	Restricted linkage 000	Banking under ambiguity 000	

Essays on Spatial and Temporal Interconnections between and within Emissions Trading Systems

Simon Quemin

Paris-Dauphine University – PSL Research University & Climate Economics Chair

Ph.D. Defense - Thursday, 12th October 2017

- Emissions trading is a well-established instrument to curb GHG emissions
 - track record of ETS implementation in 19 jurisdictions (ICAP, 2017)
 - 7 GtCO₂e or 13% of worldwide GHG emissions (World Bank, 2017)

- Emissions trading is a well-established instrument to curb GHG emissions
 - track record of ETS implementation in 19 jurisdictions (ICAP, 2017)
 - 7 GtCO₂e or 13% of worldwide GHG emissions (World Bank, 2017)
- For ETSs to help meet the 1.5-2°C Paris objective, they must
 - spur climate cooperation and ratchet up ambition in a cost-effective manner

- Emissions trading is a well-established instrument to curb GHG emissions
 - track record of ETS implementation in 19 jurisdictions (ICAP, 2017)
 - 7 GtCO₂e or 13% of worldwide GHG emissions (World Bank, 2017)
- For ETSs to help meet the $1.5-2^{\circ}C$ Paris objective, they must
 - spur climate cooperation and ratchet up ambition in a cost-effective manner \rightarrow bottom-up negotiations: inter-system linkage has that potential

- Emissions trading is a well-established instrument to curb GHG emissions
 - track record of ETS implementation in 19 jurisdictions (ICAP, 2017)
 - 7 GtCO₂e or 13% of worldwide GHG emissions (World Bank, 2017)
- For ETSs to help meet the 1.5-2°C Paris objective, they must
 - spur climate cooperation and ratchet up ambition in a cost-effective manner \rightarrow bottom-up negotiations: inter-system linkage has that potential
 - shift current investment patterns towards low-carbon technologies

- Emissions trading is a well-established instrument to curb GHG emissions
 - track record of ETS implementation in 19 jurisdictions (ICAP, 2017)
 - 7 GtCO₂e or 13% of worldwide GHG emissions (World Bank, 2017)
- For ETSs to help meet the 1.5-2°C Paris objective, they must
 - spur climate cooperation and ratchet up ambition in a cost-effective manner \rightarrow bottom-up negotiations: inter-system linkage has that potential
 - shift current investment patterns towards low-carbon technologies
 - \rightarrow price should reflect long-term carbon budgets with inter-temporal trading

- Emissions trading is a well-established instrument to curb GHG emissions
 - track record of ETS implementation in 19 jurisdictions (ICAP, 2017)
 - 7 GtCO₂e or 13% of worldwide GHG emissions (World Bank, 2017)
- For ETSs to help meet the 1.5-2°C Paris objective, they must
 - spur climate cooperation and ratchet up ambition in a cost-effective manner \rightarrow bottom-up negotiations: inter-system linkage has that potential
 - shift current investment patterns towards low-carbon technologies \rightarrow price should reflect long-term carbon budgets with inter-temporal trading
- Reflects the conventional views of Montgomery (1972) and Rubin (1996)

- Emissions trading is a well-established instrument to curb GHG emissions
 - track record of ETS implementation in 19 jurisdictions (ICAP, 2017)
 - 7 GtCO₂e or 13% of worldwide GHG emissions (World Bank, 2017)
- For ETSs to help meet the 1.5-2°C Paris objective, they must
 - spur climate cooperation and ratchet up ambition in a cost-effective manner \rightarrow bottom-up negotiations: inter-system linkage has that potential
 - shift current investment patterns towards low-carbon technologies \rightarrow price should reflect long-term carbon budgets with inter-temporal trading
- Reflects the conventional views of Montgomery (1972) and Rubin (1996)
- Thus far linkages remain few and far between and some systems (e.g. EUETS) are criticized for not delivering adequate price signals

- Emissions trading is a well-established instrument to curb GHG emissions
 - track record of ETS implementation in 19 jurisdictions (ICAP, 2017)
 - 7 GtCO₂e or 13% of worldwide GHG emissions (World Bank, 2017)
- For ETSs to help meet the 1.5-2°C Paris objective, they must
 - spur climate cooperation and ratchet up ambition in a cost-effective manner \rightarrow bottom-up negotiations: inter-system linkage has that potential
 - shift current investment patterns towards low-carbon technologies \rightarrow price should reflect long-term carbon budgets with inter-temporal trading
- Reflects the conventional views of Montgomery (1972) and Rubin (1996)
- Thus far linkages remain few and far between and some systems (e.g. EUETS) are criticized for not delivering adequate price signals
- Focus on spatial and temporal interconnections between and within ETSs

- Chapter 1: Transitional Restricted Bilateral Linkages between ETSs
 - restrictions as transitory and facilitative mechanisms towards full linkage
 - comparison of alternative linkage restrictions in a unifying framework

Introduction		Banking under ambiguity	
00			

- Chapter 1: Transitional Restricted Bilateral Linkages between ETSs
 - restrictions as transitory and facilitative mechanisms towards full linkage
 - comparison of alternative linkage restrictions in a unifying framework
- Chapter 2: Multilateral Linkages between ETSs under Uncertainty
 - improvement of our understanding of linkage gains and underlying mechanisms
 - illustration of linkage preferences & calibration to real-world jurisdictions

- Chapter 1: Transitional Restricted Bilateral Linkages between ETSs
 - restrictions as transitory and facilitative mechanisms towards full linkage
 - comparison of alternative linkage restrictions in a unifying framework
- Chapter 2: Multilateral Linkages between ETSs under Uncertainty
 - improvement of our understanding of linkage gains and underlying mechanisms
 - illustration of linkage preferences & calibration to real-world jurisdictions
- Chapter 3: Intertemporal Abatement Decisions under Ambiguity Aversion
 - introduction of ambiguity (aversion) to account for considerable uncertainty
 - discussion of induced market distortions in light of observations from ETSs

- Chapter 1: Transitional Restricted Bilateral Linkages between ETSs
 - restrictions as transitory and facilitative mechanisms towards full linkage
 - comparison of alternative linkage restrictions in a unifying framework
- Chapter 2: Multilateral Linkages between ETSs under Uncertainty
 - improvement of our understanding of linkage gains and underlying mechanisms
 - illustration of linkage preferences & calibration to real-world jurisdictions
- Chapter 3: Intertemporal Abatement Decisions under Ambiguity Aversion
 - introduction of ambiguity (aversion) to account for considerable uncertainty
 - discussion of induced market distortions in light of observations from ETSs
- Contributions, Perspectives & Conclusions

Restricted linkage	Banking under ambiguity	

CHAPTER 1

Transitional Restricted Bilateral Linkages between ETSs

In collaboration with Christian de Perthuis (Paris-Dauphine) Submitted to *Environmental & Resource Economics* Available as a FAERE policy paper and CEC working paper

- A link could be approached gradually (Jaffe et al., 2009). Two options:
 - indirect linkages e.g. through the CDM: EU \leftrightarrow CDM \leftrightarrow NZ
 - trade restrictions gradually loosened over time: linking by degrees

Gradual linkage approach with trade restrictions

- A link could be approached gradually (Jaffe et al., 2009). Two options:
 - $\bullet\,$ indirect linkages e.g. through the CDM: EU $\leftrightarrow\,$ CDM $\leftrightarrow\,$ NZ
 - trade restrictions gradually loosened over time: linking by degrees
- Trade restrictions have been used to regulate CDM offset usage

Gradual linkage approach with trade restrictions

- A link could be approached gradually (Jaffe et al., 2009). Two options:
 - $\bullet\,$ indirect linkages e.g. through the CDM: EU $\leftrightarrow\,$ CDM $\leftrightarrow\,$ NZ
 - trade restrictions gradually loosened over time: linking by degrees
- Trade restrictions have been used to regulate CDM offset usage
- Some bilateral linkages have been initiated through unilateral trading
 - Norway-EUETS, Aviation-EUETS, Australia-EUETS

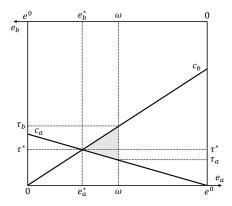
Gradual linkage approach with trade restrictions

- A link could be approached gradually (Jaffe et al., 2009). Two options:
 - $\bullet\,$ indirect linkages e.g. through the CDM: EU $\leftrightarrow\,$ CDM $\leftrightarrow\,$ NZ
 - trade restrictions gradually loosened over time: linking by degrees
- Trade restrictions have been used to regulate CDM offset usage
- Some bilateral linkages have been initiated through unilateral trading
 - Norway-EUETS, Aviation-EUETS, Australia-EUETS
- Effects of trade restrictions often studied with modelling exercises
 - esp. during Kyoto era (special issue in EJ), Ellerman & Sue Wing (2000), Rehdanz & Tol (2005), Burtraw et al. (2013), Gavard et al. (2016)

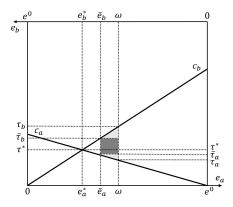
	Restricted linkage	Banking under ambiguity	
	000		
	_		

Develop a unifying framework to compare alternative linkage restrictions

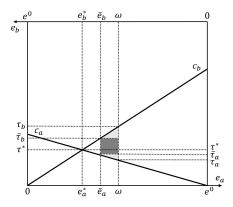
6


- Develop a unifying framework to compare alternative linkage restrictions
- Three main types of linkage restrictions are considered
 - \rightarrow quantitative restrictions, border taxes, exchange rates

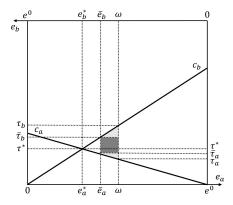
- Develop a unifying framework to compare alternative linkage restrictions
- Three main types of linkage restrictions are considered → quantitative restrictions, border taxes, exchange rates
- Extension of the 'textbook' model coupled with lessons from experience
 - not a normative approach: highlight comparative pros and cons
 - · sufficient to pinpoint key differences between alternative restrictions


- Develop a unifying framework to compare alternative linkage restrictions
- Three main types of linkage restrictions are considered → quantitative restrictions, border taxes, exchange rates
- Extension of the 'textbook' model coupled with lessons from experience
 - not a normative approach: highlight comparative pros and cons
 - sufficient to pinpoint key differences between alternative restrictions
- Emission caps are exogenous and fixed once and for all
 - domestic caps result from complex negotiations (Flachsland et al., 2009)

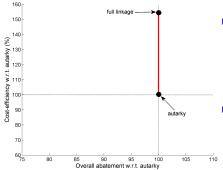
	Restricted linkage	Multilateral linkage	Banking under ambiguity	
	000			


references: autarky & full linkage

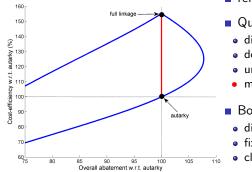
Restricted linkage	Multilateral linkage	Banking under ambiguity	
000			


- references: autarky & full linkage
- Quantitative restriction (QR)
 - direct quantity handle on the link
 - domestic and transaction prices
 - uncertain scarcity rent distribution

Restricted linkage	Multilateral linkage	Banking under ambiguity	
000			


- references: autarky & full linkage
- Quantitative restriction (QR)
 - direct quantity handle on the link
 - domestic and transaction prices
 - uncertain scarcity rent distribution
 - may not be natural route to full link

Restricted linkage	Multilateral linkage	Banking under ambiguity	
000			


- references: autarky & full linkage
- Quantitative restriction (QR)
 - direct quantity handle on the link
 - domestic and transaction prices
 - uncertain scarcity rent distribution
 - may not be natural route to full link
- Border permit tax (BT)
 - direct handle on price convergence
 - fixed shadow price ratio
 - clear tax revenues

Restricted linkage	Multilateral linkage	Banking under ambiguity	
000			

- references: autarky & full linkage
- Quantitative restriction (QR)
 - direct quantity handle on the link
 - domestic and transaction prices
 - uncertain scarcity rent distribution
 - may not be natural route to full link
- Border permit tax (BT)
 - direct handle on price convergence
 - fixed shadow price ratio
 - clear tax revenues

Restricted linkage	Multilateral linkage	Banking under ambiguity	
000			

references: autarky & full linkage

- Quantitative restriction (QR)
 - direct quantity handle on the link
 - domestic and transaction prices
 - uncertain scarcity rent distribution
 - may not be natural route to full link
- Border permit tax (BT)
 - direct handle on price convergence
 - fixed shadow price ratio
 - clear tax revenues

Effects of exchange rates are more subtle: abatements are not fungible

- correct for relative stringency & potential to increase ambition
- outcomes can be worse than QR&BT or autarky: challenging to select/update

	Multilateral linkage	Banking under ambiguity	

CHAPTER 2

Multilateral Linkages between ETSs under Uncertainty

In collaboration with Baran Doda & Luca Taschini (LSE) Target journal: *Journal of Public Economics* Available as a GRI working paper and CEC working paper

	Restricted linkage 000	Multilateral linkage ●○○	Banking under ambiguity 000		
Linkage	e is expecte	d to materia	alize multilate	rally	

- Most linkage studies consider bilaterally linked systems
 - but in practice {California,Québec,Ontario}, EUETS, RGGI are multilateral

Restricted linkage 000	Multilateral linkage ●○○	Banking under ambiguity 000	
		10 1.11 x	

Linkage is expected to materialize multilaterally

- Most linkage studies consider bilaterally linked systems
 - but in practice {California,Québec,Ontario}, EUETS, RGGI are multilateral
- No formal investigation of gains and preferences in multilateral linkages
 - numerical exercises: Carbone et al. (2009), Kornek & Heitzig (2017)
 - Yates (2002), Caillaud & Demange (2017) do not study linkage mechanisms

Restricted linkage 000	Multilateral linkage ●○○	Banking under ambiguity 000	

Linkage is expected to materialize multilaterally

- Most linkage studies consider bilaterally linked systems
 - but in practice {California,Québec,Ontario}, EUETS, RGGI are multilateral
- No formal investigation of gains and preferences in multilateral linkages
 - numerical exercises: Carbone et al. (2009), Kornek & Heitzig (2017)
 - Yates (2002), Caillaud & Demange (2017) do not study linkage mechanisms
- Provide a general model to describe/analyze gains and preferences in multilateral linkages under cost uncertainty à la Weitzman (1974)

Restricted linkage 000	Multilateral linkage ●○○	Banking under ambiguity 000	

Linkage is expected to materialize multilaterally

- Most linkage studies consider bilaterally linked systems
 - but in practice {California,Québec,Ontario}, EUETS, RGGI are multilateral
- No formal investigation of gains and preferences in multilateral linkages
 - numerical exercises: Carbone et al. (2009), Kornek & Heitzig (2017)
 - Yates (2002), Caillaud & Demange (2017) do not study linkage mechanisms
- Provide a general model to describe/analyze gains and preferences in multilateral linkages under cost uncertainty à la Weitzman (1974)
- Emission caps are exogenous and fixed once and for all
 - no strategic interactions: diverge from IEA literature, e.g. Helm (2003)

	Restricted linkage 000	Multilateral linkage ○●○	Banking under ambiguity 000	

A model of multilateral linkages between ETSs

- There is a set of jurisdictional ETSs
 - quadratic emission benefits and additive shocks on laissez-faire emissions
 - identical but for size of regulated emissions and shocks

	Restricted linkage 000	Multilateral linkage ○●○	Banking under ambiguity 000	

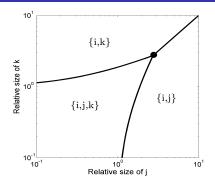
A model of multilateral linkages between ETSs

- There is a set of jurisdictional ETSs
 - quadratic emission benefits and additive shocks on laissez-faire emissions
 - identical but for size of regulated emissions and shocks
- Price volatility is a well-defined object whose properties are studied

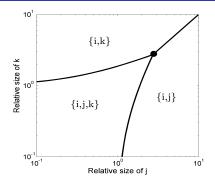
A model of multilateral linkages between ETSs

- There is a set of jurisdictional ETSs
 - quadratic emission benefits and additive shocks on laissez-faire emissions
 - identical but for size of regulated emissions and shocks
- Price volatility is a well-defined object whose properties are studied
- Two components/sources of gains from linkage are identified:
 - ambition: square of the difference in expected autarkic and linking prices
 - uncertainty: variance of the difference in autarkic and linking prices

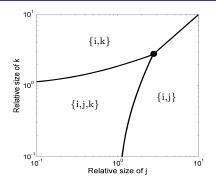
A model of multilateral linkages between ETSs


- There is a set of jurisdictional ETSs
 - quadratic emission benefits and additive shocks on laissez-faire emissions
 - identical but for size of regulated emissions and shocks
- Price volatility is a well-defined object whose properties are studied
- Two components/sources of gains from linkage are identified:
 - ambition: square of the difference in expected autarkic and linking prices
 - uncertainty: variance of the difference in autarkic and linking prices
- A multilateral link can be decomposed into its internal bilateral links

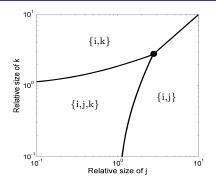
A model of multilateral linkages between ETSs


- There is a set of jurisdictional ETSs
 - quadratic emission benefits and additive shocks on laissez-faire emissions
 - identical but for size of regulated emissions and shocks
- Price volatility is a well-defined object whose properties are studied
- Two components/sources of gains from linkage are identified:
 - ambition: square of the difference in expected autarkic and linking prices
 - uncertainty: variance of the difference in autarkic and linking prices
- A multilateral link can be decomposed into its internal bilateral links
- Linkage gains arising due to uncertainty are often underappreciated
 - preferences across bilateral links: a jurisdiction prefers large partners whose permit demands are volatile and weakly correlated

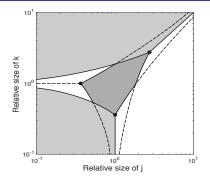
Restricted linkage	Multilateral linkage	Banking under ambiguity	
	000		


3-country world: i (ref), j and k

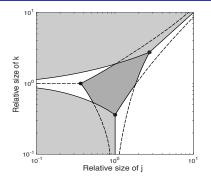
Restricted linkage	Multilateral linkage	Banking under ambiguity	
	000		


- 3-country world: *i* (ref), *j* and *k*
- *i*'s linkage preferences:
 - trilateral link when relatively larger

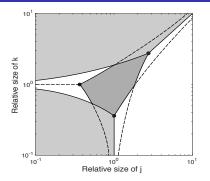
Restricted linkage	Multilateral linkage	Banking under ambiguity	
	000		


- 3-country world: *i* (ref), *j* and *k*
- *i*'s linkage preferences:
 - trilateral link when relatively larger
 - trilateral link when relatively volatile

Restricted linkage	Multilateral linkage	Banking under ambiguity	
	000		


- 3-country world: i (ref), j and k
- *i*'s linkage preferences:
 - trilateral link when relatively larger
 - trilateral link when relatively volatile
 - bilateral link with large/volatile *j* or *k*

Restricted linkage	Multilateral linkage	Banking under ambiguity	
	000		


- **3**-country world: i (ref), j and k
- *i*'s linkage preferences:
 - trilateral link when relatively larger
 - trilateral link when relatively volatile
 - bilateral link with large/volatile *j* or *k*
- superimposing preference frontiers:
 - unanimity over trilateral link *possible*
 - never unanimity over bilateral links

Restricted linkage	Multilateral linkage	Banking under ambiguity	
	000		

- 3-country world: *i* (ref), *j* and *k*
- *i*'s linkage preferences:
 - trilateral link when relatively larger
 - trilateral link when relatively volatile
 - bilateral link with large/volatile *j* or *k*
- superimposing preference frontiers:
 - unanimity over trilateral link *possible*
 - never unanimity over bilateral links
- Linkage is superadditive: linking disjoint groupings is beneficial
- global market is the most desirable linkage grouping in aggregate
- without transfers, jurisdictional linkage preferences do not tally

Restricted linkage	Multilateral linkage	Banking under ambiguity	
	000		

- 3-country world: *i* (ref), *j* and *k*
- *i*'s linkage preferences:
 - trilateral link when relatively larger
 - trilateral link when relatively volatile
 - bilateral link with large/volatile *j* or *k*
- superimposing preference frontiers:
 - unanimity over trilateral link *possible*
 - never unanimity over bilateral links
- Linkage is superadditive: linking disjoint groupings is beneficial
 - global market is the most desirable linkage grouping in aggregate
 - without transfers, jurisdictional linkage preferences do not tally
- Calibration to historical emissions data provides some empirical validity
 - CHN prefers {CHN,USA,EUR} but USA/EUR prefer a bilateral link with CHN

	Banking under ambiguity	

CHAPTER 3

Intertemporal Abatement Decisions under Ambiguity Aversion

Single-authored article Target journal: *Journal of Environmental Economics & Management* Available as a FAERE working paper and CEC working paper

Firms' perception of program's stringency guide their decision-making

- Firms' perception of program's stringency guide their decision-making
- In practice: ETSs are subject to considerable uncertainty
 - cap eroded by external factors: macro conditions, offsets, policy overlap, ... \rightarrow significant uncertainty about baselines (Borenstein et al., 2016)

- Firms' perception of program's stringency guide their decision-making
- In practice: ETSs are subject to considerable uncertainty
 - cap eroded by external factors: macro conditions, offsets, policy overlap, ... \rightarrow significant uncertainty about baselines (Borenstein et al., 2016)
- EUETS: limited grasp of price determinants (Hintermann et al., 2016)
 - regulatory uncertainty weighs on price formation (Salant, 2016)
 → empirical support: Koch et al. (2016) and Creti & Joëts (2017)

- Firms' perception of program's stringency guide their decision-making
- In practice: ETSs are subject to considerable uncertainty
 - cap eroded by external factors: macro conditions, offsets, policy overlap, ... \rightarrow significant uncertainty about baselines (Borenstein et al., 2016)
- EUETS: limited grasp of price determinants (Hintermann et al., 2016)
 - regulatory uncertainty weighs on price formation (Salant, 2016)
 → empirical support: Koch et al. (2016) and Creti & Joëts (2017)
- Ambiguity is congruent with such non-probabilizable/unknown risks

- Firms' perception of program's stringency guide their decision-making
- In practice: ETSs are subject to considerable uncertainty
 - cap eroded by external factors: macro conditions, offsets, policy overlap, ... \rightarrow significant uncertainty about baselines (Borenstein et al., 2016)
- EUETS: limited grasp of price determinants (Hintermann et al., 2016)
 - regulatory uncertainty weighs on price formation (Salant, 2016)
 → empirical support: Koch et al. (2016) and Creti & Joëts (2017)
- Ambiguity is congruent with such non-probabilizable/unknown risks
- Focus on intertemporal abatement decisions under *ambiguity aversion*

- Firms' perception of program's stringency guide their decision-making
- In practice: ETSs are subject to considerable uncertainty
 - cap eroded by external factors: macro conditions, offsets, policy overlap, ... \rightarrow significant uncertainty about baselines (Borenstein et al., 2016)
- EUETS: limited grasp of price determinants (Hintermann et al., 2016)
 - regulatory uncertainty weighs on price formation (Salant, 2016)
 → empirical support: Koch et al. (2016) and Creti & Joëts (2017)
- Ambiguity is congruent with such non-probabilizable/unknown risks
- Focus on intertemporal abatement decisions under *ambiguity aversion*
- First attempt to introduce ambiguity aversion in ETS modelling

	Banking under ambiguity	
	000	

A polluting firm is liable under an ETS with two compliance periods

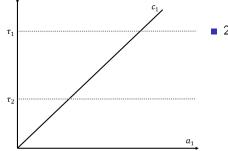
- A polluting firm is liable under an ETS with two compliance periods
- Date-2 market price and individual baseline are assumed *ambiguous*

- A polluting firm is liable under an ETS with two compliance periods
- Date-2 market price and individual baseline are assumed *ambiguous*
- Smooth ambiguity aversion à la Klibanoff et al. (2005, 2009)
 - double-layer Expected Utility (EU) model of choice

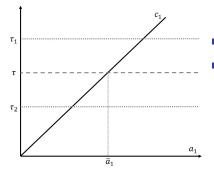
- A polluting firm is liable under an ETS with two compliance periods
- Date-2 market price and individual baseline are assumed *ambiguous*
- Smooth ambiguity aversion à la Klibanoff et al. (2005, 2009)
 - double-layer Expected Utility (EU) model of choice
 - there are different objective scenarios for the future price and baseline risks
 - the firm has subjective beliefs over the materialization of these scenarios

- A polluting firm is liable under an ETS with two compliance periods
- Date-2 market price and individual baseline are assumed *ambiguous*
- Smooth ambiguity aversion à la Klibanoff et al. (2005, 2009)
 - double-layer Expected Utility (EU) model of choice
 - there are different objective scenarios for the future price and baseline risks
 - the firm has subjective beliefs over the materialization of these scenarios
 - $\bullet\,$ ambiguity neutrality (AN) = linearity in probabilities \rightarrow Savagian EU
 - ambiguity aversion (AA) = aversion to MPSs in profits across scenarios

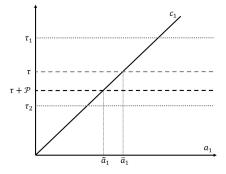
- A polluting firm is liable under an ETS with two compliance periods
- Date-2 market price and individual baseline are assumed *ambiguous*
- Smooth ambiguity aversion à la Klibanoff et al. (2005, 2009)
 - double-layer Expected Utility (EU) model of choice
 - there are different objective scenarios for the future price and baseline risks
 - the firm has subjective beliefs over the materialization of these scenarios
 - ullet ambiguity neutrality (AN) = linearity in probabilities ightarrow Savagian EU
 - ambiguity aversion (AA) = aversion to MPSs in profits across scenarios
- Analysis of date-1 abatement decisions under AA relative to AN



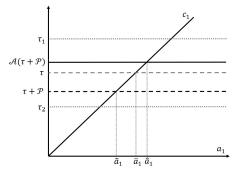
- A polluting firm is liable under an ETS with two compliance periods
- Date-2 market price and individual baseline are assumed *ambiguous*
- Smooth ambiguity aversion à la Klibanoff et al. (2005, 2009)
 - double-layer Expected Utility (EU) model of choice
 - there are different objective scenarios for the future price and baseline risks
 - the firm has subjective beliefs over the materialization of these scenarios
 - ambiguity neutrality (AN) = linearity in probabilities \rightarrow Savagian EU
 - ambiguity aversion (AA) = aversion to MPSs in profits across scenarios
- Analysis of date-1 abatement decisions under AA relative to AN
 - descending cap: firm always banks date-1 permits into date 2


- A polluting firm is liable under an ETS with two compliance periods
- Date-2 market price and individual baseline are assumed *ambiguous*
- Smooth ambiguity aversion à la Klibanoff et al. (2005, 2009)
 - double-layer Expected Utility (EU) model of choice
 - there are different objective scenarios for the future price and baseline risks
 - the firm has subjective beliefs over the materialization of these scenarios
 - ambiguity neutrality (AN) = linearity in probabilities \rightarrow Savagian EU
 - ambiguity aversion (AA) = aversion to MPSs in profits across scenarios
- Analysis of date-1 abatement decisions under AA relative to AN
 - descending cap: firm always banks date-1 permits into date 2
 - AN-firm abates up to the discounted expected price: intertemporal efficiency obtains with rational expectations (Samuelson, 1971; Schennach, 2000)

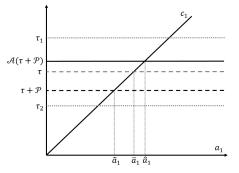
	Banking under ambiguity	
	000	


• 2 fixed price scenarios: $\tau_1 > \tau_2$

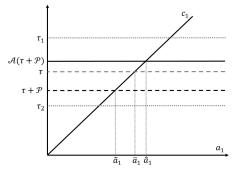
	Banking under ambiguity	
	000	


- **2** fixed price scenarios: $\tau_1 > \tau_2$
- AN: equiprobable permit price τ

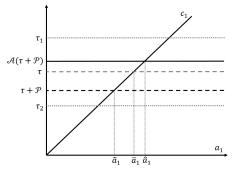
Restricted linkage	Multilateral linkage	Banking under ambiguity	
		000	


- 2 fixed price scenarios: $\tau_1 > \tau_2$
- AN: equiprobable permit price τ
- AA induces two effects w.r.t. AN
 - additive pessimistic distortion $\mathcal{P} \gtrless 0$ of the AN-expected permit price

Restricted linkage	Multilateral linkage	Banking under ambiguity	
		000	


- 2 fixed price scenarios: $\tau_1 > \tau_2$
- AN: equiprobable permit price τ
- AA induces two effects w.r.t. AN
 - additive pessimistic distortion $\mathcal{P} \gtrless 0$ of the AN-expected permit price
 - shift in levels $\mathcal{A} \gtrless 1$ (discount factor) $\mathcal{A} > 1$ i.f.f. Decreasing Absolute AA

Restricted linkage	Multilateral linkage	Banking under ambiguity	
		000	


- 2 fixed price scenarios: $\tau_1 > \tau_2$
- AN: equiprobable permit price τ
- AA induces two effects w.r.t. AN
 - additive pessimistic distortion $\mathcal{P} \gtrless 0$ of the AN-expected permit price
 - shift in levels $\mathcal{A} \gtrless 1$ (discount factor) $\mathcal{A} > 1$ i.f.f. Decreasing Absolute AA
- Present abatement depends on expected future market position
 - pessimism overweights detrimental scenarios \rightarrow allocation is not neutral

	Banking under ambiguity	
	000	

- 2 fixed price scenarios: $\tau_1 > \tau_2$
- AN: equiprobable permit price au
- AA induces two effects w.r.t. AN
 - additive pessimistic distortion $\mathcal{P} \gtrless 0$ of the AN-expected permit price
 - shift in levels $\mathcal{A} \gtrless 1$ (discount factor) $\mathcal{A} > 1$ i.f.f. Decreasing Absolute AA
- Present abatement depends on expected future market position
 - pessimism overweights detrimental scenarios \rightarrow allocation is not neutral
- Continuum of firms identical but for allocation and baseline ambiguity
 - tendency to overabate early on under symmetric allocation (grandfathering)

Restricted linkage	Multilateral linkage	Banking under ambiguity	
		000	

- 2 fixed price scenarios: $\tau_1 > \tau_2$
- AN: equiprobable permit price τ
- AA induces two effects w.r.t. AN
 - additive pessimistic distortion $\mathcal{P} \gtrless 0$ of the AN-expected permit price
 - shift in levels $\mathcal{A} \gtrless 1$ (discount factor) $\mathcal{A} > 1$ i.f.f. Decreasing Absolute AA
- Present abatement depends on expected future market position
 - pessimism overweights detrimental scenarios ightarrow allocation is not neutral
- Continuum of firms identical but for allocation and baseline ambiguity
 - tendency to overabate early on under symmetric allocation (grandfathering)
- Forwards contracts cannot restore intertemporal efficiency

Restricted linkage	Multilateral linkage	Banking under ambiguity	Conclusions	

Restricted linkage 000	Banking under ambiguity 000	Conclusions	

Two contributions on the role of ETSs as climate policy tools

				Conclusions	
00	000	000	000		

- Two contributions on the role of ETSs as climate policy tools
 - informing the policy debate on system integration in the Paris Agreement era

- Two contributions on the role of ETSs as climate policy tools
 - informing the policy debate on system integration in the Paris Agreement era
 - accounting for significant uncertainty in ETS-liable firms' decision-making

- Two contributions on the role of ETSs as climate policy tools
 - informing the policy debate on system integration in the Paris Agreement era
 - accounting for significant uncertainty in ETS-liable firms' decision-making
- Perspectives and alleys for future work

- Two contributions on the role of ETSs as climate policy tools
 - informing the policy debate on system integration in the Paris Agreement era
 - accounting for significant uncertainty in ETS-liable firms' decision-making
- Perspectives and alleys for future work
 - Ch. 1: normative approach, e.g. negotiation over restrictions, cap selection

- Two contributions on the role of ETSs as climate policy tools
 - informing the policy debate on system integration in the Paris Agreement era
 - accounting for significant uncertainty in ETS-liable firms' decision-making
- Perspectives and alleys for future work
 - Ch. 1: normative approach, e.g. negotiation over restrictions, cap selection
 - Ch. 2: \$ figures, sequentiality, equilibrium concepts, price volatility effects

- Two contributions on the role of ETSs as climate policy tools
 - informing the policy debate on system integration in the Paris Agreement era
 - accounting for significant uncertainty in ETS-liable firms' decision-making
- Perspectives and alleys for future work
 - Ch. 1: normative approach, e.g. negotiation over restrictions, cap selection
 - Ch. 2: \$ figures, sequentiality, equilibrium concepts, price volatility effects
 - Ch. 3: market with heterogeneous agents, action at a distance (Salant et al)

- Two contributions on the role of ETSs as climate policy tools
 - informing the policy debate on system integration in the Paris Agreement era
 - accounting for significant uncertainty in ETS-liable firms' decision-making
- Perspectives and alleys for future work
 - Ch. 1: normative approach, e.g. negotiation over restrictions, cap selection
 - Ch. 2: \$ figures, sequentiality, equilibrium concepts, price volatility effects
 - Ch. 3: market with heterogeneous agents, action at a distance (Salant et al)
- Effects of spatial and temporal flexibilities are intertwined

- Two contributions on the role of ETSs as climate policy tools
 - informing the policy debate on system integration in the Paris Agreement era
 - accounting for significant uncertainty in ETS-liable firms' decision-making
- Perspectives and alleys for future work
 - Ch. 1: normative approach, e.g. negotiation over restrictions, cap selection
 - Ch. 2: \$ figures, sequentiality, equilibrium concepts, price volatility effects
 - Ch. 3: market with heterogeneous agents, action at a distance (Salant et al)
- Effects of spatial and temporal flexibilities are intertwined
 - can linkage be an instrument to reduce regulatory uncertainty/ambiguity?

- Two contributions on the role of ETSs as climate policy tools
 - informing the policy debate on system integration in the Paris Agreement era
 - accounting for significant uncertainty in ETS-liable firms' decision-making
- Perspectives and alleys for future work
 - Ch. 1: normative approach, e.g. negotiation over restrictions, cap selection
 - Ch. 2: \$ figures, sequentiality, equilibrium concepts, price volatility effects
 - Ch. 3: market with heterogeneous agents, action at a distance (Salant et al)
- Effects of spatial and temporal flexibilities are intertwined
 - can linkage be an instrument to reduce regulatory uncertainty/ambiguity?
 - ETSs are never pure quantity instruments: linkability issues

Restricted linkage	Multilateral linkage	Banking under ambiguity	Conclusions	

- Two contributions on the role of ETSs as climate policy tools
 - informing the policy debate on system integration in the Paris Agreement era
 - accounting for significant uncertainty in ETS-liable firms' decision-making
- Perspectives and alleys for future work
 - Ch. 1: normative approach, e.g. negotiation over restrictions, cap selection
 - Ch. 2: \$ figures, sequentiality, equilibrium concepts, price volatility effects
 - Ch. 3: market with heterogeneous agents, action at a distance (Salant et al)
- Effects of spatial and temporal flexibilities are intertwined
 - can linkage be an instrument to reduce regulatory uncertainty/ambiguity?
 - ETSs are never pure quantity instruments: linkability issues
 - significantly linked systems are a long way off: remain a distant dream?
 → political rhetoric around linkage to create an image of 'grand efforts'

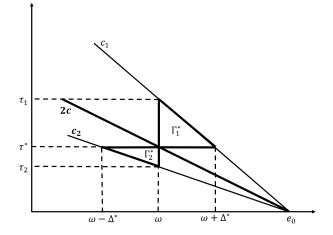
Restricted linkage	Multilateral linkage	Banking under ambiguity	Conclusions	

Thank you for your attention

Restricted linkage	Multilateral linkage	Banking under ambiguity	Discussion

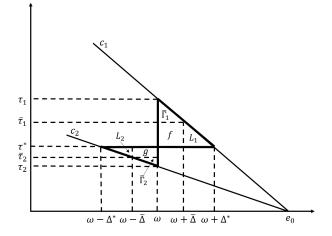
Appendices & Discussion

Chapter Two

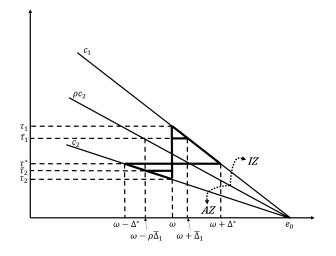

Chapter Three

Restricted linkage	Multilateral linkage	Banking under ambiguity	Discussion

Appendix of Chapter 1

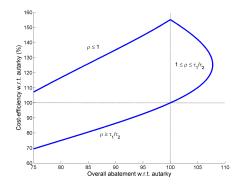

Restricted linkage 000	Banking under ambiguity 000	Discussion

Autarky and full linkage


Restricted linkage	Multilateral linkage	Banking under ambiguity	Discussion

Quantitative restrictions and border taxes

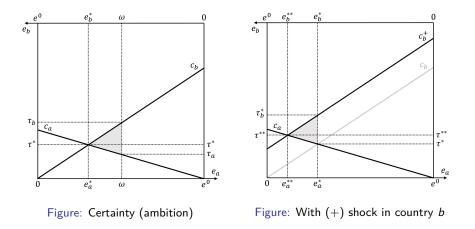
Restricted linkage 000	Banking under ambiguity 000	Discussion


Exchange rates

			Banking under ambiguity	Discussion
00	000	000	000	

Numerical simulations and indexes

$$I^{A} = \frac{2\bar{\mathbf{e}} - (2\omega + (1-\rho)\Delta_{1}(\rho))}{2(\bar{\mathbf{e}} - \omega)} = 1 + \frac{(\rho - 1)\Delta_{1}(\rho)}{2(\bar{\mathbf{e}} - \omega)}$$
$$I^{CE} = \ln\left(\frac{C_{1}'(\bar{\mathbf{e}} - \omega)}{C_{2}'(\bar{\mathbf{e}} - \omega)} + 1\right) \Big/ \ln\left(\frac{\max_{i} C_{i}'(\bar{\mathbf{e}} - \omega - \Delta_{i}(\rho))}{\min_{i} C_{i}'(\bar{\mathbf{e}} - \omega - \Delta_{i}(\rho))} + 1\right)$$



Restricted linkage	Multilateral linkage	Banking under ambiguity	Discussion

Appendix of Chapter 2

Restricted linkage	Multilateral linkage	Banking under ambiguity	Discussion

Two sources of gains from bilateral linkage

	Restricted linkage 000		Banking under ambiguity 000	Discussion
Modell	ing framewo	ork		

I = {1,..., n}: n jurisdictions with independent regulatory authorities
Benefits of emissions q_i ≥ 0 in jurisdiction i ∈ *I*

$$B_i(q_i; heta_i)=(b_1+ heta_i)q_i-rac{b_2}{2\psi_i}q_i^2, ext{ with } b_1,b_2>0.$$

Size ψ_i : measures the volume of *i*'s regulated emissions Shocks θ_i : business cycles, energy prices, weather, etc

$$\mathbb{E}\{\theta_i\} = 0, \ \mathbb{V}\{\theta_i\} = \sigma_i^2, \text{ and } \operatorname{Cov}\{\theta_i, \theta_j\} = \rho_{ij}\sigma_i\sigma_j.$$

Caps are exogenous, fixed once-and-for-all, and proportional to size

$$\omega_i = \mathbf{A} \cdot \psi_i$$
, for all $i \in \mathcal{I}$.

Restricted linkage 000	Banking under ambiguity 000	Discussion
1.11.1		

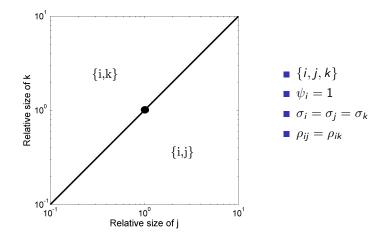
Bilateral linkage equilibria

An $\{i, j\}$ -linkage equilibrium is a triple $(p_{\{i, j\}}, q_{\{i, j\}, i}, q_{\{i, j\}, j})$ where

$$p_{\{i,j\}} = rac{\psi_i ar{p}_i + \psi_j ar{p}_j}{\psi_i + \psi_j}, ext{ and } q_{\{i,j\},i} - \omega_i = rac{\psi_i}{b_2} (ar{p}_i - p_{\{i,j\}}).$$

- Linkage eliminates the post-shock wedge in autarkic prices
- ...and increases/decreases effective cap in high-/low-shock jurisdiction
- The expected aggregate economic benefit from $\{i, j\}$ -linkage is

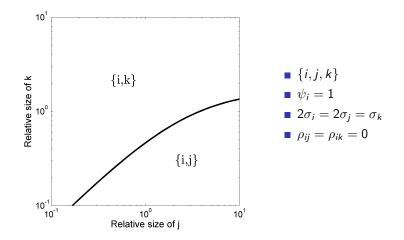
$$\mathbb{E}\{\Delta_{\{i,j\}}\} = \frac{\psi_i \psi_j}{2b_2 \left(\psi_i + \psi_j\right)} \left(\sigma_i^2 + \sigma_j^2 - 2\rho_{ij}\sigma_i\sigma_j\right) \ge 0,$$


...and is shared in inverse to proportion to size

$$\mathbb{E}\{\delta_{\{i,j\},i}\}/\mathbb{E}\{\delta_{\{i,j\},j}\}=\psi_j/\psi_i.$$

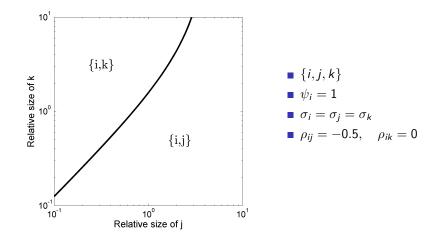
Restricted linkage 000		Banking under ambiguity 000	Discussion
	_		

Bilateral linkage preferences

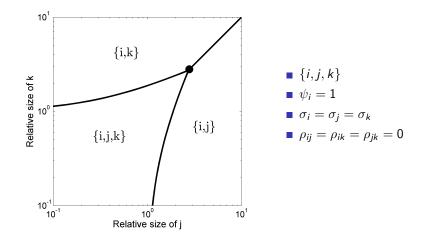

i's preferences over bilateral linkages in a 3-jurisdiction world

Restricted linkage 000		Banking under ambiguity 000	Discussion
1.10.1	c		

Bilateral linkage preferences

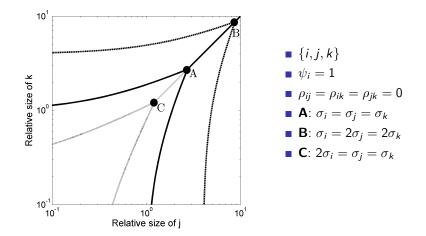

i's preferences over bilateral linkages in a 3-jurisdiction world

Restricted linkage 000	Banking under ambiguity 000	Discussion

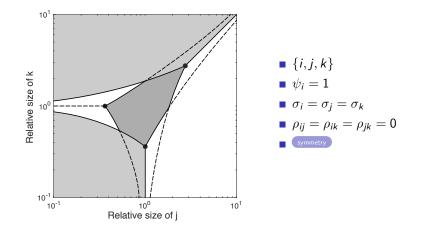

Bilateral linkage preferences

i's preferences over bilateral linkages in a 3-jurisdiction world

	Restricted linkage 000		Banking under ambiguity 000	Discussion
Enter t	rilateral linl	kage		


i's preferences over all linkages in a 3-jurisdiction world

	Restricted linkage 000	Banking under ambiguity 000	Discussion
E			


Enter trilateral linkage

i's preferences over all linkages in a 3-jurisdiction world

	Restricted linkage 000		Banking under ambiguity 000	Discussion
Enter ti	rilateral linl	kage		

i, *j* and *k*'s preferences under symmetry

	Banking under ambiguity	Discussion

Multilateral linkage equilibria

• A C-linkage equilibrium is the (|C| + 1)-tuple $(p_C, (q_{C,i})_{i \in C})$ where

$$p_{\mathcal{C}} = \Psi_{\mathcal{C}}^{-1} \sum_{i \in \mathcal{C}} \psi_i \bar{p}_i$$
, and $q_{\mathcal{C},i} - \omega_i = rac{\psi_i}{b_2} (\bar{p}_i - p_{\mathcal{C}})$.

- Under *C*-linkage, the economic gain accruing to jurisdiction $i \in C$ is $\mathbb{E}\{\delta_{C,i}\} \propto \psi_i \mathbb{E}\{(\bar{p}_i - p_C)^2\} = \psi_i((\mathbb{E}\{\bar{p}_i\} - \mathbb{E}\{p_C\})^2 + \mathbb{V}\{\bar{p}_i - p_C\}) \ge 0.$
- Total gain in C-linkage is decomposed into its internal bilateral linkage gains

$$\Delta_{\mathcal{C}} = \sum_{i \in \mathcal{C}} \delta_{\mathcal{C},i} = (2\Psi_{\mathcal{C}})^{-1} \sum_{(i,j) \in \mathcal{C}^2} (\psi_i + \psi_j) \Delta_{\{i,j\}}.$$

- Linking disjoint linkage coalitions is beneficial: linkage is superadditive
 - Jurisdictional linkage preferences are not aligned
 - Global market is not necessarily the most preferred link for all $i \in \mathcal{I}$.
 - Any linkage coalition different from the global market cannot be the most preferred linkage coalition for all coalition members.

Calibration methodology and results

- Assume hypothetical ETS covering all emissions of CHN, USA, EUR, KOR, EGY: sample representative of diversity present in the data
- Calibrate $\{\psi_i, \sigma_i, \rho_{ij}\}$ based on historical emissions data
- WRI: Annual country level CO₂ emissions data covering 1950-2012
- The natural logarithm of laissez-faire emissions is

$$ln\left(\tilde{q}_{i}\right) = ln\left(b_{2}/\psi_{i}\right) + ln\left(b_{1}+\theta_{i}\right)$$

- We associate each component of $ln(\tilde{q}_i)$ with the trend and cyclical components of emissions obtained using the HP filter with the penalty parameter $\lambda = 6.25$ for annual data (Hodrick & Prescott, 1997)
- Congruent with assumption that shocks driven by business cycles, technology shocks, fuel prices,... See Doda (2014) for methodology and Doda & Taschini (2017) for discussion of results

Restricted linkage	Multilateral linkage	Banking under ambiguity	Discussion

Calibration methodology and results

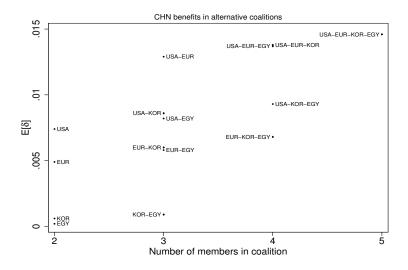
Table: Calibration results: Size and volatility (ψ_i and σ_i)

	CHN	USA	EUR	KOR	EGY
ψ_i			38.699		
σ_i	0.028	0.019	0.017	0.034	0.050

Table: Calibration results: Pairwise correlation coefficients (ρ_{ij})

	CHN	USA	EUR	KOR	EGY
CHN	1.000				
USA	0.525	1.000			
EUR	0.460	0.652	1.000		
KOR	0.247	0.419	0.277	1.000	
EGY	-0.395	-0.186	-0.101	-0.397	1.000

Restricted linkage	Multilateral linkage	Banking under ambiguity	Discussion

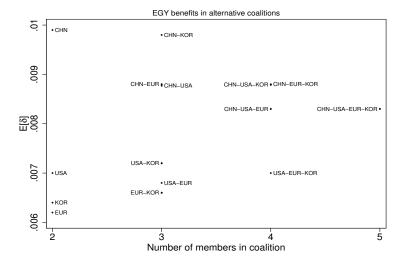

Most and second preferred coalitions

	Most preferred coalition	Second most preferred coalition
CHN	{CHN,USA,EUR,KOR,EGY}	{CHN,USA,EUR,KOR}
USA	{CHN,USA}	{CHN,USA,EGY}
EUR	{CHN,EUR}	{CHN,EUR,KOR,EGY}
KOR	{CHN,KOR}	{CHN,KOR,EGY}
EGY	(CHN,EGY)	{CHN,KOR,EGY}

- CHN ranks linkage coalitions by size
- Preferences of USA/EUR/KOR/EGY
 - Bilateral link with CHN is always top choice
 - Second preferences always include CHN but subtle otherwise
 - \rightarrow KOR prefers to link with EGY than with much larger USA or EUR

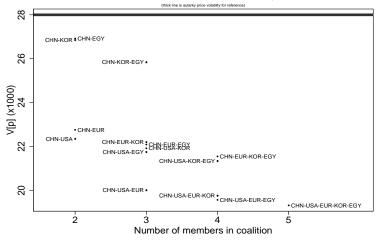
	Restricted linkage 000	Banking under ambiguity 000	Discussion

CHN linkage gains


	Restricted linkage 000	Banking under ambiguity 000	Discussion

USA linkage gains

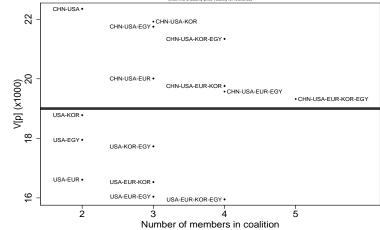
Restricted linkage 000	Banking under ambiguity 000	Discussion


EGY linkage gains

Ph.D. Defense · Thursday, 12th October 2017 · Simon Quemin Spatial and Temporal Interconnections between and within ETSs 4

	Restricted linkage 000		Banking under ambiguity 000	Discussion
CHN p	rice volatilit	ty		

Volatility of permit price in coalitions containing CHN

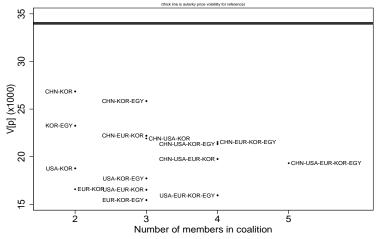


42

Restricted linkage 000	Banking under ambiguity 000	Discussion

USA price volatility

Volatility of permit price in coalitions containing USA



(thick line is autarky price volatility for reference)

Restricted linkage 000	Banking under ambiguity 000	Discussion

KOR price volatility

Volatility of permit price in coalitions containing KOR

	Restricted linkage	Multilateral linkage	Banking under ambiguity	Discussion

Linkage costs and cost-sharing arrangements

	S*	$\mathbb{E}{\{\tilde{\Delta}_{S}^{*}\}}$	Set of blocking jurisdiction under $R\#$
z = 0	{{CHN,USA,EUR},{KOR,EGY}}	0.0221	R3 and R5: ∅ R1, R2, R4, R6, R7, R8 and R9: {KOR}
z = 0.5	{{CHN,USA,EUR},{KOR,EGY}}	0.0137	R1, R4, R5 and R7: Ø R2: {KOR} R3: {EUR} R6 and R8: {EUR,KOR} R9: {CHN}
z = 1	{{CHN,USA,EUR,KOR,EGY}}	0.0118	R5: ∅ R1: {KOR} R2 and R4: {CHN,USA} R3 and R6: {KOR,EGY} R7: {CHN} R8: {USA,EUR} R9: {EGY}

Restricted linkage	Multilateral linkage	Banking under ambiguity	Discussion

Appendix of Chapter 3

Motivation & Literature – Stylized Facts

- Under textbook assumptions: intertemporal cost efficiency
 - current price reflects NPV of last permit used (Rubin, 1996)
 - optimal price path grows at rate of interest (Hotelling, 1931)
 - focus on long-term carbon price signal
- Recurrent observations: prices lower than anticipated and formation of allowance surpluses (Tvinnereim, 2014)
 - cap erosion: crisis, offsets, CPs,... (Borenstein et al, 2016)
 - price determinants (Koch et al, 2014; Hintermann et al, 2016)
- The potential suspects are (non mutually exclusive):
 - myopia/limited foresight (Ellerman et al, 2016)
 - excessive discounting 1 (Neuhoff et al, 2012)
 - excessive discounting 2 (Bredin & Parsons, 2016)
 - excessive discounting 3 (Kollenberg & Taschini, 2016)
 - regulatory uncertainty (Salant, 2016; Koch et al, 2016)

Motivation & Literature – Regulatory Uncertainty (RU)

- RU = individual's perceived inability to predict the future state of the regulatory environment (Hoffmann et al, 2008)
 - (deep) uncertainty in the sense of Knight (1921)
 - regulatory risks are not (entirely) hedgeable
 - political nature of permits = 'ill-defined' property rights
- RU undermines long-term credibility and affects current prices (Salant, 2016; Salant & Henderson, 1978)
 - EUETS reacts to political announcements (Koch et al, 2016)
- RU increases compliance costs by delaying investments
 - option value to postpone investments (Dixit & Pindyck, 1994)
 - empirical validation based on CAIR (Dorsey, 2017)
- We use a two-period model for an ambiguity-averse firm
 - to capture the influence of RU on abatement decisions
 - to find theoretical/behavioral foundations to observed facts
 - to analyze the impact of allocation on banking decisions

Ambiguity Aversion (AA) and Representation Theorem

- Ambiguity = inability to unambiguously assign a probability measure uniquely describing the underlying risk
- Ambiguity aversion = additional aversion (w.r.t. risk aversion) to being unsure about the probabilities of outcomes
- Ample lab experiments: agents prefer gambles with known rather than unknown probabilities (and DAAA prevails)
- Firm exhibits smooth ambiguity aversion (KMM, 2005; 2009)
 - uncertain about the objective future price risk $\tilde{\tau}$
 - confronted with objective risks $\tilde{\tau}_{\theta}$ in scenarios $\theta \in \Theta = \left[\underline{\theta}; \overline{\theta}\right]$
 - has subjective beliefs over θ -scenarios F
 - Ambiguity = subjective risk over objective risks, i.e. two layers of uncertainty: $SEU \times \phi(EU)$ with $\phi' > 0$ and $\phi'' \le 0$ (AA)

ntroduction DO	Restricted linkage 000	Banking under ambiguity 000	Discussion

Firm's Objective Function & Benchmark

- Two dates 1 and 2, uncertainty resolves at date 2
- for any given observed couple (τ,ξ) , temporal profits write

$$\pi_1(a_1) = \zeta_1 - C_1(a_1) \text{ and } \pi_2(a_1, a_2) = \zeta_2 - C_2(a_1, a_2) - \tau(\xi - a_1 - a_2 - \omega).$$

 The firm trades off its present abatement cost with its future certainty-equivalent benefit of banking

$$\max_{\substack{a_1 \ge 0}} \pi_1(a_1) + \beta \phi^{-1} \left(\mathbb{E}_{\mathcal{F}} \left\{ \phi \left(\mathcal{V}(a_1; \tilde{\theta}) \right) \right\} \right),$$

where $\mathcal{V}(a_1; \theta) = \mathbb{E} \left\{ \pi_2(a_1, a_2^*(a_1, \omega; \tilde{\tau}_{\theta}); \tilde{\tau}_{\theta}) | \theta \right\}.$ (1)

- Program (1) is well defined for $\pi_{1,2}$ and $-\phi'/\phi''$ concave
- Benchmark = ambiguity neutrality (ϕ linear). The FOC is

$$\pi'_{1}(\bar{a}_{1}) + \beta \mathbb{E}_{F}\left\{\mathcal{V}_{a_{1}}(\bar{a}_{1};\tilde{\theta})\right\} = 0 \Leftrightarrow \pi'_{1}(\bar{a}_{1}) + \beta \mathbb{E}\left\{\tilde{\tau}\right\} = 0, \qquad (2)$$

i.e. cost-efficiency obtains and \bar{a}_1 independent of allocation ω .

Introduction Restricted linkage Multilateral linkage Banking under ambiguity Conclusions Discussion OCO Two Ambiguity Aversion Induced Effects (1/3)

Under ambiguity aversion, FOC for Program (1) reads

$$\pi_{1}'(\hat{a}_{1}) + \beta \mathcal{A}(\hat{a}_{1}) \mathbb{E}_{F} \left\{ \frac{\mathcal{D}(\hat{a}_{1}; \tilde{\theta}) \mathcal{V}_{a_{1}}(\hat{a}_{1}; \tilde{\theta}) \right\} = 0, \text{ where}$$
(3)

• \mathcal{A} modifies the subjective discount factor such that

$$\mathcal{A}(a_1) = \frac{\mathbb{E}_{F}\left\{\phi'\left(\mathcal{V}(a_1; \tilde{\theta})\right)\right\}}{\phi' \circ \phi^{-1}\left(\mathbb{E}_{F}\left\{\phi\left(\mathcal{V}(a_1; \tilde{\theta})\right)\right\}\right)},\tag{4}$$

and $A \ge =, =, \le 1$ i.f.f. ϕ displays DAAA, CAAA, IAAA **D** pessimistically distorts the subjective prior F such that

$$\forall \theta \in \Theta, \ \mathcal{D}(\mathbf{a}_{1}; \theta) = \frac{\phi'(\mathcal{V}(\bar{\mathbf{a}}_{1}; \theta))}{\mathbb{E}_{F}\{\phi'(\mathcal{V}(\bar{\mathbf{a}}_{1}; \tilde{\theta}))\}},$$
(5)

and overweights bad scenarios with low- $\mathcal V$ values ($\phi'' \leq 0$).

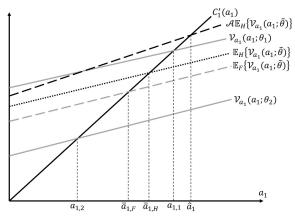
Introduction Restricted linkage Multilateral linkage Banking under ambiguity Conclusions Discussion

Two Ambiguity Aversion Induced Effects (2/3)

• Increase in banking under AA w.r.t. AN $(\hat{a}_1 \geq \bar{a}_1)$ i.f.f.

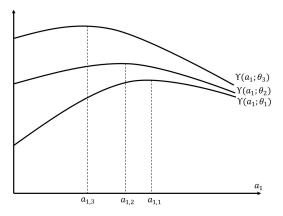
$$\mathcal{A}(\bar{a}_1)\mathbb{E}_H\{\mathcal{V}_{a_1}(\bar{a}_1;\tilde{\theta})\} \ge \mathbb{E}_F\{\mathcal{V}_{a_1}(\bar{a}_1;\tilde{\theta})\},\tag{6}$$

with *H* the distorted prior $H(\theta) = \int_{\underline{\theta}}^{\theta} \mathcal{D}(\bar{a}_1; X) dF(X)$, i.e. the future price estimate is higher under AA than AN


- Controlling for *pessimism* ($H \equiv F$), $A \ge 1$ raises banking
 - $\bullet\,$ DAAA \sim ambiguity prudence (Berger, 2014; Gierlinger & Gollier, 2017)
 - corresponds to an increase in firms' discount factor
 - ample evidence of DAAA in lab experiments and surveys
- Controlling for *prudence* $(A \equiv 1)$, pessimism raises banking only if low- \mathcal{V} scenarios coincide with high- \mathcal{V}_{a_1} scenarios
- The two AA effects can be aligned or countervailing

Two Ambiguity Aversion Induced Effects (3/3)

Illustration: $\Theta = \{\theta_1; \theta_2\}, F = \{\theta_1, .5; \theta_2, .5\}$, both \mathcal{A} and \mathcal{D} are constant with a_1 . Joint AA-effect is decomposed into two steps


F
ightarrow H is a vertical translation; ${\cal A}$ is rotation

Characterization of pessimism (1/3)

- Pessimism raises banking i.f.f. $\operatorname{Cov}_{\theta} \left\{ \mathcal{V}(\bar{a}_{1}; \tilde{\theta}); \mathcal{V}_{a_{1}}(\bar{a}_{1}; \tilde{\theta}) \right\} \leq 0$
- Illustration: Θ = {θ₁; θ₂; θ₃}. Higher banking reduces the spread across scenarios under negative correlation

Characterization of pessimism (2/3)

Proposition: Sufficient conditions for over-banking

Pessimism leads the firm to over-abate at date 1 if: (*i*) they expect to be in a net short position at date 2 in all θ -scenarios, (*ii*) or, their initial allocation is relatively small.

- Pessimism induces a precautionary effect
 - net buyers bank more to hedge against future price
- banking adjustment dictated by initial allocation
 - allocation is not neutral and determines bad/good scenarios

Proposition: Ambiguity on individual baselines

Consider a continuum of competitive firms, identical but for allocation. Under symmetric allocation of allowances, firms always over-bank at date 1.

Characterization of pessimism (3/3)

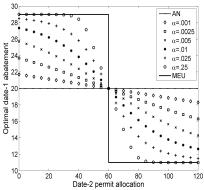
Three extensions of the model:

Proposition: Introduction of forwards contracts

Under the assumption that forwards contracts are fairly priced, intertemporal efficiency (in expectations) is restored under CAAA. However, forwards cannot correct for subjective shifts in discounting.

Proposition: Market populated by both AA and AN firms

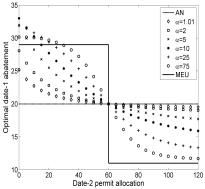
The AA-induced distortion is amplified in a market populated by a mix AA and AN firms. This also alters abatement decisions by AN firms.


Proposition: Equilibrium volume of trade (autarkic compliance)

If permits are sufficiently non-symmetrically distributed across AA firms, then the equilibrium volume of trade is lower than with AN firms.

Comparative statics and numerical simulations (1/3)

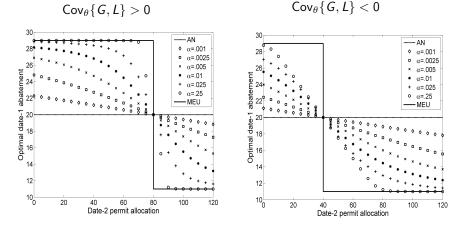
- An increase in AA ($\phi_2=\psi\circ\phi_1,\,\psi'>$ 0, $\psi''\leq$ 0) leads to
 - an increase in pessimism (MLR deterioration; Gollier, 2011)
 - when ψ is almost quadratic, an increase in prudence only if prudence is not too high relative to AA $-\phi_1''/\phi_1'\leq -\phi_1'''/\phi_1''\leq -3\phi_1''/\phi_1'$
- With uniform measures and controlling for prudence (CAAA)



- $\, \bullet \,$ banking decreases with ω
- unique crossing at $\omega = 60$
- magnitude of variation increases with AA degree
- continuum between AN and the MEU criterion

Comparative statics and numerical simulations (2/3)

- An increase in AA ($\phi_2=\psi\circ\phi_1,\,\psi'>$ 0, $\psi''\leq$ 0) leads to
 - an increase in pessimism (MLR deterioration; Gollier, 2011)
 - when ψ is almost quadratic, an increase in prudence only if prudence is not too high relative to AA $-\phi_1''/\phi_1' \leq -\phi_1'''/\phi_1'' \leq -3\phi_1''/\phi_1'$
- With uniform measures and accounting for prudence (DAAA)



- $\, \bullet \,$ upward offset due to ${\cal A}$
- weak $\mathcal A\text{-effect}$ for medium ω
- higher $\mathcal{A}\text{-effect}$ for low ω with multiple crossings
- $\bullet~$ MEU breach for low ω
- except for extreme ω , banking is driven by pessimism

Comparative statics and numerical simulations (3/3)

- Joint market price and individual baseline ambiguities
- With uniform probability measures and CAAA (G and L are first-order independent given any θ-scenario E_{G,L}{·|θ} ≡ E_{{G}}{·|θ}E_{L}{·|θ}

	Restricted linkage 000		Banking under ambiguity 000	Discussion
Overes [.]	timation of	AA effects		

- Marinacci (2015), Guetlein (2016), Bosetti & Berger (2017)
- Decomposition: φ = v ∘ u⁻¹, u'' ≤ 0 denotes risk aversion and v'' ≤ 0 denotes aversion towards model uncertainty
- liable firms are risk-neutral but model-uncertainty averse

$$\frac{-\phi^{\prime\prime}}{\phi^{\prime}} = \frac{1}{u^{\prime}} \left(\frac{-v^{\prime\prime}}{v^{\prime}} - \frac{-u^{\prime\prime}}{u^{\prime}} \right)$$

AA requires v being more concave than u

• Amplification:
$$\frac{-\phi''}{\phi'}|_{RN} \ge \frac{-\phi''}{\phi'}|_{RA}$$

	Restricted linkage 000	Banking under ambiguity 000	Discussion

Ambiguity premium

Proposition: Sufficient condition for over-banking

Let liable firms display CAAA. Then, it is sufficient that $(\mathcal{V}(\bar{a}_1;\theta))_{\theta}$ and $(\mathcal{V}_{a_1}(\bar{a}_1;\theta))_{\theta}$ be anticomonotonotonic for over-abatement to occur at date 1.

• For illustration, let $\partial_{a_1}C_2 \equiv 0$. Expanding the FOC gives

$$\hat{a}_1 \geq ar{a}_1 \Leftrightarrow \left\{egin{array}{l} \mathcal{A}(ar{a}_1)\left(\langle ilde{ au}
angle + \mathcal{P}(ar{a}_1)
ight) \geq \langle ilde{ au}
angle, \ \mathcal{P}(m{a}_1) \equiv rac{\mathrm{Cov}\left\{\phi'ig(\mathcal{V}(m{a}_1; ilde{ heta})ig); \mathcal{V}_{m{a}_1}(m{a}_1; ilde{ heta})
ight\} \ \mathcal{P}(m{a}_1) = rac{\mathrm{Cov}\left\{\phi'ig(\mathcal{V}(m{a}_1; ilde{ heta})ig); \mathcal{V}_{m{a}_1}(m{a}_1; ilde{ heta})
ight\} \ \mathbb{E}_F\left\{\phi'ig(\mathcal{V}(m{a}_1; ilde{ heta})ig)
ight\}
ight\}$$

• \mathcal{P} is an ambiguity premium demanded to compensate the exposure to ambiguity, which is positive provided that anticomonotonicity holds

Proposition: Necessary and sufficient conditions

 $\hat{a}_1 \geq \bar{a}_1 \text{ i.f.f. } \mathcal{P}(\bar{a}_1) \geq 0 \text{ under CAAA, or } \mathcal{P}(\bar{a}_1) \geq \frac{1-\mathcal{A}(\bar{a}_1)}{\mathcal{A}(\bar{a}_1)} < 0 \text{ under DAAA.}$

	Restricted linkage 000		Banking under ambiguity 000	Discussion
Parame	trical exam	ple $(1/7)$		

•
$$c_1 = c_2 = 1$$
, $\beta = 1$ and $\gamma = 0$

- $F \hookrightarrow \mathcal{U}(\Theta = \llbracket -\overline{\theta}; \overline{\theta} \rrbracket)$, with $\overline{\theta} = 9$
- Under a cap and trade with fixed common baselines $\xi = 100$
 - $G(\cdot; \theta) \hookrightarrow \mathcal{U}([\underline{\tau} + \theta; \overline{\tau} + \theta])$, with $\underline{\tau} = 10$ and $\overline{\tau} = 30$

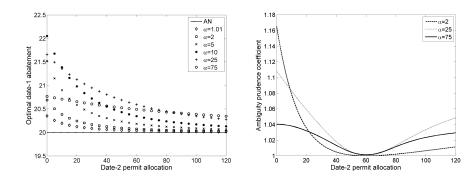
•
$$\mathcal{V}_{a_1}(a_1; \theta) = \langle \tau \rangle + \theta$$
 with $\langle \tau \rangle = \frac{\tau + \tau}{2}$

•
$$\Rightarrow$$
 under AN $\langle ilde{ au}
angle = \langle au
angle = 20$

• AntiC holds given that $\omega \leq \omega^* =$ 51 with $\omega \in$ [0; 120]

• Under a tax regime with t = 20 for consistency

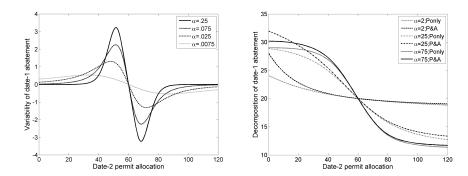
- $G(\cdot; \theta) \hookrightarrow \mathcal{U}\left(\left[\underline{\xi} + \theta; \overline{\xi} + \theta\right]\right)$, with $\underline{\xi} = 50$ and $\overline{\xi} = 150$
- Liability thresholds: tax charged only above $\omega \in [0; 120]$
- The ambiguity function ϕ is such that


• CAAA:
$$\phi(x) = \frac{e^{-\alpha x}}{-\alpha}$$
 with $\alpha > 0$ the AAA degree

• DAAA: $\phi(x) = \frac{x^{1-\alpha}}{1-\alpha}$ with $\alpha > 1$ the AAA degree

	Restricted linkage 000		Banking under ambiguity 000	Discussion
Parame	trical exam	ple $(2/7)$		

Tax only subject to \mathcal{A}


 $\mathcal A\text{-effect}$ in an ETS

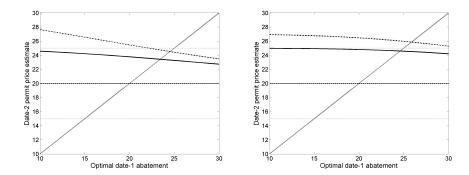
Introduction 00	Restricted linkage 000	Multilateral linkage 000	Banking under ambiguity 000	Discussion
Parame	etrical exam	ple (3/7)		

Variability under CAAA

Decomposition of ${\mathcal A}$ and ${\mathcal P}$

	Restricted linkage 000		Banking under ambiguity 000	Discussion
Parame	trical exam	ple $(4/7)$		

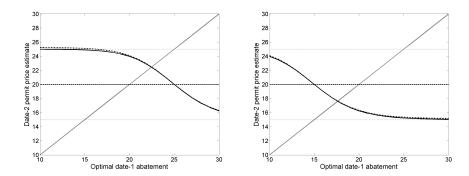
Illustration: Let $\Theta = \{\theta_1 = +5; \theta_2 = -5\}$, $F = \{\theta_1, .5; \theta_2, .5\}$. FOCs and the decomposition are given by


$$-C_1'(\hat{a}_1) + \beta \mathcal{A}(\hat{a}_1) \left(\langle \tau \rangle + \hat{q}_1(\hat{a}_1)\theta_1 + \hat{q}_2(\hat{a}_1)\theta_2 \right) = 0$$
(7)

$$H(a_{1}) = \begin{cases} \hat{q}_{1}(a_{1}) = q_{1} \frac{\phi'(\mathcal{V}(a_{1};\theta_{1}))}{q_{1}\phi'(\mathcal{V}(a_{1};\theta_{1})) + q_{2}\phi'(\mathcal{V}(a_{1};\theta_{2}))} \\ \hat{q}_{2}(a_{1}) = q_{2} \frac{\phi'(\mathcal{V}(a_{1};\theta_{2}))}{q_{1}\phi'(\mathcal{V}(a_{1};\theta_{1})) + q_{2}\phi'(\mathcal{V}(a_{1};\theta_{2}))} \end{cases}$$
(8)
$$\mathcal{A}(a_{1}) = \frac{q_{1}\phi'(\mathcal{V}(a_{1};\theta_{1})) + q_{2}\phi'(\mathcal{V}(a_{1};\theta_{2}))}{\phi'\circ\phi^{-1}(q_{1}\phi(\mathcal{V}(a_{1};\theta_{1})) + q_{2}\phi(\mathcal{V}(a_{1};\theta_{2})))}$$
(9)

	Restricted linkage 000		Banking under ambiguity 000	Discussion
Parame	etrical exam	ple (5/7)		

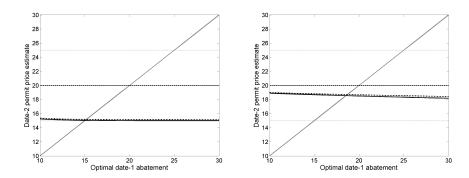
 $\alpha = 5$ & $\omega = 20$


 $\alpha = 10$ & $\omega = 20$

	Restricted linkage 000		Banking under ambiguity 000	Discussion
Paramet	trical exam	ple (6/7)		

 $\alpha = 75 \& \omega = 55$

 $\alpha = 75 \& \omega = 65$



	Restricted linkage 000		Banking under ambiguity 000	Discussion
Paramet	trical evam	p = (7/7)		

 $\alpha = \mathbf{75} \ \& \ \omega = \mathbf{80}$

М

 $\alpha = 5 \& \omega = 90$

