decreasing average quality of the inventions, the distribution of nuclear tech-

nology inventions has been progressively shifted to the left as shows the Figure 5. The variance of

the outcomes was higher during 1980-1990 compared to the last two decades and their has been more
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inventions reaching high values of the quality index. During the last two decades, in addition to the

shift of the distributions toward the left, nuclear technology has experienced an higher concentration

of the inventions around low values of the quality index. Considering smart grid17 and solar thermal

technologies, the distribution of the quality during the last decade exhibits a higher number of low

value inventions as well as a thicker right tail of distribution, compared to 1980-2000. Hence, despite

the fact that the bulk of inventions are of lower values a subset of inventions is able to reach high levels

of quality.

Analyzing the evolutions of the quality index distributions provides for several insights. When

comparing nuclear power with other technologies, we observer that it has seen its potential for inven-

tions of high quality decreased over time. On the one hand, the average quality of nuclear-related

inventions has decreased (see 4.4). On the other hand, the distribution of research outcomes around

a lower quality has been broadened so that the chances to reach high quality levels is reduced. At

the contrary, new technologies such as wind power and solar PV experience higher potentials for high

quality inventions during 2000-2010, as indicate the higher proportions of high-values inventions.

5 Conclusion

We estimate a one-LFM that explains the four patent metrics of an invention by some fixed effects and

by a common and unobservable factor. Previous empirical studies on patent metrics assure that a factor

affecting simultaneously the four metrics is an accurate measure of the quality of a invention. Based

on the parameters estimates we can reify an index of the quality of 28,951 inventions pertaining to

seven countries and patented in fifteen Low Carbon Energy Technologies between 1980 and 2010. The

variance of each patent metric can be subdivided into its specific variance and a part that is imputable

to a commonality term representing the role of quality. We find that the number of backward citations

and the size of the family are the metrics with the higher shares of their variances imputable to quality.

At the contrary, only 4.8% of the variance of the count of forward citations received by a patent within

the five years after its publication are imputable to patent quality. In line with the results of Lanjouw

and Schankerman (2004, [49]), we find that using several metrics reduces the variance of the quality

17The term ’smart grid’ is fairly new in our vocabulary but the idea of making the grid more efficient has emerged with
the electricity grid. As shown by Table 2 all the inventions that contribute to improve the network operation and the
management of the generation, transmission and generation of electricity fall in the smart grids category. For instance,
the first known electric meter patented in 1872 by Samuel Gardiner would be considered as a smart grid technology.
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index by 52.48%.

Measuring the quality of patented inventions allows for a more refined representation of low-carbon

innovation. We derive several results about the inventive performances of countries and technologies,

highlighting the additional information provided by the quality index. We discuss the relative weights

of the seven countries we analyze in the overall LCETs innovation; using the quality index helps

correcting the bias resulting from the different propensity-to-patent of countries. To this extent, it is

clear that Denmark performs better than the other countries. We go further in the comparative analysis

of countries performances by computing a modified form of the Revealed Technical Advantages (RTA)

index. It includes the qualitative dimension of inventions. It appears that countries that produce fewer

patents tend to privilege a strategy aiming at being highly specialized in some technological fields

while neglecting the others. At the contrary, those that have produced large numbers of patents, i.e.

the USA, France and Germany do not target very high levels of specialization. Instead, they tend to

accumulate some technical advantages in a wide array of technologies. We can observe however that

Germany and France are both specialized in wind power and nuclear power, respectively. Comparing

countries’ technical advantages raises question about the own dynamics of the quality of a technology.

These are analyzed and it indicates that the average level of inventions’ quality have evolved very

differently from a technology to another. In particular, nuclear technology is the only one to exhibit

a clear decrease of the average quality of inventions over time. At the contrary, the average quality

has increased for solar PV, wind power and energy storage technologies. This is also the case for

hydrogen and sea energy technologies but the smaller amounts of inventions patented in these two

technological fields call for some prudence. Research is a highly uncertain activity and one could

think that a lower quality, on average, may be compensated by a small subset of inventions of very

high quality. To investigate this issue we compare how the distributions of the inventions in terms of

quality have evolved within a particular technology. The length and the thickness of the distribution

tail toward high values of the quality index capture technologies’ potential for significant inventions.

A second insight is that this potential has been the higher during 2001-2010, compared to 1980-2000,

for solar PV and wind energy technologies. At the contrary, the decreasing average quality of nuclear

over time is not compensated by few inventions of great quality: from a decade to the next inventions

tend to be more and more concentrated around small value of the quality index suggesting that best

opportunities have been depleted. Our argumentation is based however on a measure of the quality,

29



defined here as the economic value that is imputable to the technological advance resulting from the

patented invention. In order to have a better understanding of the dynamics of a technology, further

research should construct a measure that captures solely the technological dimension of the invention,

letting apart the influence of the economic factors. It has been done by de Rassenfosse and Jaffe (2014,

[67]) but their empirical strategy remains however to be adapted to the peculiarities of LCETs.

A Appendix A: The E-M algorithm

This appendix presents the E-M algorithm. Although it is close to the presentation given in Bartholomew

et al. (2011, [4]), we include in the model a set of dummy variables that requires a modification of the

algorithm. We start by writing the joint log-likelihood of (xi, yi) for i = 1, ..., n,

constant− n

2
log|Ψ| − 1

2

n∑
i=1

(xi − µ− αzi − Λyi)
′Ψ−1(xi − µ− αzi − Λyi)

− 1

2

n∑
i=1

y′iyi.

Using the trace trick18, the joint log-likelihood can be written:

constant− n

2
log|Ψ|

− n

2
trace

(
Ψ−1

1

n

n∑
i=1

(xi − µ− αzi − Λyi)(xi − µ− αzi − Λyi)
′

)

− n

2
trace

1

n

n∑
i=1

(yiy
′
i).

The score functions of the joint log-likelihood for µ, Λ, α and Ψ, are

nΨ−1(x̄− µ− αz̄ − Λȳ), (6)

nΨ−1(S′xy − µȳ′ − αS′zy − ΛS′yy), (7)

18When a matrix multiplication results in a scalar we can use trace to rearrange its arguments.
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nΨ−1(S′xz − µz̄′ − αS′zz − ΛS′yz) (8)

and the diagonal elements of

−n
2

Ψ−1 +
n

2
Ψ−1

(
1

n

n∑
i=1

(xi − µ− αzi − Λyi)(xi − µ− αzi − Λyi)
′

)
Ψ−1. (9)

These score functions contain several sufficient statistics of the model, listed below

x̄ =
1

n

n∑
i=1

xi, z̄ =
1

n

n∑
i=1

zi, ȳ =
1

n

n∑
i=1

yi,

S′xx =
1

n

n∑
i=1

xix
′
i, S′xy =

1

n

n∑
i=1

xiy
′
i, S′xz =

1

n

n∑
i=1

xiz
′
i,

S′zz =
1

n

n∑
i=1

ziz
′
i, S′zx =

1

n

n∑
i=1

zix
′
i, S′zy =

1

n

n∑
i=1

ziy
′
i,

S′yy =
1

n

n∑
i=1

yiy
′
i, S′yx =

1

n

n∑
i=1

yix
′
i, S′yz =

1

n

n∑
i=1

yiz
′
i.

If all these sufficient statistics could be observed, we would set the score functions to zero and deduce

the estimators. However this is not the case. Six sufficient statistics listed above, those that depend

on the latent factor, are unknown. To cope with this problem we use the Expectation-Maximization

algorithm that, as its name indicates, follows two successive steps at each iteration.

First step: Expectation step

The conditional expected values of the score functions are computed. To do so, it is enough to compute

the conditional expected values of the unknown sufficient statistics. Their expressions are

E[ȳ|xi] = Λ′Σ−1(x̄− µ− αz̄), (10)

E[S′yy|xi] = (1 + Λ′Ψ−1Λ)−1 + Λ′Σ−1[
1

n

n∑
i=1

(xi − µ− αzi)(xi − µ− αzi)′]Σ−1Λ, (11)
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E[S′xy|xi] = [S′xx − x̄µ′ − S′xzα′]Σ−1Λ, (12)

E[S′yx|xi] = E[S′xy|xi]′, (13)

E[S′yz|xi] = Λ′Σ−1[S′xz − µz̄′ − αS′zz] (14)

and

E[S′zy|xi] = E[S′yz|xi]′. (15)

Second step: Maximization step

In the second step of the E-M, the unknown sufficient statistics are replaced by their conditional

expected values,10-15, in the score functions. Then, the score functions are set to zero in order to

maximize the joint log-likelihood. It gives a matrix equations system that, once solved, allows to

deduce new values of the parameters:

Λ̂ =
(
S′xy − x̄ȳ′ − (S′xz − x̄z̄′)(S′zz − z̄z̄′)−1(S′zy − z̄ȳ′)

)
×
(
(S′yy − ȳȳ′)− (S′yz − ȳz̄′)(S′zz − z̄z̄′)−1(S′zy − z̄ȳ′)

)−1
,

(16)

α̂ =
(
S′xz − x̄z̄′ + Λ̂(ȳz̄′ − S′yz)

)
(S′zz − z̄z̄′)−1, (17)

µ̂ = x̄− α̂z̄ − Λ̂ȳ (18)

and

Ψ̂ = diag(
1

n

n∑
i=1

(xi − µ̂− α̂zi − Λ̂yi)(xi − µ̂− α̂zi − Λ̂yi)
′). (19)

Using this new set of parameters value, the whole operation is reiterated by incorporating them in

the score functions 6, 7, 8 and 9. The conditional expectancies of the unknown sufficient statistics are

computed, then incorporated in the score functions that are finally set to zero; providing a new set of

32



parameters values and so on. The final output of the algorithm are the parameters of the model and

they are combined with the observed values of X in the mean term of relation 4 to infer the values of

the latent factor.
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B Appendix B: Revealed Technical Advantages of countries
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Figure 6: Revealed Technical Advantages of countries
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Figure 7: Evolutions of quality-weighted flow versus unweighted flow of inventions, all countries taken
together (part 1).
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Figure 8: Evolutions of quality-weighted flow versus unweighted flow of inventions, all countries taken
together (part 2).
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Biofuels CCS Sea Energy Fuel Geothermal Hydro Hydrogen
Energy Storage from waste Energy

Mean 1.38 1.31 1.38 1.375 1.39 1.27 1.34 1.38
Max 12.64 8.725 14.37 29.98 40.3 13.7 18.2 11.24
Min 0.12 0.1 0.185 0.1 0.16 0.2 0.15 0.12

Standard
1.36 1.06 1.56 1.4 1.78 1.18 1.45 1.36

error
Mode 0.84 0.71 0.43 0.67 0.83 0.96 0.82 1.11

1st quartile 0.59 0.58 0.59 0.58 0.58 0.65 0.64 0.57
Median 0.95 0.98 0.91 0.94 0.93 0.97 0.9 0.945

3st quartile 1.60 1.70 1.52 1.67 1.55 1.44 1.46 1.64
Coefficients

0.91 0.85 0.85 0.90 0.86 0.74 0.79 0.90
of Variations

Kurtosis 14.17 6.43 25.47 56.01 198.43 36.65 34.54 11.60
Skewness 3.13 2.11 4.33 4.9 10.49 4.70 4.78 2.95

Count 1019 1065 655 3955 1186 394 1243 1416

Nuclear Solar Smart Solar Wind Combustion Combustion Total
PV Grids Thermal Efficiency Mitigation

Mean 1.28 1.36 1.33 1.27 1.33 1.3 1.31 1.33
Max 11.45 20.24 18.43 25.24 22.56 9.11 11.47 40.3
Min 0.1 0.1 0.15 0.12 0.13 0.12 0.14 0.1

Standard
1 1.28 1.31 1.16 1.34 1.07 1.12 1.29

error
Mode 0.99 0.53 1.11 0.99 0.58 0.93 0.78 0.82

1st quartile 0.61 0.58 0.60 0.65 0.62 0.57 0.60 0.60
Median 0.99 0.93 0.96 0.96 0.94 1 0.94 0.95

3st quartile 1.61 1.65 1.54 1.42 1.48 1.68 1.65 1.57
Coefficients

0.80 0.88 0.82 0.72 0.81 0.83 0.83 0.83
of Variations

Kurtosis 8.67 21.54 32.67 59.87 34.85 7.82 10.72 61.9
Skewness 2.25 3.29 4.30 5.17 4.38 2.24 2.57 4.86

Count 3656 3748 1567 4050 3162 630 1205 28951

Table 5: Descriptive statistics of the quality index per technology.
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Figure 9: Distributions of the quality of inventions for three decades (Energy Storage and Smart Grids).
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Figure 10: Distributions of the quality of inventions for three decades (Solar Thermal and Solar PV).
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Figure 11: Distributions of the quality of inventions for three decades (Hydrogen).
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[53] Lindman, A., Söderholm, P., 2015. Wind energy and green economy in Europe: Measuring policy-

induced innovation using patent data. Applied Energy, Vol. 179, 1351-1359.

43
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