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Abstract

Advocates of public transit frequently tout improved air quality as a primary bene-

fit. Yet little is known about the causal impacts of public transit on local air pollution.

Exploiting variation in transit availability resulting from work stoppages in 18 Cana-

dian cities between 1974–2011, this study identifies the effect of public transit on air

pollution. Our findings indicate that transit leads to a 3.5 part-per-billion increase in

nitrogen oxides while having no statistically significant effect on carbon monoxide or

PM2.5. Estimates are robust to a series of specification and placebo tests and magni-

tudes are consistent with a calibrated simulation model. Overall, the results suggest

that expanding the current configuration of public transit in North American cities is

unlikely to yield improvements in local air quality.
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1 Introduction

Traffic-related air pollution leads to adverse health outcomes,1 deteriorated cognitive per-

formance2 and reduced labor productivity.3 Curbing vehicular emissions has, as a result,

become a central goal of environmental policy with investment in public transit emerging as

a broadly endorsed strategy for improving traffic-related air quality (Beaudoin, Farzin and

Lawell, 2015).4 Yet, it is unclear whether expanded public transit actually decreases local

pollution. Like other light-duty vehicles, buses burn fossil fuels and trains require electricity

whose generation may originate from high-emission sources. Advocates implicitly assume

that enhanced public transit will motivate a sufficiently large number of commuters to sub-

stitute from cars to buses and trains, ultimately improving air quality. The fundamental law

of road congestion, however, contends that expanding public transit will have little effect

on the number of vehicle kilometres traveled by cars (Downs, 1962; Duranton and Turner,

2011): improved transit may induce some commuters to substitute from cars to buses or

trains, but a large latent group of drivers will quickly occupy the freed capacity.

This paper estimates the causal relationship between the provision of publicly provided

transit and air pollution. Using daily and hourly pollution data, we exploit as-good-as-

randomly assigned transit union strikes in 18 Canadian cities. Across the entire sample, we

show that transit work stoppages lead to a large and statistically significant decrease in at-

mospheric nitrogen oxide (NOX) concentrations equal to 3.5 parts per billion (ppb). Transit

strikes also result in an imprecisely estimated, statistically insignificant increase in carbon

monoxide (CO) and a small and statistically insignificant decrease in PM2.5 concentrations.

Investment in public transit therefore entails more NOX pollution while having little mean-

ingful effect on other pollutants. Thus, the prospect for an environmentally advantageous

pollution swap, where pollution generated by private vehicles is swapped for emissions from

1A range of literature explores the link between traffic-related air pollution and health – see, for example,
(e.g., Currie and Neidell, 2005; Chay and Greenstone, 2003; Künzli et al., 2000; Krämer et al., 2000; Currie
et al., 2009; Neidell, 2009; Xia et al., 2015; Jerrett et al., 2014).

2Lavy, Ebenstein and Roth (2014), for instance, shows that exposure to carbon monoxide and PM2.5

lead to lower test scores for college entrance exams in Israel, while Bharadwaj et al. (2017) find that fetal
pollution exposure leads to lower fourth grade test scores in Santiago, Chile.

3Chang et al. (2016) and Zivin and Neidell (2012), for example, illustrate that exposure to ozone reduces
the productivity of agricultural workers in California.

4For example, environmental groups in the city of Toronto have endorsed transit’s air-quality benefits,
stating that without further public transit investment, “Toronto’s air would be significantly dirtier and we
would be emitting hundreds of thousands of tonnes of additional greenhouse gas (ghg) emissions into the
atmosphere” (Toronto Environmental Alliance, 2010). Likewise, in December 2016, the city of Paris made
public transportation free to riders in an effort to combat severe air pollution (Sharman, 2016).
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public transit leading to an overall improvement in air quality, is limited. Rather, increasing

the number of buses on the road deteriorates a city’s overall air quality. A stylized analyti-

cal model, calibrated to match Canadian commuting behavior (the setting for the empirical

component of the paper), supports the econometric results: it is likely that public transit in

North America results in increased NOX emissions. On average, the current configuration

of public transit in North American cities does not improve local air quality.

A burgeoning literature links public transit to pollution.5 Friedman et al. (2001) investi-

gate the impacts of a city-wide change in transport infrastructure, including increased public

transit provision and severe downtown driving restrictions that were put in place during the

1996 Summer Olympic Games in Atlanta, and find that pollution monitors in downtown

Atlanta recorded a 27.9% decrease in peak daily ozone concentrations. Chen and Whalley

(2012) find that the the opening of Metropolitan Rapid System in Taipei reduced carbon

monoxide (CO) concentrations by 9 to 14% (while having no impact on other pollutants),

while Lalive, Luechinger and Schmutzler (2013) show that increasing the frequency of rail

services in Germany is associated with lower concentrations of CO and NOX. Bel, Holst et al.

(2015) find that Mexico City’s “Bus Rapid Transit” system is effective at reducing NOX, CO

and PM2.5. At the global scale, Gendron-Carrier et al. (2017) use satellite imaging and a

panel of international subways expansions to demonstrate a 4% reduction in airborne partic-

ulates.6 In contrast, in an international panel of 75 cities, Hilber and Palmer (2014) highlight

that, as the number of cars increases, annual NOX concentrations decrease. Likewise, using

data from a panel of 96 US cities, Beaudoin and Lin Lawell (2016) find that increases in

the provision of public transit result in a small deterioration in urban air quality. Much

of this research however focuses on isolated geographical locations, potentially limiting the

generalizability, or uses annual data, making identification of the impact of public transport

difficult.

This paper’s conclusions run counter to much of the existing literature on public transport

and air quality. Rather than improving air quality, we demonstrate that public transit

increases local pollution levels (in particular, NOX concentrations). We posit two likely

reasons for these differences. First, we examine a panel of North American cities. Compared

5A broader literature connects public transit to traffic congestion – for example, Anderson (2014); Winston
and Maheshri (2007); Aftabuzzaman, Currie and Sarvi (2010). Likewise, several recent studies link traffic
congestion to different health outcomes (Levy, Buonocore and Von Stackelberg, 2010; Knittel, Miller and
Sanders, 2011; Currie and Walker, 2011).

6However, it is worth noting that Gendron-Carrier et al. (2017) regard the 4% estimate as too large to
be plausible, given current technologies.
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to Asia or Europe, North America has unique traffic patterns, geography and economic

structure. These structural factors are likely the major basis for the discrepancies. Indeed,

Beaudoin and Lin Lawell (2016) who also study public transit in North American cities,

finds conclusions that are aligned with ours. Second, while much of the literature focuses

on the impact of new subway lines on air pollution (Gendron-Carrier et al., 2017; Chen and

Whalley, 2012; Lalive, Luechinger and Schmutzler, 2013), we focus instead on existing public

transport systems in North America, which are dominated by buses. Buses typically burn

diesel, while subways use electricity. Hence, different patterns of results are expected.

Methodologically, the paper most similar to ours is Bauernschuster, Hener and Rainer

(2017).7 Bauernschuster, Hener and Rainer (2017) show that a public transit strike is ac-

companied by a 14% increase in particulate pollution (PM10) in the five largest German

cities. Like us, they use work actions for econometric identification. Yet, despite the out-

ward similarity of the two papers, the contexts and implications are quite different. First,

Bauernschuster, Hener and Rainer (2017) examine extremely short work stoppages. All of

the strikes in their data span less than 24 hours, with many as brief as two hours or less.

Strikes in our analysis are longer, lasting several weeks on average. This means that the

two papers are estimating fundamentally different parameters: while it is reasonable to de-

lay commuting in response to a very brief strikes such as those in Bauernschuster, Hener

and Rainer (2017), such avoidance behaviour is much more challenging for strikes that last

several weeks. Further, as mentioned, caution should be exercised when generalizing from

large German metropolises to the North American context as the configuration of cities,

baseline levels of pollution, economic structure and travel mode shares are different. For

example, while diesel passenger vehicles are common in European countries, they represent

a tiny niche in North America. Gasoline and diesel vehicles emit distinct pollutant mixes,

so this implies that transit displaces different pollutants on the two continents. Moreover,

given that our conclusions are very different than those of Bauernschuster, Hener and Rainer

(2017) (and several of the other papers), this suggests that a consensus on the relationship

between public transit and air quality is likely context-specific and that additional research

on the topic is warranted.

Identifying the causal effect of public transit on air pollution is challenging for three rea-

sons. First, the supply of public transit is not randomly assigned and is generally confounded

7Our paper is also similar to Anderson (2014), who identifies the effect of public transit using public
transit strikes. Anderson (2014) uses the LA transit strike of 2003 to measure the impact of transit on
congestion, whereas we focus on air quality.
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with other factors that influence air quality (Chen and Whalley, 2012; Beaudoin, Farzin and

Lin, 2014). The supply of buses, for instance, tends to be greater in cities where the con-

gestion is also high. This prototypical endogeneity problem explains the focus on short-run

changes in air quality: parameter identification at these time scales is more clearcut. Second,

the impacts of public transit on air quality depend on the ability and willingness of com-

muters to substitute between modes of transportation. Obtaining reliable, high frequency

data on private and public transit usage has proved challenging. Without these data, it is

difficult to eliminate plausible alternative explanations for regression results. Limited data

also prevents credible estimation of important structural elasticities. Third, variation in the

demand for public transit is confounded with other covariates which influence air quality.

Anderson (2014), for example, demonstrates that mode demand is time-varying. Demand

for public transit is higher during rush hours when pollutant concentrations are also ele-

vated. City-specific economic conditions likewise lead to greater demand for buses and more

emissions from industrial production. Ignoring the potential endogeneity of public transit

investment can lead to large variation in policy-relevant parameters. Beaudoin, Farzin and

Lawell (2015), for example, show up to a 40% understatement of the benefits from transit in

a regression of air pollution on transit. We avoid many of these problems by combining high

frequency data with good-as-random variation in transit availability. While our results focus

on the short-run response to changes in transit availability, we believe that our compelling

identification strategy along with high resolution data make this paper a valuable contribu-

tion to the existing body of research in this area. Moreover, we view our paper as providing

evidence on the impact of transit on pollution in North America, a region with few existing

studies.

The remainder of the paper contains four sections. Section 2 presents a stylized model

that outlines the scope for an environmentally beneficial pollution swap as envisioned by

public transit advocates. Section 3 describes our primary econometric model including our

identification strategy and data. Section 4 presents our results. This section includes several

robustness checks and an investigation of intra-day heterogeneity. Section 5 concludes.

2 Scope for a Pollution Swap

Research demonstrating how public transit improves air quality implicitly makes assumptions

about commuters’ willingness to substitute between traveling and other goods and, more

importantly, their willingness to substitute between taking transit and using private vehicles.
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Improved air quality from expanded transit systems depends on the prospect of a pollution

swap whereby pollution from cars is swapped for (hopefully less) pollution from public transit

vehicles. The potential for this substitution, of course, depends on commuters’ responsiveness

to changes in key attributes of transit such as its availability, quality and price. Section 3 uses

reduced form econometric models to estimate the effect of public transit on air quality, but

we begin by presenting a stylized model that outlines the mechanism through which public

transit affects air quality. Parameterizing this model using plausible values for Canada, we

illustrate that investments in public transit can indeed improve air quality, yet the scope for

an environmentally beneficial pollution swap is limited. Our later empirical results further

demonstrate that the necessary substitutions between public transit and private vehicles do

not appear to be observed in our data.

2.1 Analytical Model

Aggregate vehicular emissions depend on both technological and behavioral factors. Charac-

teristics such as vehicle age, vehicle size, trip frequency and average speed influence overall

emission rates. Fuel-type, in particular, has a central role in the level of different types emis-

sions. Panel A of Table 1 shows the per mile emission rates for NOX, CO, and PM2.5 , from

a model year 2010 diesel fueled bus and gasoline fueled car, based on estimates from Cai,

Burnham and Wang (2013).8,9 Per mile traveled, buses emit 1.3 grams of NOX, 1.1 grams of

CO, and 22 milligrams of PM2.5. Cars, in contrast, emit substantially less NOX at 0.1 grams

per mile, three times as much CO at 2.9 grams per mile, and three times less PM2.5 at 7

milligrams per mile.10,11

8In North America, buses typically use diesel, while private vehicles burn gasoline. Emissions per mile
are estimates for mileage-weighted lifetime emissions for each vehicle.

9We concentrate on three main “criteria” pollutants that are released by vehicles: NOX, CO, and
PM2.5 (note that PM2.5 is both released directly by vehicles as well as formed indirectly in secondary
reactions). The choice of pollutants is motivated by data availability; however, cars and buses have differ-
ential emission rates for other pollutants as well. For example, cars emit more volatile organic compounds
per mile, while per mile large particulate matter emissions are greater with buses.

10On an equal horsepower basis, gasoline engines emit roughly 28 times as much CO as diesel engines,
because the latter burn their fuel in excess air to ensure full combustion (Krivoshto et al., 2008). Particulate
matter can be both released directly from engines as well as formed through chemical reactions from primary
pollutants. The estimates in Cai, Burnham and Wang (2013) focus only on the former, so likely underestimate
total vehicle particulate matter emissions.

11In Canada, about 40% of all public transit riders make at least a portion of their journey by rail transit
as opposed to bus transit. Subways and light rail typically uses electricity as an energy source. While
there is heterogeneity across regions, the majority of Canada’s electricity is generated by sources with no air
pollution emissions. We therefore disregard emissions from urban rail transit.
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Technological change dramatically improved both diesel and gasoline engine emission

rates over the past decades. Figure 1 illustrates how lifetime mileage-weighted emissions

changed between 1990 and 2010. In general, emissions are between 80-98% lower on a per-

mile basis. Panel A shows how CO emissions from diesel buses fell from 7.5 grams to 1 gram

per vehicle mile. Gasoline fueled cars experienced an even larger improvement, with CO

emissions decreasing from roughly 15 grams to 3 grams per vehicle mile. Panels B and C

display similar trends for NOX and PM2.5. The NOX emissions from buses decreased from

nearly 25 grams per mile to 2 grams per mile, while the PM2.5 emission rate declined from

1 gram per mile to virtually zero by 2007.

Still, while there are obvious improvements in the emission rates of both passenger vehi-

cles and diesel buses, variation remains in their relative improvements over the period. Any

improvements in air quality due to a pollution swap must arise from the relative reduction in

bus emissions compared with cars. The dashed black lines in Figure 1 shows the time series

of the relative emission rates of diesel buses and gasoline-fueled cars. Unlike the secular

trend in absolute emission rates, there is no obvious pattern to relative emissions. For NOX,

both gasoline cars and diesel bus emissions have improved, yet the rate of improvement was

more rapid for cars. As a result, between 2000 and 2010, NOX per bus-mile relative to the

NOX per car-mile increased substantially. The opposite pattern is true for PM2.5: since 2007,

the figure shows a dramatic improvement in the emissions rate for diesel buses relative to

gasoline cars.

The technological parameters provide clear predictions about relative emission rates per

mile traveled, but neglect important behavioral adjustments made by commuters in re-

sponse to observed congestion, cost of travel and other factors. Regardless of technological

improvement, the overall effect of public transit availability on air quality is ambiguous since

it depends on these difficult to observe variables. Consider, for instance, several prospective

implications of an increase in gasoline taxes. If buses are under capacity, a gasoline tax

may motivate commuters to substitute from cars to buses. No change in NOX would be

expected (as the excess bus capacity is filled), but we might observe a reduction in CO as

fewer car trips are taken. This is the heart of the pollution-swap hypothesis: there is a

combination of technological and behavioral parameters that imply investments in public

transit can improve air quality. It is reasonable to imagine an alternative scenario, how-

ever: an identical car-to-bus substitution with an at-capacity transit system may induce

more bus trips as transit authorities add buses to meet the increased demand. This would,

ultimately, lead to an increase in NOX. Moreover, incorporating the fundamental law of
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road congestion hypothesis (Downs, 1962; Duranton and Turner, 2011) with this at-capacity

scenario, any freed road space resulting from the initial car-to-bus substitution is occupied

with latent demand from passenger vehicles. The net effect then is an increase in NOX and

no change in CO. The point is that the relationship between public transit and air quality

– and whether there is scope for an environmentally beneficial pollution swap – therefore

depends on both technological parameters and behavioral responses. Historically it has been

challenging to obtain reliable, time-varying ridership and capacity data on public transit

usage. Aggregates are available, but as Anderson (2014) demonstrates, there is substantial

time-dependent variation in transit demand. Use of aggregate capacity and ridership values

therefore may introduce large biases in estimating the impact of transit on pollution.

A stylized model formalizes the interactions between commuter choice and technology

and how these determine the relationship between changes in the characteristics of public

transit and changes in emissions. A representative consumer chooses transport services (T )

and other goods (X) to maximize utility (subject to a standard budget constraint):

U = U(T,X).

Transport services are provided by through public transit (B) or private cars (D), such that:

T = T (B,D).

Assuming constant elasticity of substitution functions allows us to express the demand for

driving and public transit (relative to benchmark demand) as:

B = B(pB, pD, pX) =
(
cσUU c

(σT−σU )
T p−σTB

)
D = D(pB, pD, pX) =

(
cσUU c

(σT−σU )
T p−σTD

)
,

where cU is the price index (general cost function for utility), cT is the price of transport

services,12 and pD and pB are the price of driving and public transport, respectively.13 The

12Given the constant elasticity of substitution function adopted, cU =
(
θXp

1−σU
X + θT c

1−σU
T

) 1
1−σU and

cT =
(
θDp

1−σT
D + θBp

1−σT
B

) 1
1−σT . The θ parameters refer to benchmark cost shares.

13The price of driving and public transport can include both pecuniary as well as non-pecuniary compo-
nents, including time costs, access costs, and other costs (Anderson, 2014; Parry and Small, 2009). In our
simple model, we do not connect the demand for private transport to congestion, such that the price of public
and private transport in our model is exogenous. It is possible to endogenize the price of private transport
to reflect congestion costs in a simple manner, by allowing the price of private transport to be a function of
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parameters σU and σT reflect the elasticities of substitution between transport and other

goods and between driving and public transit, respectively. These elasticities of substitution

are critical for connecting commuter behavior to public transit and air quality.

Total emissions are the sum of pollution from buses and driving:

E = EB + ED

= BφB/ζB +DφD/ζD,

where φ is the per-mile emissions of pollutants from public and private vehicles, and ζ is the

occupancy rate of each vehicle.14

This set-up enables us to derive an expression for the change in emissions that results

from a change in the price, availability or other characteristic of public transit. (Although

the empirical results later in the paper are based on a non-marginal supply shift, a price

change is used in this analytical model to tractably capture changing supply conditions.)

Changes in the price (availability) of public transit affects emissions as follows:

dE

dpB
=
φB
ζB

∂B(pB, pD, pX)

∂pB
+
φD
ζD

∂D(pB, pD, pX)

∂pB

This expression contains both technological and behavioral parameters. The first right-hand

side term is the product of change in the demand for bus services due to the change in the

price of public transport, ∂B(pB ,pD,pX)
∂pB

, multiplied by the emissions rate for public transit, φB
ζB

.

Increasing the price of transit causes transit demand to decrease, so this term is negative.

The second right-hand side term is the change in car travel due to the change in public

transit price, ∂D(pB ,pD,pX)
∂pB

, multiplied by the emissions rate for passenger car travel, φD
ζD

. For

an increase in transit price, car demand will increase as long as cars and buses are substitutes.

Hence, this term is positive. The sign of the overall change in emissions – i.e., the effect of

public transit availability on air pollution – depends on the relative rate of emissions from

cars compared with public transport and the magnitude of the relevant elasticities.

Given the assumed constant elasticity of substitution functional forms, it is possible to

write a closed-form solution for the elasticity of transport sector emissions with respect to

traffic volume, pD = Dψ (where we assume public transit does not cause congestion, for simplicity). A value
of ψ > 1 implies that additional driving imposes costs on others, which increase the price of driving. We do
not focus on this model variant, but do include a simulation results in which we allow ψ to take on positive
values below.

14It is possible that vehicle occupancy rates are endogenous, but for simplicity, we do not consider that in
the simple model.
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public transport price, ηZp. This expression is:

dE

dpB

pB
E

≡ ηZp = θT θBσU + θB(σT − σU) − EB
E
σT . (1)

The response in emissions following a change in the price of public transport, ηZp, depends on

the following parameters: the elasticity of substitution between transport services and other

goods (σU), the elasticity of substitution between transport modes (σT ), the cost shares of

all transport (θT ) and public transit (θT ) and the share of public transit in total transport

emissions (EB

E
).

The prospect of a pollution swap and an overall improvement in air quality from an

expansion of the transit system depends on the values of these parameters. To give a sense

of the magnitude and direction of the change in emissions due to a change in public transit

availability, we conduct a numerical simulation. Calibrated values for these parameters are

shown in Table 1. These coefficients are from several sources. Cost shares of transportation

and of driving in total transportation, shown in Table 1 Panel B, are from the 2014 Canadian

Survey of Household Spending.15 Panel C displays the elasticities of substitution. The

elasticity of substitution between transit and driving is set at 0.4 to match an elasticity of

transport demand typically found in the literature (see, for example, Litman, 2004). The

elasticity of substitution between travel and other goods is chosen to generate an own-price

elasticity of driving of -0.18, a value also consistent with the literature (Gillingham, 2014).

The pollution rates for cars and buses are from Cai, Burnham and Wang (2013), who produce

lifetime mileage-weighted emission rates for diesel buses and gasoline cars.16 The selected

emission rates correspond to the 2010 model year. We assume that 40% of total transit

passenger-miles are provided by (zero emission) passenger rail, and the remaining 60% are

provided by diesel bus, which reflects average Canadian configuration. The mode share for

public transit reflects the mode share in Canada’s larger cities.17 Finally, occupancy rates

of passenger cars and urban transit buses are from Office of Energy Efficiency (2014) and

determined by dividing passenger kilometres of travel by vehicle kilometres of travel.

Based on these parameters, we start by simulating the change in emissions that result

from doubling the price of public transit, pB. Our econometric models are identified using

15Results are given here: http://www.statcan.gc.ca/daily-quotidien/160212/dq160212a-eng.htm.
16As noted previously, we assume that urban rail produces no emissions.
17Public transit mode share is at or above 20% in Canada’s largest cities. See https://www12.statcan.

gc.ca/nhs-enm/2011/as-sa/99-012-x/2011003/c-g/c-g01-eng.cfm. Note that the cost share of transit
is 0.1 and the mode share is 0.2, so by implication transit costs 2 times as much per kilometre as driving.
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public transit strikes which completely remove public transit, so this does not perfectly

parallel the subsequent reduced form results. Still, the simulation yields useful intuition on

the scope of the effect of a large change in public transit availability.

Given the model’s parameterization, the results suggest that doubling the price of pub-

lic transport reduces NOX emissions from the transport sector by 2.2% and increases CO

emissions by a smaller amount equal to 1.9%. There is also a small, 0.7% reduction in

PM2.5 emissions. In other words, in the base case with realistic parameter values, one type

of pollution is swapped for another: an increase in CO emissions from cars is exchanged for

a decrease in NOX emissions from buses.

As is apparent in equation (1), the scope of a pollution swap clearly depends on the

elasticities of substitution. Figure 2 plots sensitivity analysis for these two parameters. The

left-hand panel illustrates how much the elasticity of emissions with respect to the price

of public transport changes with different values of the elasticity of substitution between

public and private transport, σT . High values of σT indicate that commuters are more

willing to switch between cars and buses. Buses produce more NOX emissions than cars,

so this switch entails a reduction in NOX that is more pronounced at higher elasticities.

In contrast, car travel produces more CO than bus travel, so the opposite is true for this

pollutant. When consumers are unwilling to switch between buses and cars – i.e., σT is small

– doubling the price of bus travel, unambiguously leads to improved air quality as both CO

and NOX emissions decline, hence a pollution swap can lead to improved overall air quality.

Figure 2 also shows what we would expect at the benchmark values where σT = 0.4. The

dashed line illustrates this base case. In this scenario, doubling the price of buses, reduces

the demand for bus trips and hence reduces NOX emissions. At the same time it increases the

demand for car trips and associated CO emissions. Given this elasticity of substitution and

other parameters values, the model predicts virtually no change in PM2.5. The right-hand

panel of Figure 2 provides similar sensitivity analysis for σU , the degree to which consumers

reduce overall travel demand in response to an increase in bus prices. Values of σU greater

than approximately 0.5 unambiguously reduce all types of pollution. Again however, at

the benchmark parameterization, doubling the price of buses predicts less NOX pollution, a

slight increase in CO pollution, but little change in PM2.5.

Table 2 reports additional sensitivity analyses where we vary assumptions about bus and

car occupancy rates, elasticities of substitution between travel and other goods and between

driving and transit, congestion feedback, as well as the share of rail in benchmark public

transport. These results suggest that, in general, increases in the price of public transit
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reduce NOX emissions, but increase CO emissions. For instance, if we double the occupancy

rate of buses, ζB, from 12.5 to 25, and then double the price of bus travel, NOX falls by 0.3%

while CO increases by 2.0%. This NOX-for-CO pattern is maintained across most parameter

combinations. Effects on PM2.5 emissions are ambiguous and depend on model parameters.

In the final row of the table, we allow the price of driving to respond to the quantity of

driving, to roughly reflect congestion. This model crudely captures the “fundamental law of

road congestion,” which suggests that driving volumes are unchanged due to transit provision

(Duranton and Turner, 2011).18 In this scenario, changes in the price of public transit have

little impact on the demand for driving, and the results suggest that all three pollutants

experience declines due to increases in public transport price. In other words, under most

plausible scenarios, the best that investment in public transit can do is to swap one type of

pollutant for another, but unambiguous improvements in air quality due to investments in

public transit are unlikely. The next section then aims to to measure what actually happens

to air quality what transit is temporarily eliminated due to transit strikes.

3 Empirical Approach

The analytical model illustrates the mechanism linking public transit to air quality. This

channel relies on several hard-to-identify parameters. We therefore investigate the reduced

form relationship between transit and air quality using good-as-random variation in transit

availability. We first present our econometric strategy and then discuss the data.

3.1 Econometric Strategy

Transit strikes, where public transit systems cease operations due to labor negotiations,

produce a quasi-random variation in transit availability. This allows the effect of transit

availability on air pollution to be cleanly identified. Transit strikes typically reduce public

transit service to near zero in a local region19 and, as transit strikes are temporary, they

18Duranton and Turner (2011) research focuses on the long run, while our empirical analysis is a short-run
analysis. We include this scenario for completeness.

19Often public transit authorities will continue to provide service to elderly and special needs commuters.
In one case that we know of included in our sample (the Vancouver public transit strike in 2001), transit
strikes shut down bus public transit but subway public transit was unaffected. Further, it is possible for
private firms to provide temporary services in the absence of publicly-provided transit, but private operators
are rare in Canada. Given that public transit may not be fully eliminated, our estimates should be interpreted
as conservative (lower bound), intent-to-treat effects that result from imperfect compliance.
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are unlikely to induce residential sorting. Moreover, while transit work actions potentially

affect traffic and air pollution in a region, they are unlikely to be affected by air pollution, so

causality is uni-directional.20 Transit strikes are therefore an exogenous source of variation

in transit availability that allows the short-run effect of public transit on air pollution to be

recovered.

There is an important caveat to this source of identifying variation however. This identi-

fication strategy yields the short-run response to a change in public transit availability. This

short-run response does not perfectly map onto long-run outcomes and, in general, it is the

long-run impact of public transit investment that is important from a public policy perspec-

tive. Yet, as mentioned, it is empirically challenging to estimate the long-run response of air

pollution to changes in public transit and the bulk of research on this topic estimates short-

run effects (e.g., Bauernschuster, Hener and Rainer, 2017; Chen and Whalley, 2012). While

our estimates are not the ideal policy-relevant parameter of interest, we do believe that the

plausibility of identification nevertheless allows us to provide useful results. In addition, the

setting of our results enables us to build on prior research that identifies short-run outcomes.

For example, Bauernschuster, Hener and Rainer (2017) use extremely short transit strikes

(less than a day; typically one to two hours) to reach conclusions about the relationship

between air pollution and transit availability. These very short-run responses may differ

quite significantly from our longer-run responses to changes in public transit. Likewise,

Chen and Whalley (2012) use a regression discontinuity design to measure the impact of a

subway opening on air pollution in China. Given this design, identification comes from the

immediate change in air pollution following a subway opening. In our study, many of the

transit strikes last for several weeks and, as a result, induce behavioral responses that can be

contrasted with those of Bauernschuster, Hener and Rainer (2017) and Chen and Whalley

(2012) as estimates that more closely parallel the long-run responses of interest.

Our primary empirical specification employs fixed effects to control for selection on un-

observables, by leveraging a large dataset comprised of daily (and hourly) air pollution data

in multiple cities across multiple years. We estimate the effect of public transit strikes on

the ambient concentration of pollution emissions by comparing measured pollution concen-

trations during a strike with pollution concentrations in the same city in the same year when

no strike is in place and on the same date in other cities with operating transit. We then

interpret the coefficient on our strike variable as the effect of an exogenous change in local

20Although transit strikes are likely strategically timed, we can condition on observable determinants of
timing, as we discuss below, such that we argue that transit strikes are conditionally exogenous.
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transit availability on air quality.

Our main specification is:

Ecymd = δ · strikecymd +Wcymdβ + φcy + θymd + εcymd. (2)

where Ecymd, the dependent variable, is average daily NOX, CO, or PM2.5 pollution concen-

trations in city c in a particular year, y, month, m, and day, d.21 It is important to highlight

a key difference between (2) and the discussion in Section 2. The model in the prior sec-

tion focused on transport sector emissions, whereas this econometric model uses ambient

pollution concentrations as a dependent variable (we use the same notation for each). The

two are related, but cities have other sources of emissions in addition to those from the

transportation sector and other variables such as weather affect pollution concentrations. So

there is an imperfect correlation between emissions and concentrations.

strikecymd is a dummy variable that takes a value of one if there is a transit strike on a

specific date, ymd, in municipality c, and zero otherwise. Our coefficient of interest is δ. δ

measures the change in pollution as a result of a transit strike. This can be interpreted as

the negative of the short-run change from an expanded public transit system. δ is a reduced

form coefficient that incorporates the behavioral and technological factors that govern the

relationship between buses, private vehicles, and air pollution. We estimate the model

separately for NOX, CO and PM2.5, obtaining separate δ coefficients for each. Further,

while equation (2) is our preferred specification, we vary the resolution of our fixed effects

in robustness checks as a test of the sensitivity of our results to alternative identifying

assumptions.

There are a series of other variables in (2). Wcymd is a vector of weather covariates includ-

ing daily maximum temperature, mean temperature, mean temperature squared, minimum

temperature, daily precipitation and precipitation squared. Including weather is important

because air pollutants, once released, can be catalyzed by sun and high temperature. More-

over, precipitation can remove air pollution from the atmosphere. Conditioning on weather

further helps to address potential bias in coefficients that could be introduced if transit au-

thorities plan transit strikes to take advantage of particular weather events (for instance,

choosing to start a strike on a day when poor weather is forecast).22 φcy is a city-by-year

variable that captures time-varying city-specific trends. General economic and labor market

21While the main results use daily data, we also include results that use hourly pollution data.
22In an unreported robustness check, we test the sensitivity of our results to omitting all weather covariates.

The coefficient on strikes is not significantly affected by this change.
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conditions influence pollution emissions (and hence concentrations), so this effect controls for

these unobservables. θymd is a day-of-sample fixed effect that captures other time-varying

confounders that are common across our panel. Holidays, for example, tend to have less

traffic than normal workdays. There is also seasonality in pollution variation and θymd helps

to capture these time-varying unobservables. εcymd is an error term. All standard errors are

clustered at the city level allowing for arbitrary temporal correlation in error term.

The identifying assumption in (2) is that, conditional on included covariates, the specific

timing of strikes in each municipality is as good-as-randomly assigned. In other words, we

assume that the timing of strikes is not chosen in response to (or correlated with) observed

or predicted levels of air pollution. On the whole, this assumption is mild, but potential

violations could occur if strikes were timed to create maximum disruption for a city, for

example by holding a strike on the first day of September (when students return to school).

The data suggest that this is not the case: there is no statistical pattern to the start date of

strikes in the data (results are presented below). More importantly, our empirical strategy,

which includes date fixed effects, controls for the variation in pollution concentrations by date

(there is a separate fixed effect for every day of the sample in our preferred specification). In

addition, to measure the sensitivity of our results to this identifying assumption, we conduct

falsification tests where we implement “fake” strikes, which are shifted in time relative to

the “real” strikes we observe in our data. We expect and find no effect due on pollution

emissions attributable to a “fake” strike in these placebo models.

3.2 Data

Our research design requires data on air pollution, weather and work actions. These are

assembled from several sources.

Air pollution data are from Canada’s National Air Pollution Surveillance Program (NAPS).23

NAPS was established to provide long-term air quality data at a uniform standard from

across Canada. Launched in 1969 with 36 air quality monitoring stations, it has expanded

significantly over time. Our data spans 1974 through 2011 for 18 municipalities for CO. For

NOX, it runs from 1980 through 2011 for 13 cities. Measurement of PM2.5 runs from 1997

through 2011 for 9 municipalities.24 NAPS monitoring stations measure ambient pollution

23A description of NAPS, along with supporting documentation regarding monitoring protocols and sta-
tion locations, is available at Environment Canada’s website: http://www.ec.gc.ca/rnspa-naps/Default.
asp?lang=En&n=5C0D33CF-1.

24These include Toronto, Montreal, Vancouver, Ottawa, Calgary, Edmonton, Hamilton, Quebec City,
Kitchener-Waterloo, London, Victoria, Oshawa, St. Catherines, Halifax, Windsor, Saskatoon, Regina, Win-
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concentrations for a large number of substances. Most stations continuously monitor CO,

NOX, ground level ozone, sulfur dioxide and particulate matter (PM10 and PM2.5). Air sam-

ples are also periodically analyzed at a central lab facility to identify cumulative levels of

over 100 additional substances. We focus on CO, NOX and PM2.5 as these are the primary

pollutants commonly emitted by vehicles.25

Assembling the dataset required assigning pollution monitoring stations to cities. Figure

3 illustrates the procedure for mapping monitoring stations to city centers. Air pollution

monitoring stations are given as black crosses. Fixed radii circles were drawn around each

city centre (as measured by the coordinates of the City Hall). The top panel shows both

the dispersion of monitoring stations and cities in our data. The bottom panel provides an

example of the fixed radii mapping assignment of stations to cities. For several small cities,

only a single monitoring station is captured within the circle. Larger cities such as Toronto

and Vancouver have several monitoring stations recording air quality. In these cases, the

closest monitoring station to city centre is used. As NOX and PM2.5 disperse easily while CO

is a local pollutant (Gaur et al. (2014) and Rattigan et al. (2010)), we further investigate the

sensitivity of our analysis to the choice of pollution monitoring stations, by estimating results

on a sub-sample of monitoring stations that are within 2 kilometres of major thoroughfares.

In robustness checks, we also test the sensitivity of our results to different ways of assigning

pollution monitors to cities. In particular, we use the inverse-distance weighted average of

all pollution monitoring stations within 5 and 10 miles of the city centre, rather than simply

assigning the closest monitor to the city centre. We show that our results are not affected

by the choice of assignment mechanism.

Information on transit strikes are from Employment and Social Development Canada’s

Workplace Information Division. This division tracks collective agreements and maintains

a database of all work stoppages categorized according to North American Industry Classi-

fication System (NAICS) codes. We use NAICS code 485110: urban transit systems. Our

data on work stoppages capture, among other variables, the dates that the action began and

nipeg and St. John’s. Cities range in size from approximately 5 million inhabitants (Toronto) to 0.2 million
(St. John’s). Montreal, Quebec City and Victoria are excluded from the NOX analysis as data are missing
for these cities. The differences in the number of cities across samples is attributable to the absence of strikes
in some municipalities for periods in which we have air pollution data.

25Ozone is a key vehicle-related pollutant as well. However, ozone is not released directly by vehicles but
instead forms from a reaction between NOX and volatile organic compounds in the presence of sunlight and
heat (i.e., it is not a primary pollutant). The chemical transformation is highly non-linear, and so predicting
and modeling the effect of vehicles on ozone emissions is challenging. For this reason, we focus on primary
pollutants in this study.
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ended, the number of workers affected, the location and the names of the transit corporation

as well as the union. There were 105 municipal transit strikes between 1974 and 2011. There

is little systematic tendency for strikes to occur in any particular season and, given gaps in

pollution data, not all strikes are common across pollutants. Figure 4b plots the number of

observed and initiated strikes (i.e., the first day of work stoppage) for each month. The figure

shows roughly 8.75 strikes have been initiated in each month. Visually there appears to be a

slight tendency for strikes to start in Fall, but this tendency is not statistically significant.26

Our regressions use a variety of fixed effects to control for most systematic seasonal trends.

On average each strike lasts for 19.19 days, with a minimum of 1 day and a maximum of 87

days. Figure 4a illustrate a histogram of strike lengths over all cities while Figure 4c shows

the cross-sectional variation in observed strikes by city. As shown, over the period of 1974

to 2011 there were 57 observed strikes in Montreal while only 1 strike occurred in Regina.

Measurement of pollution is correlated with weather. Data on meteorological conditions

are obtained from Environment Canada.27 To control for the effect of weather conditions

on the ambient air pollution, polynomials of maximum, minimum and mean temperature as

well as precipitation are included. As with the NAPS monitoring stations, meteorological

conditions are assigned to city centers using information from the closest weather stations.

Table 3 presents some key information for the NOX, CO, and PM2.5 in our sample. There

are three panels. Panel A presents an overview of the sample. There are 11,216 unique days

for 13 cities in the NOX sample. For CO, there are 18 cities and 13,038 days. Pollution

monitors require maintenance and occasionally fail to record the level of ambient pollution.

The NAPS system records these as missing values which we drop from our analysis. We are

unaware of any systematic bias associated with these missing values. There are 944 strike

work-days in our NOX and 411 stoppage days in our PM2.5 sample, a considerable reduction

from the 2,155 in the CO sample. A shorter period of analysis and the lack of NOX data for

cities in Quebec account for the reduced number of strike days.

Panel B presents summary statistics for our dependent and weather variables. The mean

NOX concentration is 35.97 parts per billion (ppb) with a standard deviation of 31.52. For

CO, the mean value is 0.96 parts per million (ppm) with a standard deviation of 0.98. For

PM2.5 the mean value is 7.80 µ/m3 with a standard deviation of 6.38.

Finally, Panel C shows the residual variation in the dependent variable after it is re-

26A Pearson Chi-squared test fails to reject the null hypothesis of equal proportions of strikes by month:
χ2 = 14.09, df = 11, p = 0.22.

27Climate data is available at Environment Canada’s website: http://climate.weather.gc.ca/.
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gressed on the suite of fixed effects and weather controls from (2). These include NAPS-year

and day-of-sample fixed effects as well as maximum, minimum and mean city-specific daily

temperatures, a quadratic in mean temperature, precipitation and a quadratic in precipita-

tion. Even with this rich set of fixed effects, substantial residual variation is apparent. Fixed

effects and weather explain 47% of the variation in NOX, 65% of the variation in CO and

41% of the variation in PM2.5.

4 Results

Four sets of results are presented. We first provide our main results plus several robustness

checks. We then examine intra-day heterogeneity and the implications of public transit on

maximum daily pollution readings. Next, technological change has had a large role in the

relationship between transit and air quality, so we separately examine pre- and post-2000

effects. Finally, we show selected falsification tests. Throughout, the message is consistent:

public transit increases ambient NOX concentrations while having little to no effect on CO

or PM2.5.

4.1 Main results

Table 4 shows the main results using the daily mean pollution level as the dependent variable.

Nine columns are presented, three for each pollutant. The different columns alter the source

of identifying variation by using different combinations of time and location fixed effects. All

standard errors are clustered at the city level to control for arbitrary temporal correlation

in error term.28

Columns (1) to (3) of Table 4 show results for NOX emissions, with all three columns

showing stable estimates. In (1), using date and NAPS-year fixed effects, the removal of

transit improves ambient NOX concentrations by 3.8ppb. The corresponding models for CO

and PM2.5 are in columns (4) and (7). A transit strike leads to a 0.02ppm increase in CO,

but the standard error is large. Likewise, removing buses reduces PM2.5 by 0.8 µg/m3, again

with a large standard error.

Changing the source of identifying variation has little influence on any of the point

28Models are also run that allow for spatial correlation by clustering on year-month and temporal and
spatial correlation by clustering at city-year and city and year. The standard errors are smaller than those
obtained by clustering by NAPS monitoring station suggesting that the confidence intervals presented here
may be conservative.

17



estimates or standard errors. Columns (2) and (3) show that a strike is associated with

statistically significant decrease of 3.77 to 3.98 ppb in NOX concentrations. In (5) and (6),

CO concentrations still increase with transit strikes, but again the parameters are imprecisely

estimated. Finally, removal of public transit leads to a decrease in PM2.5 of 0.5 to 0.8 µg/m3,

but this reduction is not statistically distinguishable from zero.

It is worth noting that the estimates from the econometric models corroborate those

generated from the simulation model. Table 3 shows that the mean NOX concentration in

our data is 36.0 ppb, so a 3.8 ppb reduction suggests that removal of transit reduces NOX by

approximately 10%. This is of similar magnitude, albeit slightly larger, than the estimates

presented in Table 2 which reflect a non-complete removal of publicly provided transit.

Further, while the point estimates on CO concentrations are not distinguishable from zero,

the econometric model implies a roughly 2% reduction in CO concentrations due to buses.

Again, this is approximately within the range of the values in Table 2. Similar to the CO

estimates, the PM2.5 coefficients are imprecise. Moreover, Table 2 does not provide a clear

prediction on the magnitude or sign of a change in PM2.5. The imprecision of the econometric

point estimates warrants care, yet, the general pattern of results suggests that a pollution

swap – NOX for CO – is possible. Unfortunately, the strongest conclusion emerging from our

results is that NOX is reduced when public transit service is cut; we cannot be unequivocal

in our assertions about CO given the impreciseness of the estimates.

Sensitivity to Pollution Monitor Assignment

As described in Section 3, we impute a city’s pollution level by using the value from the

closest monitor to the city centre. Table 5 uses three alternative methods of assigning

pollution to cities. Column (1), (3) and (7) use the inverse-distance weighted average values

of all monitors within 5 mile radius of city centroids. Columns (2), (5) and (8) use the

inverse-distance weighted average within a larger 10 mile radius for each pollutant. Finally,

column (3), (6) and (9) restrict the analysis to monitors near major thoroughfares. NOX and

PM2.5 disperse more easily while CO is a local pollutant, so the location of the pollution

monitor has the potential to notably influence the results.

The NOX estimates are consistent with Table 4. The coefficients show a reduction of

between 3.6 and 3.9ppb in NOX concentrations associated with a public transit strike. Pre-

cision remains a problem for CO and PM2.5. While the sign and magnitude of the point

estimates are similar to the models in Table 4, the confidence intervals are wide and include

zero. Monitor assignment is immaterial to the results.
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4.2 Hourly Pollution Concentrations

Strikes vary at the daily level in our data, so our preferred models concentrate on daily

average pollution levels. Intra-day heterogeneity, especially with respect to heavy traffic

periods, may however have distinct patterns that are not captured by the daily average.

To investigate this intra-day heterogeneity, we estimate (2) for each of the 24 hours in a

day, where, for instance, the 7:00am interval represents the hour from 7:00 to 7:59am. Rather

than using daily average pollution concentration as the dependent variable, the pollution

concentration for that specific hour is used. All control variables remain the same. In

particular, we use our preferred specification, which includes weather controls, date fixed

effects and pollution monitor-year fixed effects. Separate regressions are conducted for each

of NOX, CO, and PM2.5 for each hour.

Figure 5 plots the point estimates from these regressions. A transit strike causes a

statistically significant reduction in atmospheric NOX concentrations throughout the day.

These reductions are only statistically significantly different than zero during the standard

workday however. Outside of the 7:00am to 5:00pm stretch, the parameters are too imprecise

to be statistically distinguishable from zero. The patterns for CO and PM2.5 illustrate the

difficulty in making claims about these pollutants. In both cases, the point estimates, which

are signified by the dark circles, fluctuate around zero, while the error bars are wide. It

does appear, however, that CO increases during the morning and afternoon travel peak in

response to a strike, while PM2.5 decreases (although, as shown by the figure, coefficients

are not statistically significant). In general, these hourly regressions reinforce the results

from the earlier tables: public transit increases NOX pollution but has little effect on CO or

PM2.5.

The results in Figure 5 suggest that removing public transit has larger effects on atmo-

spheric pollution concentrations during rush hours. Table 6 looks at this from a slightly

different perspective. It presents results using the daily maximum pollution concentration

as the dependent variable. Daily maximum pollution levels typically occurs during rush hour

periods, but this is not strictly the case. Columns (1) to (3) show point estimates for the

effect of a transit strike on daily maximum pollution readings. Several elements of these

models are worth highlighting. First, compared with the preferred specifications in Table 4,

the point estimates are notably larger. The strike coefficient in the NOX model has nearly

doubled. For CO, the point estimate is seven times larger when using daily maximum pol-

lution than in Table 4, while the parameter on PM2.5 increased nearly threefold. Statistical

significance remains elusive of CO and PM2.5. Further, given the disproportionate increase
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in the standard error in the NOX model, we are able to claim less about the effect of public

transit on daily maximum pollution concentrations. It is only possible to reject a null hy-

pothesis of no effect at a 10% level. Nonetheless, the results do tend to support the general

inference that public transit does little to improve local air quality.

4.3 Transit Strikes and Technological Change

In the discussion of the analytical model, we highlighted the large changes in transporta-

tion technology over the past 20 years. During this period, both cars and buses became

substantially cleaner. In this section, we examine whether these changes in technology are

observable in the data. In particular, we sub-divide our sample into two periods – pre-2000

and post-2000.29 We then conduct separate regressions on each of these sub-samples.

Figure 1 provides suggestive predictions for the results. While, say, the NOXemission

rate for both cars and buses improved, the relative performance for buses compared to cars

fluctuated over time. In the pre-2000 period, buses emitted between 10 to 25 times more

NOX compared to cars. After 2000, this ratio spikes to more 40 times on a per mile basis

before declining.30 Thus we might expect the impact on a strike on NOX to be larger

after 2000 even though post-2000 buses are cleaner than pre-2000 buses. This prediction

is confirmed in Table 7. Columns (1) and (4) illustrate the effect of a transit strike on

NOX pollution before and after 2000, respectively. A work stoppage leads to a small 0.3 ppb

reductin in NOX in the early period. The latter period shows a much larger effect of 10.1

ppb.

The opposite is pattern holds for PM2.5. Figure 1 suggests a continuous performance

improvement in the emissions rate of buses relative to cars post-2000. We therefore expect a

transit strike to have a beneficial impact on PM2.5 before 2000 and less so later in the sample.

Again, this prediction is confirmed in Table 7, which indicates a statistically significant

reduction in PM2.5 of 3.7 µg/m3 before 2000. After 2000, the coefficient is not meaningfully

different from zero.

Results for CO are less intuitive. Figure 1 suggests a large improvement in CO emissions

for buses relative to cars during the latter period of our sample, so we expect that a transit

strike will have more detrimental impacts on CO later in the sample. This is not what

29We choose this date as it roughly represents the mid-point of our observations over all three pollutants.
30It is important to note that the emissions rates presented in Figure 1 are a mileage-weighted average

over a vehicle’s entire lifetime, not average emissions rates for the on-road vehicle stock (which we do not
observe). As a result, the temporal correspondence between emissions from on-road transit and predicted
lifetime-weighted emissions rates is unlikely to be perfect.
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we find. Instead, Table 7 shows that after 2000, a transit strike yields a reduction in CO

emissions, suggesting that transit increases emissions. These coefficients are at odds with

the technological predictions.31 Yet, it is important to emphasize that the coefficient on

the pre-2000 CO impact is not precisely estimated and the sign on the post-2000 period

reinforces the general conclusion that public transit does not improve local air quality.

4.4 Placebo Models

Table 3 shows substantial residual variation in pollution concentrations even after controlling

for a wide array of fixed effects. One concern with our research design may be that the

transit strike indicator is actually capturing other systematic unobservable variables. We

claimed that transit strikes caused a change in NOX concentrations but had no statistically

identifiable causal effect on CO or PM2.5. Table 8 probes this claim via a falsification test,

whose motivation is that we should not observe an effect where we do not expect one.

Table 8 presents three columns of results for placebo transit strikes, where we time shift

strikes in the dataset. We replace our real strike variable with a fake strike variable that

occurs exactly one calendar year later. Column (1) shows the effect of the placebo transit

strike on NOX. The coefficient remains negative but is less than one third the magnitude

of our preferred specification and is not statistically distinguishable from zero. For CO,

the point estimate actually increases in magnitude, but remains statistically insignificantly

different from zero. Finally, for PM2.5 the point estimate is of a different sign from the

estimates in Table 4 and is likewise imprecise. Notwithstanding the residual variation in the

dependent variables, we do not appear to detect an effect where one is not expected. We

view this as corroborating our conclusions and as support the causal interpretation of the

main models.

5 Conclusion

This paper measures the effect of public transit on air quality in 18 major Canadian cities.

Transit strikes are used to identify the causal short-run effect of buses on local air pollution.

Our main result is that removing public transit causes a 3.5 part per billion, or about

10%, short-run reduction in ambient NOX concentrations. These reduced form results are

31The scenario in Table 2 in which we crudely simulate congestion yields predictions that are closer in line
with these findings.
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robust to different methods of assigning pollution to cities, to several distinct sources of

identifying variation and also holds up to placebo tests. A calibrated simulation model

further suggests that it possible for transit strikes to improve air quality via a pollution

swap, but demonstrates that environmentally advantageous swaps are unlikely to observed

at benchmark values in North America. Overall, this study suggests that, in contrast to

existing studies that take place in European cities or focus on the expansion of subways,

increasing public transit capacity in it’s current configuration in North America is unlikely

to improve local air quality.
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Figures

Figure 1: Per-Mile Lifetime Mileage-Weighted Emission Rates
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Figure 1: Per-Mile Lifetime Mileage-Weighted Emission Rates.

Continued from previous page.
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Notes: Source: Cai, Burnham and Wang (2013).
The red and blue solid lines indicate the emission rate of diesel transit buses and gasoline passenger vehicles,
respectively, and correspond to the left axis. The dashed black line measures the relative per mile bus to car
emissions and corresponds to the right axis.
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Figure 2: Elasticity of Pollution Emissions With Respect to Price of Public Transport
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Notes: The vertical dashed lines indicate assumed benchmark elasticities of substitution.
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Figure 3: Mapping Pollution Stations to Cities

Notes: Each city in our analysis is represented by a circle while air pollution monitoring stations are black
crosses. Pollution monitoring stations were mapped to cities according to several weighting procedure ac-
cording to their distance from each city’s center.
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(a) Duration of Strikes in Days

(b) Frequency and Total Strike Days by Month

(c) Cross-Sectional Distribution of Strikes

Figure 4: Duration, Frequency and Distribution of Strikes Across Cities and Months
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Figure 5: Change in Hourly Pollutant Concentration due to Transit Strike

NOx CO

PM2.5

This figure plots point estimates from hourly regressions for each of the 24 hours in the day, using the level of
pollution concentration in that hour as the dependent variable. Gray whiskers are 95% confidence intervals.
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Tables

Table 1: Parameters used to Calibrate Simulation Model

Symbol Value Description

A. Pollution rates

φNOXB 1.31 Per mile diesel bus NOX emissions (g/mile)

φNOXD 0.12 Per mile gasoline passenger car NOX emissions (g/mile)

φCOB 1.10 Per mile diesel bus CO emissions (g/mile)

φCOD 2.87 Per mile gasoline passenger car CO emissions (g/mile)

φPM25
B 21.8 Per mile diesel bus PM2.5 emissions (mg/mile)

φPM25
D 7.1 Per mile gasoline passenger car PM2.5 emissions (mg/mile)

- 0.4 Share of public transit miles provided by passenger rail

B. Cost shares and operational parameters

θX 0.8 Cost share for other goods

θT 0.2 Budget share for transport

θD 0.9 Cost share of driving in transport

θB 0.1 Cost share of transit in transport

ζB 12.5 Bus occupancy

ζD 1.58 Car occupancy

γB 0.2 Bus mode share

C. Behavioural parameters

σU 0.2 Elasticity of substitution between transport and other goods

σT 0.4 Elasticity of substitution between transit and driving
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Table 2: Sensitivity of the Simulation Model to Calibrated Parameters

Scenario ∆ NOX ∆ CO ∆ PM2.5

Baseline -2.2% 1.9% -0.7%

ζB = 25 -0.3% 2.0% -1.3%

ζD = 1 -0.8% 1.9% 1.2%

σU = 0.4 -3.5% 0.5% -0.7%

σT = 0.8 -2.8% 4.5% 2.4%

No rail -4.3% 1.7% 0.1%

ψ = 100 (congestion) -3.8% -0.1% -1.2%

The results show the simulated change in transportation sector NOX , CO andPM2.5 emissions that result
from a doubling of public transit fares. “No rail” is a simulation where all public transport is provided by
bus, with no rail public transport. ψ = 100 is a simulation in which the price of driving is endogenous with
the elasticity of price with respect to driving given by ψ.
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Table 3: Key Information on Samples for NOX, CO and PM2.5

Concentrations

Panel A – Overview of Sample

NOX CO PM2.5

Days in sample 11,216 13,038 4,964

Number of strike-days 944 2,155 411

Number of strikes 83 105 25

Number of cities 13 18 9

Panel B – Summary Statistics

Mean Std Dev

NOX (ppb) 35.97 31.52

CO (ppm) 0.96 0.98

PM2.5 (µ/m3) 7.80 6.38

Precipitation (mm) 2.37 5.96

Maximum temperature (◦C) 11.51 11.73

Minimum temperature (◦C) 1.86 10.80

Mean temperature (◦C) 6.70 11.09

Panel C – Variation Explained by Fixed Effects and Weather

Dependent variable R-squared

Daily average NOX concentration 0.47

Daily average CO concentration 0.65

Hourly PM2.5 concentration 0.41

Sources: Air pollution data are obtained from Canada’s National Air Pollution
Surveillance Program (NAPS). We obtain data on transit strikes from Employment
and Social Development Canada’s Workplace Information Division. Weather data
came from the Environment Canada.

Panel C regresses the dependent variable on NAPS-year, month-day and hour
fixed effects as well as the full suite of weather controls as described in equation (2).
Substantial residual variation remains for NOX, PM2.5 and CO.
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Table 6: Change in Maximum Daily Pollutant Concen-
trations due to Transit Strikes

(1) (2) (3)

NOX CO PM2.5

Transit strike -7.152∗ 0.126 -2.265

[3.969] [0.128] [2.058]

Observations 109,613 160,352 47,920

Weather controls 3 3 3

NAPS-year fixed effects 3 3 3

Date fixed effects 3 3 3

The dependent variable is maximum daily concentration of
NOX, CO and PM2.5. Weather covariates include temperature,
quadratic temperature, minimum temperature, precipitation and
quadratic precipitation. All weather covariates are daily average.
Values in parentheses are standard errors clustered by NAPS
monitors. ∗ significant at 10% ∗∗ significant at 5% ∗∗∗ significant
at 1%.
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Table 7: Change in Average Daily Pollutant Concentrations due to Transit Strikes
Before and After 2000

Before After

(1) (2) (3) (4) (5) (6)

NOX CO PM2.5 NOX CO PM2.5

Transit strike -0.310 0.041 -3.699∗ -10.140∗ -0.056∗ 0.163

[1.548] [0.045] [0.414] [2.021] [0.023] [0.461]

Observations 63,305 113,730 4,177 46,308 46,622 38,389

Weather controls 3 3 3 3 3 3

Naps-year fixed effects 3 3 3 3 3 3

Date fixed effects 3 3 3 3 3 3

Notes: Dependent variable is daily pollutant concentrations. Weather covariates include temper-
ature, quadratic temperature, minimum temperature, precipitation and quadratic precipitation.
All weather covariates are daily average. Regressions also control for public holiday and day of
week fixed effects. Values in parentheses are standard errors clustered by naps-id. ∗ significant
at 10% ∗∗ significant at 5% ∗∗∗ significant at 1%.
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Table 8: Change in Daily Average Pollution Concentra-
tions Using Time Shifted Placebo Strikes

(1) (2) (3)

NOX CO PM2.5

Transit strike -1.121 0.0347 0.294

[1.055] [0.0304] [0.261]

Observations 116,053 167,077 76,056

Weather controls 3 3 3

NAPS fixed effects 3 3 3

Year-month fixed effects 3 3 3

The dependent variable is daily average pollutant concentration
of NOX, CO and PM2.5. Weather covariates include temperature,
quadratic temperature, minimum temperature, precipitation and
quadratic precipitation. All weather covariates are daily average.
Values in parentheses are standard errors clustered by NAPS mon-
itors. ∗ significant at 10% ∗∗ significant at 5% ∗∗∗ significant at
1%.
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