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The aim of this research is to understand the weight of preference 

heterogeneity in explaining energy consumption in French homes. 

Using a discrete-continuous model and the conditional mixed-process 

estimator (CMP) allows us to tackle two potential endogeneities in 

residential energy consumption: energy prices and the choice of 

equipment. As a major contribution, we provide evidence that 

preferences for comfort over energy savings do have significant direct 

and indirect impacts on energy consumption, especially for high-income 

households. Preferring comfort over economy or one additional degree 

of heating implies an average energy overconsumption of 10% and 

7.8% respectively, up to 36% for high-income households. Our results 

strengthen the belief that household heterogeneity is a substantial 

factor in explaining energy consumption and could have meaningful 

implications for the design of public policy tools aimed at reducing 

energy consumption in the residential sector.  
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1. Introduction 

Energy efficiency in the residential sector is a significant lever for meeting 2020 EU energy 

targets. During the past years, driven by its EU commitments, France has set numerous public 

policies aiming at reducing energy consumption in the residential sector, including thermal 

regulations for residential construction (RT2000, RT2005, and RT20121) and thermal retrofits2. 

Despite these measures, energy consumption due to space heating in permanently occupied 

dwellings in France decreased by only 12% between 1990 and 2013 (CEREN3), demonstrating 

that there is still a lot of work to do to achieve national energy goals (-38% by 20204). In order 

to achieve them, renovation measures and social interventions to encourage more efficient use 

of energy are potential solutions (Lopes et al. 2012).  

Economists have brought to light that 40% of energy consumption in the residential sector is 

determined by technical factors (Belaïd 2016) but that about 33% is determined by 

socioeconomic characteristics such as revenue, household age, and tenure status. The role of 

behavioral characteristics in energy consumption variability (Belaïd 2016; Belaïd and Garcia 

2016; Cayla et al. 2011) has also been highlighted. Understanding the determinants of energy 

consumption has been a recurrent topic of research over the past years and is an important issue 

in estimating the energy-savings potential of energy policies. Using only engineering models 

to predict energy consumption has shown limitations in including and modelling the effect of 

individual heterogeneity (Galvin and Sunikka-Blank 2014) and environmental factors; 

moreover, the current empirical economics literature on this issue is dense but limited by the 

availability of appropriate data.  

                                                 
1 http://www.rt-batiment.fr/batiments-neufs/reglementation-thermique-2012/presentation.html 
2 http://www.planbatimentdurable.fr 
3 http://www.ceren.fr/ 
4 Loi Grenelle 1 https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000020949548 
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Improving understanding of the energy consumption spectrum also requires that empirical 

research go further in the identification of individual determinants. More specifically, analyzing 

the effect of individual preferences for energy use, from which energy savings and energy-

intensive behaviors are derived, is crucial to understand how important household heterogeneity 

is in explaining variability in energy consumption. The issue has generally been neglected in 

the economics literature (Lopes et al. 2012), especially because of the lack of relevant data. 

Thanks to the PHEBUS survey providing information on preference heterogeneity for different 

kinds of residential energy uses, this research aims at partially filling this gap. 

The main hypothesis of this research is that individual preferences regarding household energy 

use do have a role in explaining energy consumption in French homes. To test this assumption 

and account for the growing empirical concern of considering the interactions between 

dwellings and household characteristics when modeling energy demand, we use a discrete-

continuous model based on McFadden’s pioneering work (1984). In our research, we consider 

that individual energy consumption preferences may be manifested in two ways. We consider 

that household preferences for comfort and socioeconomic characteristics influence both the 

characteristics of their homes (in this case the energy-efficiency level of the dwelling chosen 

by the household at the time of purchase or rental), and the amount of final energy they 

consume. 

Our research is based on the PHEBUS5 survey, which includes complete thermal data, Energy 

Efficiency Certificates (energy-efficiency classifications), and socioeconomic characteristics 

for more than 2000 dwellings as well as newly available information about household behaviors 

and preferences.   

 

                                                 
5 http://www.statistiques.developpement-durable.gouv.fr/sources-methodes/enquete-

nomenclature/1541/0/enquete-performance-lhabitat-equipements-besoins-usages.html 
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This paper thus contributes to the large literature on the determinants of energy consumption 

by providing an original analytical framework thanks to the use of an innovative dataset. We 

provide evidence that individual energy use preferences are a significant driver of energy 

consumption for high-income households, both directly and indirectly. Our main results show 

that preferring comfort over economy for two or three types of energy use implies energy 

overconsumption of 10% on average. If we consider the subpopulation of households belonging 

to the three highest income deciles, surplus energy consumption from high and medium 

preferences for comfort lies between 22 and 36%. For low-income households, we find no 

significant effect of preferences but a lower energy price elasticity. In line with these results, 

we advise policymakers to consider low-income and high-income households separately when 

developing and implementing public policy tools to reduce energy consumption in the 

residential sector. Moreover, through our methodology, we confirm the necessity of accounting 

for indirect determinants when assessing the drivers of energy demand in the residential sector. 

The paper is organized as follows. Section 2 presents the literature review. Section 3 describes 

the model. The data and the results are presented in section 4 and 5 respectively. Section 6 

concludes with policy recommendations. 

2. Literature review 

2.1 Determinants of energy consumption: main direct effects 

The final energy consumption of a dwelling is explained by three main determinants: technical 

building characteristics including local environment, household characteristics (socioeconomic 

characteristics, individual preferences, income, etc.), and energy price.  This literature review 

also highlights the dearth of studies focusing on the share of energy consumption attributed to 

individual heterogeneity regarding energy consumption preferences.  
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Household characteristics 

Concerning occupancy status, contrary to the theory that posits that tenants are likely to 

consume more energy than owners (misaligned incentives), empirical research fails to find a 

consensus on the effect of tenure status on energy consumption (Belaïd 2016; Charlier 2015; 

Jones et al. 2015; Yohanis 2012). Family structure and its position in the life cycle, however, 

do impact energy demand: The number of occupants has a positive impact on energy 

consumption (Leahy and Lyons 2010; Vaage 2000), and there is a cycle effect of the age of the 

reference person: energy consumption is comparatively higher for dwellings whose occupants 

are between 45 and 65 than for other age classes (Belaïd 2016; Brounen and Kok 2011; Brounen 

et al. 2013). 

Regarding income elasticity (see Table 1 below), the effect is positive in most studies, which is 

consistent with the “normal good status” of energy consumption: income elasticity remains low, 

often less than 0.15. This low income elasticity is often attributed to the correlation between 

income and other characteristics such those of the home (Alberini et al. 2011) and occupancy 

status. Sometimes, however, the effect of household income is more complex. Although the 

poor use less energy, they have a relatively smaller opportunity to change their equipment. 

Positive elasticity may involve mainly the purchase of more energy-efficient appliances, which 

will induce lower energy consumption (Cayla et al. 2011; Labandeira et al. 2006; Nesbakken 

2001; Santamouris et al. 2007). Income elasticity may also depend on income level: in 2013, 

Meier et al. (2013) investigated the relationship between household income and expenditures 

on energy services in the United Kingdom. As a key result, they find that the income elasticity 

of electricity and gas demand is contingent on household income. Households with low income 

exhibit a rather low income elasticity of energy demand (about 0.2). Households at the top end 

of the income distribution exhibit an income elasticity of up to about 0.6. Finally, in the recent 

work of Hache et al. (2017), the authors demonstrated with a non-linear approach (CHAID 
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clustering method) that income level and global energy expenditures were intimately related in 

the french residential sector. 

 

Individual preferences regarding energy use 

Individual preferences regarding energy use refer here to the intrinsic disposition of individuals 

to save energy in their everyday life (Lopes and al. 2012); we do not include here individual 

preferences that are manifested in one-time actions like the purchase of energy-efficient 

appliances (cf. section 2.2 on indirect drivers). Depending on their nature, individual 

preferences can induce a wide range of everyday behaviors, from energy-saving behaviors 

(energy conservation, restriction) to energy-intensive behaviors. The tendency of households to 

save energy in the residential sector is a multi-dimensional phenomenon resulting from a trade-

off between diverging motivations; it is positively linked with environmental awareness and 

normative concerns or economic motivation and negatively affected by immediate welfare 

considerations (Lindenberg and Steg 2007). The work of Hamilton et al. (2013) demonstrates 

that energy consumption may greatly differ (by up to three times) among dwellings with similar 

technical characteristics. Thus, assessing the extent of the effect of individual preferences is a 

crucial step in better understanding the impact of individual heterogeneity on real energy 

consumption variability.  

However, individual preferences have generally been neglected in the economics literature 

(Lopes et al. 2012) especially because of the lack of appropriate data. Assessing the effect of 

individual energy use preferences on energy consumption variability is complex, and the 

estimation strongly depends on the indicator used and the scope considered. Moreover, turning 

the estimated effect into an energy savings potential that can be targeted by public policies is 

even more complex: indeed, it can be assumed that only a moderate share of the energy 
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overconsumption induced by individual preferences for intensive energy use is flexible and 

reversible.  

Some scholars approach the issue of preference heterogeneity in energy use by studying the 

relationship between the effective intensities of energy use for several energy services (i.e. 

observed energy behaviors like the heating temperature, the running time of appliances, the 

frequency of realization of some energy services, etc.), household and dwelling characteristics, 

and energy consumption (Belaïd and Garcia 2016; Santin 2011; Yun and Steemers 2011).  

Santin (2011) found that the number of hours of heating at maximal temperature explains 10.3% 

of the variability in heating energy consumption. However, in many cases, scholars often model 

energy savings behavior as an end in itself and not as a proxy of individual heterogeneity able 

to explain energy consumption variability. The major results of these studies show that energy 

savings actions are context-dependent (Belaïd and Garcia 2016; Lopes et al. 2012): living in a 

energy inefficient dwelling and facing higher energy prices induce more energy-efficient 

behavior. 

The other approach found in the literature is more public policy oriented by giving estimates of 

the energy savings potential achievable through specific government interventions. Scholars 

use field experiment studies to assess the effect on energy consumption of information 

campaigns targeting intensive uses of energy. They test on small samples the effect of energy-

behavior advice or information on energy consumption and find that more informative bills and 

advice on reasonable energy use results in a 10-percent energy savings for electricity (Ouyang 

and Hokao 2009; Wilhite and Ling 1995). In the literature review of Lopes et al. (Lopes, 

Antunes, and Martins 2012), the synthesis shows that the savings potential from a change in 

energy saving behaviors ranges from 1.1% to over 29%.  

 

Technical building characteristics and environment 
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Technical building characteristics and environment can account for more than half of the energy 

consumption variability in the residential sector. The size effect is positive if we look at its 

influence on total consumption but is negative if we consider consumption/m2 (“returns to scale 

effect”). Some estimations demonstrate that up to 57% of total heating energy consumption can 

be due to the size effect (Risch and Salmon 2011; Estiri 2015; Baker and Rylatt 2008; Harold, 

Lyons, and Cullinan 2015). Apartments generally consume less than single-family homes 

because of their smaller heat loss surface (Rehdanz 2007; Wyatt 2013; Vaage 2000). The 

influence of the dwelling’s construction date on energy consumption (electricity excluded) is 

not universal, but generally, older buildings consume more energy than recent ones (Rehdanz 

2007; Risch and Salmon 2011; Vaage 2000). Dwelling insulation (attic or cavity walls or global 

insulation) reduces energy consumption from -10% to -17% (Brounen, Kok, and Quigley 2012; 

Hong, Oreszczyn, and Ridley 2006). Finally, local climate also has an impact: in western 

countries, the longer the heating period is, the more energy the dwelling consumes (Kaza 2010; 

Belaïd 2017).  

 

Energy prices  

Price elasticity is always found to be negative, but estimates vary widely from -0.20 to -1.6. 

Energy price elasticities found in the literature are listed below. However, it is important to 

stress that the price elasticity of energy demand may depend on the energy considered, the 

methodology used, and the income level. Concerning its relationship with income, findings are 

not unanimous. For instance, disaggregation of households by expenditure and socioeconomic 

composition reveals that the behavioral response to energy price changes is weaker (stronger) 

for low-income (top-income) households (Schulte and Heindl 2017). However, Alberini et al. 

(2011) find that the price elasticity of electricity demand declines with income, but that the 

magnitude of this effect is small.  
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Table 1: Income and price elasticities in literature 

Authors Country Price elasticity Income elasticity 

Parti and Parti (1980) UK Electricity: -0.758 

Gas: -0.311 

0,15 

Dubin and McFadden (1984) US Electricity: -0.26 0,02 

Baker et al. (1989a) UK Electricity: -0.758 

Gas: -0.311 

- 

Bernard et al. (1996) Canada Electricity short-run: - 0.67 0,14 

Nesbakken (1999) Norway All energies: -0,50 0,01 

Vaage (2000) Norway Heating energy: -1.24  

Nesbakken (2001) Norway All energies: -0,21 0,06 

Halvorsen and Larsen (2001) Norway Short-run: -0.43 --- 

Labandeira et al. (2006) Spain Electricity: -0.79 

Gas: -0.04 

 

Katrin (2007) Germany Oil: [-2.03; -1.68] 

Gas: [-0.63; -0.44] 

 

Meier and Rehdanz (2010) Germany Oil: -0.4 

Gas: [-0.34; -0.36] 

 

Alberini and Filippini (2011) US Electricity: [− 0.860; − 

0.667] 

Gas: [− 0.693; − 0.566] 

0,02 

Bernard et al. (2011) Canada Electricity short-run: [- 

0.51] 

0,08 

Fan and Hyndman (2011) South 

Australia 

Electricity: [-0.36; -0.43]  

Brounen et al. (2012) Germany Electricity: -0.4310 and 

Space heating: -0.5008 

 

Meier et al. (2013) UK Electricity price on energy 

spending: 0.7360 

[0.2; 0.6] 

Filippini et al. (2014) EU All energies: [-0.26; -0.19]  

Krishnamurthy and Kriström 

(2015) 

&     11 

OECD 

countries   

Electricity: [−0.16; -1.4] 

France: −0.6523 

 

[0.07; 0.108] 

Miller and Alberini (2016) US All energies: [-0,56; -0,76]  

Risch and Salmon (2017) France All energies: -0,485 0,0295 

Schulte and Heindl (2017) Germany Electricity: -0.4310 and 

Space heating: -0.5008 

 

Campbell (2017) Jamaica -0,42 

 

0,42 

Damette et al. (2018) France Wood [-1.553;-2.394] 

Electricity: -1.33 

Gas: -1.22 

[0.0294;0.0443] 

 

2.2 Indirect determinants 
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For several decades, another way of accounting for the role of preferences or behavior when 

modeling energy consumption has been to integrate into energy demand models potential 

interactions between dwelling characteristics or energy-intensive appliances and household 

characteristics. By doing this, scholars assume the existence of implicit choices and preferences 

in terms of home characteristics and their effects on energy consumption. In line with this 

consideration, a large part of this economics literature uses the discrete continuous model 

(Dubin and McFadden 1984) or, more recently, new approaches such as covariance structure 

analysis or the structural equation modelling approach.  

Models using the discrete-continuous framework assume that household characteristics could 

play a twofold role in explaining energy consumption: firstly, they influence the choice of home 

characteristics or appliances (indirect effect on energy consumption); secondly, once the 

appliances or home characteristics are considered, they also have a direct influence, all things 

being equal. Thus, scholars consider that energy demand is an indirect product of household 

choice and consumption behavior (Dubin and McFadden 1984). In 2006, Kriström (2006) 

explained that households do not demand energy “per se”, but demand is combined with other 

goods such as “capital goods” (housing units, equipment units). Empirical evidence using the 

discrete continuous framework has confirmed this assumption: for example, Baker et al. 

(1989b) apply a two-stage model of energy demand to British expenditure data. Durable good 

appliances are first modelled, which then determines the energy demand of households. Vaage 

(2000) and Nesbakken (2001) demonstrate that analyzing energy demand conditionally to 

appliance or heating system choice is relevant in the residential sector. In the case of France, 

Stolyarova et al. (2015) model two discrete choices: the choice of end-use combinations by 

energy source or the choice of heating system by dwelling type. 

Recently, scholars have demonstrated further interest in tackling the issue of interactions. 

Ewing and Rong (2008) show that higher-income households are more likely to live in big 
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homes that consume more (Ewing and Rong 2008). More recently, Estiri (2015) spotlights the 

major interactions between building characteristics and lifecycle and socioeconomic household 

characteristics and quantifies the direct and indirect roles of each in energy consumption with 

a covariance structure analysis. He reaches the conclusion that the main effects of 

socioeconomic and lifecycle characteristics are carried out via building characteristics 

(expressed with a latent variable that includes surface, number of rooms, and tenure status). 

Using a general linear model and a path analysis, Yun and Steemers (2011) investigate the 

significance of behavioral (the proxy used is frequency of AC use), physical, and 

socioeconomic characteristics on cooling energy consumption. The findings suggest that such 

factors exert a significant indirect as well as direct influence on energy use, supporting the 

necessity of understanding indirect relationships. In the same vein, Belaïd (2017) uses a 

structural equation modelling approach (PLS approach) on French data to elicit the indirect role 

of household characteristics on building characteristics in order to explain residential energy 

consumption. His results are consistent with housing consumption theories that socioeconomic 

household characteristics play an important role in determining the physical attributes of a 

dwelling.  Finally, the importance of accounting for interactions between a dwelling’s physical 

attributes and household characteristics is also supported by the findings of Santamouris et al. 

(2007) in the UK: their work demonstrates that income explains the presence of several 

dwelling characteristics, including insulating building envelopes and building age. 

 

  3. Data and descriptive statistics 

3.1 Data  

 

This research uses data from the “PHEBUS” survey, a national household energy survey 

conducted by the Department of Observations and Statistics (SOeS), a subdivision of the French 



11 
 

Ministry of Ecology and Sustainable Development. The survey includes 2,040 dwelling energy 

audits performed by the same company in 2012 to study theoretical energy-efficiency measures; 

real energy consumption (based on energy bills); and social, economic, and behavioral data of 

dwelling occupants.  

 

Energy performance certificates and building characteristics 

Data sets available through this survey are quite innovative as they provide uniform assessments 

of Energy Performance Certificates (EPC) for each dwelling. These certificates have been 

produced by a single organization, which reduces any potential subjective bias in performance 

assessment. In our database, housing energy efficiency is classified into seven energy classes 

(according to French legislation): A, B, C, D, E, F, G (from the most energy efficient to the 

least).   

As control variables, we use periods of construction (before 1919, from 1919 to 1945, from 

1946 to 1970, from 1971 to 1990, from 1991 to 2005, from 2006 and after) and whether the 

house is detached.  

 

Household characteristics, preferences, and tenure length 

In order to control for household characteristics, we use income, number of persons, length of 

occupancy since move-in, the number of days of housing vacancy during the heating period, 

and the number of appliances belonging to each household.  

The PHEBUS survey also contains information on household preferences. For each type of end 

use (heating, hot water, and electricity), it is possible to know whether households favor comfort 

or energy savings. It is therefore possible to have a scale of preferences. A strong preference 

for comfort will be measured as a declared preference for each end use, a medium preference 

as a declared preference for two out of three end uses, and finally a low preference as a single 
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declared preference for comfort. Moreover, other variables can also be used as a proxy for 

comfort, for example, the heating temperature. 

 

Energy price 

Unfortunately, the PHEBUS database does not directly provide energy price information. In 

order to fill this gap, other information can help determine the energy cost for each household.  

Indeed, the data set provides information on the type and amount of energy consumed by each 

dwelling, but also on the type of energy rate (for gas and electricity) and the power required per 

type of fuel used (electricity, gas, oil). The power required and the type of energy rate depend 

on the type of fuel used for the heating system and in consequence the energy mix as well as 

the number of rooms (or the surface area). Thus, it is possible to have different energy rates per 

energy mix composition and the end use of each type of energy among households. However, 

no information is provided on the energy rate itself. To complete the PHEBUS data set, we 

looked into the PEGASE database (provided by the French Ministry of Energy, see appendix 

A, Table 6) to obtain the energy and subscription cost for each type of energy (oil, gas, 

electricity, and wood) per the power required and the type of rate in 2011 and 2012.  Finally, it 

is possible to calculate for each household a weighted energy cost depending on the energy mix 

and the structure of energy consumption. With a weighted energy cost, we have a specific cost 

of energy for each household. The formula is the following:  

 

𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑖𝑐𝑒𝑖 = ∑
𝑣𝑜𝑙𝑢𝑚𝑒 𝑖𝑛 𝑘𝑤ℎ𝑖𝑓𝑡×𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑖𝑐𝑒𝑓𝑡

𝑡𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑖𝑛 𝑘𝑤ℎ𝑖

𝑛
𝑗=1                                                                (1) 

 

where 𝑓 represents the type of fuel, 𝑖 the household, and 𝑡 the type of rate for a specific energy 

(electricity or gas).  
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3.2 Descriptive statistics 

 The main descriptive statistics of the variables used in the model are summarized in appendix 

B1 (Table 7). Based on these observations, we highlight several trends in our data. The average 

income, the surface, the occupancy status, etc. seem to be linked in some way with the energy 

class of each dwelling, which favors the underlying assumption of our model: the potential 

interactions between home thermal characteristics and household characteristics (Tables 2 and 

3). This is consistent with the contribution of Santamouris et al. (2007). We also observe 

interactions between preferences, income level, and consumption (Table 4 and Table 8a in 

appendix). Finally, to complete the descriptive analysis, we run some t-tests based on the 

preference variable, available in appendix in Table 8b. We find that households with high 

comfort preferences live in dwellings that are statistically more energy efficient.  Other t-tests 

confirm the highly significant relation (p<0.01) between energy consumption, high preferences 

for comfort, and income. The overall descriptive statistics argue in favor of the real need to 

properly control for thermal, economic, and individual characteristics when modeling energy 

demand in the residential sector.  

Table 2: Descriptive statistics by energy class 

Energy class A B C D E F G 

Number of observations 5 43 281 564 598 301 248 

Average annual disposable 

income per household  
51068 50099 46097 43970 38632 37877 31201 

 (22293) (39645) (28396) (25085) (20893) (25569) (18808) 

Average number of occupants 3.2 2.9 2.9 2.7 2.5 2.3 2.2 

  (1.6) (1.2) (1.2) (1.3) (1.2) (1.1) (1.1) 

Percentage of individual houses 

(%) 
100 84 79 78 84 81 74 

Percentage of renter-occupied 

dwellings (%) 
0 16 18 19 21 25 35 

Mean surface (m2) 172 151 127.7 118.7. 110 97.5 90.5 

  (63.3) (92.2) (49.7) (45.7) (47.1) (40.6) (44.0) 

Number of years spent in the 

current dwelling 

10.4 10.3 13.1 15.7 18.5 19.5 20.7 

(5.8) (9.7) (11.0) (12.8) (15.3) (16.0) (19.9) 

Average number of appliances  

 

19,8 22.2 17 16.7 16.6 14.7 12.7 

(5.4) (22.5) (11.3) (10.1) (18.4) (11.5) (5.9) 

Source: PHEBUS Survey 2012, authors’ calculations. () corresponds to standard deviation 
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Table 3: Individual preferences for comfort over economy by dwelling’s energy-efficiency 

classification 

Percentage of households 

preferring comfort over economy 

for: 

A B C D E F G 

Heating 80% 63% 58% 57% 58% 51% 55% 

Hot water 60% 67% 58% 58% 57% 52% 48% 

Specific electricity 40% 37% 44% 43% 41% 37% 39% 

High preference for comfort* 20% 30% 31% 30% 31% 27% 26% 

Medium preference for comfort* 60% 28% 23% 23% 22% 18% 20% 

Low preference for comfort* 0% 20% 21% 20% 21% 24% 25% 

No preference for comfort 20% 21% 24% 27% 27% 36% 29% 

Heating temperature (in °C) 20.6 20.2 19.9 19.9 20.0 19.7 19.8 

*This variable is compounded from PHEBUS data: high preference for comfort means that a household declared 

that it prefers comfort over economy for all three energy uses: specific electricity, heating, and hot water; medium 

preference means that this preference for comfort concerns two of the three energy uses; and finally, low 

preference means that the preference for comfort concerns only one energy use. 

Source: PHEBUS Survey 2012, authors’ calculations 

 

 

 

Table 4: Energy consumption and preferences according to income 

 

 

Energy 

consump-

tion in 

kwh/m² 

High preference 

for comfort 

No preference 

for comfort 

Preference for 

comfort for 

heating 

Preference for 

comfort for 

electricity 

Preference for 

comfort for hot 

water 

 Mean 
Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 

D1 308.3 171.8 27.47% 44.75% 41.76% 49.44% 42.10% 49.49% 37.57% 48.55% 47.63% 50.07% 

D2 309.8 206.4 17.77% 38.32% 30.78% 46.27% 45.88% 49.95% 30.66% 46.22% 50.66% 50.12% 

D3 263.0 166.1 29.21% 45.59% 32.83% 47.07% 52.50% 50.06% 37.60% 48.56% 52.40% 50.06% 

D4 260.9 140.9 26.70% 44.35% 28.89% 45.44% 53.33% 50.01% 36.19% 48.17% 56.12% 49.75% 

D5 264.8 134.5 31.58% 46.60% 27.06% 44.53% 58.70% 49.36% 42.27% 49.52% 53.91% 49.97% 

D6 248.7 115.8 27.19% 44.60% 33.22% 47.22% 54.25% 49.94% 33.13% 47.18% 57.27% 49.59% 

D7 253.3 132.3 36.13% 48.16% 19.41% 39.65% 62.64% 48.49% 50.54% 50.12% 63.32% 48.31% 

D8 241.5 112.4 32.46% 46.94% 18.59% 39.00% 66.07% 47.46% 47.56% 50.06% 60.02% 49.11% 

D9 235.7 128.3 33.56% 47.34% 18.73% 39.11% 62.10% 48.63% 51.63% 50.10% 61.16% 48.86% 

Source: PHEBUS Survey 2012, authors’ calculations
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4. Model 

4.1 Theoretical background 

 

The main assumption of this research is that individual preference for comfort has a significant 

positive impact on energy consumption. To test this assumption, we use a discrete continuous 

choice model framework to take into account the assumed interactions between household 

characteristics and the dwelling’s energy-efficiency level, using a conditional mixed process.  

We consider that the household’s decision is divided in two parts. In the first part, the household 

decides to live in a housing unit according to its theoretical energy performance; then, in the 

second part, it decides how much energy to consume according to its preferences. The 

specification of household fuel demand is based on a utility model with R* the stochastic 

indirect utility function of the households, which we suppose to be unobserved. Indirect utility 

V depends on the price of energy P, income Y, and household characteristics (including 

preferences) T, and is defined conditionally on the choice of energy label classification. We can 

therefore write:  

 

𝑅𝑖𝑗
∗ = 𝑉𝑖𝑗[𝑃𝑖 , 𝑌𝑖, 𝑇𝑖] + 𝑣𝑖𝑗                                                                                                             (2) 

 

where j=1, ..., J is the index of category, i=1, ....,N that of the individuals, and vij the error term. 

The Roy's identity gives us the household's Marshallian demand function for energy: 

𝑋𝑖𝑗(𝑃𝑗 , 𝑌𝑖 , 𝑍𝑖) =
𝜕𝑉𝑖𝑗(𝑃𝑗,𝑌𝑖,𝑍𝑖)/𝜕𝑃𝑗

𝜕𝑉𝑖𝑗(𝑃𝑗,𝑌𝑖,𝑍𝑖)/𝜕𝑌𝑖
                                                                                                 (3) 

 

When simplified, the energy demand function conditional on energy category j by household i 

can be written as follows:  
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𝑞𝑖𝑗 = 𝛾𝑖𝑗𝑧𝑖𝑗 + 𝜈𝑖𝑗𝑤𝑖𝑗 + 𝛽𝑖𝑗𝑃2012𝑖 + 𝜂𝑖𝑗                                                                                           (4) 

 

where qij is the quantity of energy consumed by individual i in an energy classification j, zij is 

a vector of individual characteristics (including preferences, income, and mode of occupation), 

P2012i is the energy price, wij is a vector of building characteristics (including localization), 

𝛾𝑖𝑗 and 𝜈𝑖𝑗   are vectors of the related parameters, and 𝜂𝑖𝑗 the error term taking account of the 

influence of unobservable parameters.  

 

4.2 The econometric methodology: a discrete continuous choice 

In using discrete-continuous models, researchers consider that appliance or thermal equipment 

choices and consumption choice are bound (Dubin and McFadden 1984; Risch and Salmon 

2017; Vaage 2000) and use these models to address selectivity biases in data sets with 

endogenously partitioned observational units (Frondel et al. 2016). In the field of residential 

energy consumption, the pioneering paper is that of  Dubin and McFadden (1984): using heating 

equipment choice as a discrete step, the authors then study energy consumption determinants.  

These models are thus often used in the field of energy consumption because of interactions 

and endogeneity between independent explanatory variables. Generally, the estimation consists 

of two steps.  

 

In our research, an original data set is used to apply this discrete-continuous choice method 

because we face two potential problems of endogeneity related to the choice of the dwelling’s 

thermal performance (energy classifications, see figure 1 in the appendix) and endogeneity due 

to energy prices (proof in appendix section C.1). As a choice variable for the discrete choice, 

we propose to use theoretical energy performance of the dwelling by energy-efficiency 

classification. This classification, from an EPC assessment, is chosen as a proxy for the 
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theoretical energy-efficiency level of the dwelling. Thus, we study which characteristics 

determine a household’s probability of belonging to an energy-efficient classification level with 

an ordered probit. Energy classifications are also introduced in the continuous choice as 

explanatory variable; this allows us to capture interactions between energy efficiency and 

households while identifying direct drivers of energy consumption.   

 

Thus, for the discrete choice of the model, we use an ordered Probit because energy 

performance classifications arise sequentially (Cameron and Trivadi 2010). For individual 𝑖, 

we specify: 

 

𝑦𝑖
∗ = 𝑥𝑖

′𝛽 + 𝑢𝑖                                                     (5)                                                                                             

 

with 𝑦 
∗a latent variable which is an unobserved measure of the dwelling’s energy performance; 

𝑥 the regressors. For low 𝑦 
∗, energy performance is very high; for 𝑦 

∗ > 𝛼1 corresponding to 

the energy classification threshold A-B to C, energy performance is a little bit lower; for 𝑦 
∗ >

𝛼2 corresponding to the change from C to D, energy efficiency is even lower, etc. For a 𝑚-

alternative ordered model (here 𝑚 = 6 because of the 6 energy classifications we consider), we 

define: 

𝑦𝑖 = 𝑗     𝑖𝑓  𝛼𝑗−1 < 𝑦𝑖
∗ ≤ 𝛼𝑗 , 𝑗 = 1, … . , 𝑚 

Pr(𝑦𝑖 = 𝑗) = Pr (𝛼𝑗−1 < 𝑦𝑖
∗ ≤ 𝛼𝑗) 

 

The regression parameters β and the m-1 threshold parameters 𝛼1, … , 𝛼𝑚−1 are obtained by 

maximizing the log likelihood with 𝑝𝑖𝑗 = Pr(𝑦𝑖 = 𝑗). Energy classes are also introduced in the 

second equation and used as regressors of final energy consumption expressed in kW/m2/year 
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with other explanatory variables. The model captures the possibility of correlation between 

unobservable variables in the discrete and continuous stages.  

Conditional on the discrete choice, a household decides the quantity of energy to consume. 

Therefore, in the continuous choice, the total energy consumption (the logarithm of the energy 

consumption in kWh/m 2) is estimated, conditional on the dwelling’s thermal performance 

(energy-efficiency classification). This is the "energy consumption choice," which we estimate 

using a least square model. To control endogeneity of the energy price variable in 2012 (P2012i), 

we introduce as instruments the lag of energy prices (P2011i) and the type of energy rate for 

electricity.  

We therefore have: 

 

𝑞𝑖𝑗 = 𝛾𝑖𝑗𝑧𝑖𝑗 + 𝜈𝑖𝑗𝑤𝑖𝑗 + 𝛽𝑖𝑃2012𝑖
+ 𝜀𝑖                                           (6) 

with  

𝑃2012𝑖
= 𝛼1𝑃2011𝑖

+ 𝛼2𝑇𝐴𝑅𝐼𝐹𝐹𝑖 + 𝑣𝑖,𝑘   (7) 

 

where 𝑞𝑖𝑗 is the final energy per square meter consumed and 𝑧𝑖𝑗  and 𝑤𝑖𝑗 the regressors. We 

estimate the model using a double least squares model, which enables us to correct for the 

endogeneity issue of energy prices.  

Finally, we have a system composed of a three-simultaneous-equations model. The model 

contains variables which are supposed to explain both choices: the choice of a dwelling with a 

certain energy-efficiency level and the choice of energy use. However, some exclusion (or 

selection) variables are also introduced in each equation: the duration since move-in and 

detached house for equation 1 (discrete choice) and the number of appliances and number of 

days of housing vacancy during the heating period for equation 2 (continuous choice).  
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4.3 The estimation process 

 

In order to estimate jointly our three equations, we use the conditional mixed process (CMP) 

proposed by Roodman (2011).  A CMP framework can be required to jointly estimate three 

equations with linkages among their error processes. The CMP also allows relationships among 

their dependent variables. This process fits a large family of multi-equation, multi-level, 

conditional mixed-process estimators and is particularly useful in the simultaneous equation 

framework with endogenous variables (as is the case here), or in a seemingly unrelated 

regressions (SUR)6 configuration, where dependent variables are generated by processes that 

are independent but correlated errors that are not.  Thus, the CMP modeling framework is 

essentially that of SUR, but in a much broader sense. The individual equations need not be 

classical regressions with a continuous dependent variable; they also may be estimated by 

ordered Probit. A single invocation of CMP may specify several equations, each of which may 

use a different estimation technique. Furthermore, CMP allows each equation’s model to vary 

by observation. The main advantage of the CMP estimator to the SUR estimator is recursivity 

and full observability that work for a larger class of simultaneous-equation systems. The 

conditional mixed process is suited for estimations in which there is simultaneity but 

instruments allow for the construction of a recursive set of equations, as in two-stage least 

square (2SLS).  In this case, the CMP is a limited-information maximum likelihood (LIML) 

estimator. The use of the maximum likelihood approach to estimate the three equations as a 

system rather than as a two-step estimator implies efficiency gains. 

 

 

 

 

                                                 
6 See Arnold Zellner, 'An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests for 

Aggregation Bias', Journal of the American Statistical Association, 57/298 (1962), 348-68. 
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5. Results 

 

5.1 Drivers of energy consumption: Discrete-continuous choice model 

The results of the two steps are presented in Table 5 below. Complementary results with other 

measures for preferences and proofs of the quality of estimations are provided in Table 11 in 

the appendix. Results confirming the existence of endogeneity are provided in section C.1 of 

the appendix.  

 

Table 5: Results of the discrete-continuous model 

 All Sample Decile 1-2-3 Decile 8-9-10 

 
Discrete 

choice 
Continuous 

choice 
Discrete 

choice 
Continuous 

choice 
Discrete 

choice 
Continuous 

choice 
Energy price in 2012 0.153** -0.552*** -0.0195 -0.437*** 0.523*** -0.714*** 
 (0.0736) (0.0608) (0.128) (0.111) (0.153) (0.110) 

Income (log) -0.112** 0.0921** -0.164 0.0928 0.284* -0.0775 
 (0.0529) (0.0443) (0.127) (0.111) (0.160) (0.103) 

High preference for 

comfort for heating 
-0.00153 0.102** 0.0974 0.0630 -0.226* 0.181** 

 (0.0631) (0.0518) (0.114) (0.0992) (0.123) (0.0802) 

Medium preference 

for comfort for 

heating 

-0.0609 0.100* 0.103 -0.0127 -0.360*** 0.218** 

 (0.0677) (0.0558) (0.126) (0.110) (0.131) (0.0896) 

Small preference for 

comfort for heating 
-0.0532 0.0621 0.0276 0.0848 -0.365*** 0.156* 

 (0.0675) (0.0555) (0.116) (0.101) (0.139) (0.0947) 

Number of 

appliances (log) 
 0.146***  0.183***  0.110** 

  (0.0324)  (0.0671)  (0.0515) 

Number of days of 

housing vacancy 

during heating 

period (log) 

 -0.0299***  -0.0548***  -0.00775 

  (0.00910)  (0.0172)  (0.0152) 
Control for 

individual 

characteristics 

Yes Yes Yes Yes Yes Yes 

Control for building 

characteristics 
Yes Yes Yes Yes Yes Yes 

Control for 

localization 
Yes Yes Yes Yes Yes Yes 

Control for building 

energy class 
 Yes  Yes  Yes 

Control for price 

endogeneity 
Yes Yes Yes Yes Yes Yes 
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N 2,040 2,040 613 613 612 612 
Standard errors in parentheses:  *** p<0.01, ** p<0.05, * p<0.1 

The thresholds, or cut points, reflect the predicted cumulative probabilities at covariate values of zero. They are all 

significant at p<0.01 

Estimates by subgroup of explanatory variables are given in Table 10 in the appendix in order to confirm the robustness of 

our results. Marginal effects are given in Table 11. 

Individual characteristics include: number of occupants and duration since last move-in;  

 

Building characteristics include: detached or non detached house, building construction period, surface 

Localization characteristics include: climate zones. In France metropolitan, three main climate zones are considered, they 

gather territories with similar temperatures and meteorological conditions (including solar resource). Urban demographic 

informations are also included in localization. 

Building energy class includes EPC energy classes. 

 

 

5.1.1 Ordered probit (A-B is the reference class) 

Results (Table 5) show that household and dwelling characteristics have a significant influence 

on the propensity to live in an energy-efficient dwelling.  

Considering the global sample, income has a significant negative effect: households with higher 

revenue are more likely to live in energy-efficient homes than poor households. This could be 

linked with the higher price of real estate with good energy efficiency, i.e. “green value” 

(Hyland, Lyons, and Lyons 2013). This result is also in line with Santamouris et al. (2007). 

However, if we consider the subpopulations of the first three income deciles on one hand, and 

of the three last income deciles on the other hand, income elasticities may differ. We observe 

that households at the top end of the income distribution are more likely to choose less energy-

efficient dwellings; wealthier households generally live in big detached houses which consume 

more and are less energy efficient. This result is still valid if we remove the individual 

preferences for comfort.  

Variable energy price has a significant positive effect on the probability of belonging to a 

energy inefficient dwelling in the global model and the model for deciles 8-9-10, meaning that 

energy is more expensive in dwellings that consume more. This result could be meaningful in 

the fuel poverty framework. 

Concerning other variables, effects for the global sample are summarized below. The age of the 

reference person has an impact: for the two higher age classes, households are more likely to 
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live in a non-efficient dwelling than those under 44, the effect being higher for households in 

the last category (over 66 years). Moreover, dwelling occupancy period has a significant link 

with the energy efficiency of the dwelling. The more recent the move-in date is, the more likely 

households are to live in efficient dwellings. Two assumptions can be made: the higher 

availability of energy-efficient dwellings on the current real estate market (new dwellings are 

more energy efficient because of thermal regulations) and/or the greater attention paid by 

households to residential energy information (for several years, EPC information has been 

provided to potential renters and buyers). Some environmental characteristics are also 

correlated to the energy performance of dwellings. Concerning neighborhood, the less isolated 

the dwelling (in terms of shared walls), the more energy efficient it is likely to be. Urban area 

types also have an impact; compared to Paris and big cities, dwellings in rural areas are more 

likely to be energy inefficient; this result is consistent with (Belaïd 2016). Moreover, energy-

efficient dwellings are more likely to be found in cooler climate zones. Finally, size and 

building type effects are also significant; the bigger the dwelling is, the more energy efficient 

it is likely to be; living in a bigger house increases the probability of being in an energy-efficient 

dwelling. A dwelling’s energy efficiency is thus not only determined by household 

characteristics but also by its environmental and technical characteristics.   

Finally, preferences for comfort over economy have a significant effect only in the model 

applied to households in the three lowest income deciles. Households declaring preferring 

comfort for at least one of the three energy uses considered (heating, hot water, or specific 

electricity) are more likely to live in more energy-efficient dwellings. For a wealthier 

household, having a strong preference for comfort raises the probability of living in an energy-

efficient dwelling (class B) compared to others from 3.93% to 6.26% (see Table 12 in the 

appendix).  
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5.1.2 Direct drivers of energy consumption 

 

Energy price elasticity is significant in our three models, ranging from -0.43 to – 0.714; it is 

consistent with previous findings presented in our literature review. Results show that the 

magnitude of the price elasticity differs between low and high levels of revenue. It is lower for 

low-income households (-0.43) and higher for high-income households (-0.714), meaning that 

poor households are less responsive to an increase in energy prices. This could be explained by 

the fact that they are already restricting their energy consumption to their basic requirements; 

thus, any increase in energy prices does not affect this subsistence consumption. This 

differentiation in energy price elasticities according to income level is consistent with the work 

of Schulte (Schulte, 2017). 

Income elasticity in the model on the global sample is + 0.09, which is consistent with the 

findings in the literature for countries with similar climate and development characteristics, 

which range from 0.02 to 0.15. We do not find significant effects of income in the two other 

models. 

Concerning our core assumption on the effect of individual preferences regarding energy 

consumption, our model confirms our hypothesis: individual preferences for comfort over 

economy are highly significant and have a direct positive effect on energy consumption. When 

the global sample is considered, preferring comfort over economy for two or three energy uses 

implies energy overconsumption of 10% on average. If we consider the subpopulation of 

households belonging to the three highest income deciles, the effect is significant and even 

higher: Energy overconsumption from high and medium preferences for comfort lies between 

22 and 36%. Moreover, this result is strengthened by those obtained with the indoor heating 

temperature (see Table 11 in appendix). One degree Celsius more heat implies an 
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overconsumption of 7.8%. Similar results are presented by SOFRES-ADEME (2009), which 

obtain an overconsumption of 7%.  

This result can be interesting in terms of public policy development (see section 6). If we make 

a link with the results of the discrete choice presented above and the descriptive statistics (Table 

13 in the appendix), we can provide a more complete picture of our findings: first, we 

demonstrate that richer households are more likely to live in energy-efficient dwellings. Then, 

for these households, the effect of individual preferences on energy consumption is positive and 

higher than that for the global population. Preferences for comfort could induce up to +36% of 

additional energy consumption. This result shows that there is a considerable scope of action 

for public policies to develop regarding the reduction of energy consumption by behavioral 

changes for this target population (i.e. wealthier households living in energy-efficient 

dwellings). Regarding poorer households, we highlight two important facts: they are more 

likely to live in energy inefficient dwellings where energy is more expensive. Moreover, their 

response to energy price is low, suggesting that they only address their basic needs regarding 

energy consumption. The equipment rate of households has also a significant impact on energy 

consumption. An increase in this rate implies an overconsumption of 14.6%. All these results 

are consistent with the literature review of Lopes et al. (2012).  

Finally, regarding behavioral variables, we see that the duration of absence during the day has, 

unsurprisingly, a negative significant effect on total energy consumption. The number of 

appliances is significant and positive in explaining energy consumption.  

In terms of dwelling characteristics, energy-efficiency classifications have the expected effects, 

significant and negative. The more efficient the home is, the less occupants consume energy. 

This suggests that, in our sample, the EPC measures available in our survey are at least partially 

representative of the levels of real energy consumption observed. Living in a more energy-

efficient dwelling implies a lower effective energy consumption, all things being equal.  
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6. Conclusion and policy implications 

This research provides a new proof of the significant role of individual characteristics in energy 

consumption. The key result of this research is to give a preliminary estimate of the magnitude 

of the effect of heterogeneity in preferences to explain energy consumption variability. To sum 

up, our research makes the following contributions: 

- It confirms the role of common drivers of energy consumption for the French residential 

sector: energy price, income, age, environmental characteristics, energy efficiency of the 

dwelling, etc. However, our research also supports the existence of a differentiation of 

energy price elasticity according to household income level.  

- It demonstrates that individual preferences for comfort over economy have a significant 

positive effect on energy demand for the global population: preferring comfort over 

economy implies on average a 10% increase in individual energy consumption, all else 

being equal. We show that this effect is higher in magnitude for high-income households, 

who are otherwise more likely to live in more energy-efficient dwellings.  

- We provide new evidence of the importance of taking into account the role of indirect 

determinants when analyzing the drivers of energy consumption. Regarding our 

methodology, we applied the very well-known discrete continuous model framework 

pioneered by McFadden (1984) with a new perspective to account for the complexity of 

energy consumption. Our modelling of housing choice via the dwelling’s energy-efficiency 

level (energy classification) is an important contribution of this paper. By using a nonlinear 

methodology to understand the drivers of residential energy demand, our approach, 

accounting for dwelling/household interactions, is in line with recent work (Estiri 2015, 

Belaïd 2017). In particular, we provide evidence that basic household and dwelling 

characteristics (surface, location, etc.) can determine thermal housing attributes, 

conditioning final energy consumption. 



26 
 

From an energy policy perspective, we have several recommendations. First, better mapping of 

the match between household socioeconomic characteristics and the energy characteristics of 

their dwellings could be very useful to develop more effective energy policies aiming at 

reducing energy consumption. In our analysis, we provide evidence that poorer households are 

more likely to live in energy inefficient dwellings; this means that poorer people live in 

dwellings that need to be renovated for improved energy efficiency. For these households, the 

high investment costs of energy retrofits could be a significant barrier to action, explaining the 

energy-efficiency gap observed in the literature (Gillingham and Palmer 2014). Otherwise, we 

have highlighted a lower energy price elasticity for low-income households, implying that they 

would be less responsive to economic tools like carbon taxation and more affected by its 

financial consequences. We suggest that policymakers wishing to tax energy be careful not to 

increase fuel poverty situations for these households. 

On the other hand, if we focus on high-income households, attention should be paid to the 

significant effect of a change in preferences regarding comfort on energy consumption in 

energy-efficient dwellings: preferences for comfort could induce up to +36% of additional 

energy consumption. The connection can be made with the famous “rebound effect” 

(Gillingham, Rapson, and Wagner 2016) that accompanies better energy performance of a 

dwelling and leads to a reduced amount of energy savings induced by retrofits due to comfort 

improvement. If financial incentives for energy renovations are given to high-income 

households, who then decide to favor comfort over economy, implying less energy savings than 

expected by engineering models, then the allocation of financial incentives could become less 

cost effective in terms of public expenditures. Conditioning the amount of financial incentives 

on household’s available economic resources, initial energy-efficiency level of the home, and 

the energy-savings potential of the retrofit measure could constitute an effective way to foster 

energy-efficient retrofits. Moreover, creating information campaigns promoting reasonable 
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energy use and addressed to intensive energy consumers unaware of environmental impacts 

would also be an effective tool to reduce energy consumption (Ouyang and Hokao 2009; 

Wilhite and Ling 1995). 

In conclusion, in line with the results of the research of Hache et al. (Hasche and al 2017), we 

recommend that policymakers aiming at promoting social welfare and achieving effective 

public policies keep in mind that low-income and high-income households should be 

considered separately when developing and implementing public policy tools to reduce energy 

consumption in the residential sector.  
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Appendix 
 

A.  Energy prices 

Table 6: Energy prices provided by PEGASE database  
 2011 2012 

ELECTRICITY TARIFF 

Electricity. blue rate. base option in euros (tax included) 

Annual subscription cost 3 kVA 64.94606 67.40325 

Annual subscription cost 6 kVA 77.45169 80.36592 

Annual subscription cost 9 kVA 90.3377 93.76717 

Annual subscription cost 12 kVA 142.84527 148.13392 

Annual subscription cost 15 kVA 164.85725 171.04758 

Annual subscription cost 18 kVA 219.2238 227.44092 

Price for 100 kWh (power 3 kVA) 17.02237 17.7994 

Price for 100 kWh (power 6 kVA) 16.23193 16.9816 

Electricity. blue rate. peak hours rate in euros (tax included) 

Annual subscription cost 6 kVA 93.13223 96.59658 

Annual subscription cost 9 kVA 111.76704 115.91475 

Annual subscription cost 12 kVA 189.49559 196.56458 

Annual subscription cost 15 kVA 223.04773 231.32342 

Annual subscription cost 18 kVA 254.38013 263.81675 

Annual subscription cost 24 kVA 529.87303 549.78758 

Annual subscription cost 30 kVA 652.50116 677.02358 

Annual subscription cost 36 kVA 754.42164 782.73067 

100 kWh peak-hours 12.91385 13.54292 

100 kWh peak-off 8.76965 9.23933 

Price for 100 kWh (power 6 kVA) 14.03546 14.70435 

Price for 100 kWh (power 9 kVA) 13.02266 13.65389 

Price for 100 kWh (power 12 kVA) 12.77758 13.39973 

Electricity. blue rate. tempo option in euros (tax included) 

Annual subscription cost 9 kVA 109.04157 113.022 

Annual subscription cost 12 kVA 203.35865 210.90942 

Annual subscription cost 30 kVA 456.64613 473.54025 

Annual subscription cost 36 kVA 566.42158 587.43975 

100 kWh blue days and peak-off 6.8142 7.2111 

100 kWh blue days and peak-hours 8.20155 8.65528 

100 kWh white days and peak-off 9.8401 10.35061 

100 kWh white days and peak-hour 11.7537 12.33594 

100 kWh red days and peak-off 18.5589 19.40033 

100 kWh red days and peak-hour 49.16455 51.17409 

Electricity. market rate. in euros (tax included) 

All rates 13.41974 13.82434 

DA rate 24.45679 25.13133 

DB rate 15.8404 16.3847 

DC rate 14.02566 14.45913 

DD rate 12.84391 13.2134 

DE rate 12.54369 12.91665 

GAS RATE 

Natural Gas. price in euros (tax included) 

Annual subscription cost - base rate 43.8933 46.92645 

Annual subscription cost - B0 rate 58.0092 61.97075 

Annual subscription cost - B1 rate 185.18415 195.4546 

Annual subscription cost - B2I rate 185.18415 195.4546 
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100 kWh PCS - base rate 9.3988 9.96987 

100 kWh  - B0 rate 8.0742 8.51871 

100 kWh- B1 rate 5.58353 5.86163 

100 kWh - B2I rate 5.58353 5.86163 

Price for 100 kWh B0 rate 11.74238 12.42551 

Price for 100 kWh B1 rate 7.08853 7.44654 

Price for 100 kWh  B2I rate 6.79365 7.13536 

DOMESTIC OIL RATE 

Tariff of one ton of propane in tank 1670.297 1791.087 

100 kWh PCI (Lower calorific value) propane in 

tank 12.96815 13.90596 

Price of one ton of propane 1670.297 1791.087 

100 kWh PCS (Higher calorific value) of propane 12.1036 12.97889 

100 kWh PCI of propane 13.06961 14.01476 

Bottle of 13 kg butane 30.19 31.75 

100 liters of oil at Rate C1 88.79 96.88 

100 kWh oil PCI at Rate C1 8.90482 9.71618 

WOOD RATE 

One ton of bulk pellets 250 260 

One stere of logs 63 67 

100 kWh PCI of bulk wood 3.70588 3.94118 

Source: PEGASE database, French Ministry of Energy 
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B.  Descriptive statistics – Energy performance class 
 

B.1 Main descriptive statistics 

Table 7: Main descriptive statistics 

 

Variable Mean Std. Dev. Min Max 
Energy consumption in kwh/m² 170.562 99.901 2.258 814.740 
Energy price in 2012 0.094 0.028 0.006 0.382 
Energy price in 2011 0.090 0.027 0.006 0.308 
Regulated rate with no subsidy 0.703 0.457 0.000 1.000 
Regulated rate with subsidy 0.010 0.101 0.000 1.000 
Disposable income 40394.0 24639.4 307.0 277601.0 
Number of persons 2.544 1.298 1 10 
High preference for comfort 0.295 0.456 0 1 
Medium preference for comfort 0.218 0.413 0 1 
Low preference for comfort 0.215 0.411 0 1 
No preference for comfort 0.272 0.445 0 1 
Heating temperature 20.458 6.692 8 99.0 
Number of appliances 16.082 13.511 1 341.0 
Number of days of housing vacancy 

during heating period 
7.783 16.104 0 210.0 

Duration since move-in 17.255 15.019 0 89.0 
Non-detached house 0.437 0.496 0 1 
Surface  111.8 49.3 15.0 600.0 
Climate zone H1 - coldest 0.575 0.494 0 1 
Climate zone H2 0.361 0.480 0 1 
Climate zone H3 0.063 0.243 0 1 
Town < 2000 inhabitants 0.274 0.446 0 1 
Town between 2,000 and 10,000 

inhabitants 
0.132 0.339 0 1 

Town between 10,000 and 50,000 

inhabitants 
0.148 0.355 0 1 

Town between 50,000 and 200,000 

inhabitants 
0.110 0.313 0 1 

City between 200,000 and 2,000,000 

inhabitants 
0.243 0.429 0 1 

Paris 0.093 0.291 0 1 
Period of construction     
Before 1919 0.170 0.376 0 1 
1919 to 1945 0.090 0.286 0 1 
1946 to 1970 0.174 0.379 0 1 
1971 to 1990 0.325 0.468 0 1 
1991 to 2005 0.175 0.380 0 1 
2006 and after 0.066 0.249 0 1 
Energy class     
A 0.024 0.152 0 1 
B 0.138 0.345 0 1 
C 0.276 0.447 0 1 
D 0.293 0.455 0 1 
E 0.148 0.355 0 1 
F     
G 0.122 0.327 0 1 
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Table 8a: Analysis of preferences:  Correlation between individual preferences and socio-economic 

characteristics 

 Age Number 

of 

consumpti

on units 

Revenu  High 

preferences 

for comfort 

Medium 

preferences 

for comfort 

Low 

preferences 

for comfort  

Number of 

consumption 

units 

-0.4104*      

Revenu   -

0.1131* 

0.3718*      

High 

preferences for 

comfort 

 0.0242   -0.0262    

0.1086*  

   

Medium 

preferences for 

comfort 

-0.0568* 0.0687* 0.0602*  -0.3414*   

Low 

preferences for 

comfort  

 -0.0347  -0.0011  -0.0396  -0.3384* -0.2766*   

Preferences for 

comfort for 

heating use  

0.0060  0.0224 0.1111* 0.5663*  0.2210* -0.0947*  

 

Significance level  p<0.05, 

Table 8b: Analysis of preferences:   ttest 

 

 Obs Mean t 
Critical 

probability 

  0 1   

Revenue, by Preference for comfort for heating 2038 37271.82 42791.16 t =  -5.0449 0.00000 

Revenue, by high preference for comfort 2038 38665.47 44532.82 t =  -4.9310 0.00000 

Revenue, by preference for comfort for hot water 2038 37430.96 44601.38 t =  -6.5383 0.00000 

Revenue, by preference for comfort for electricity 2038 37265.54 42888.56 t =  -5.1529 0.00000 

Real energy consumption, by high preference for comfort  2038 164.389 175.3014 t =  -2.4484 0.0072 

Real energy consumption, by preference for comfort for heating 2038 170.3639 171.0365 t =  -0.1386  0.4449 

Theoretical energy consumption, by high preference for comfort  2038 208.7363 190.8599 t =  2.9913  0.0014 

 

B.2 Energy class 

Figure 1: EPC energy-efficiency classifications 
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Table 9: Distribution of national dwelling stock into energy-efficiency classifications 

 

 

 

 

 

 

 

 

C. Regressions 

C.1 Quality test of instruments 

 

First, we can perform tests to determine whether endogenous regressors in the model are in fact 

exogenous. After a 2SLS estimation with an unadjusted VCE, the Durbin (Jiang et al. 2014) 

and Wu–Hausman (Hausman 1978; Wu 1974) statistics are reported. 

We check the consistency of the results with a VCE estimation.  In all cases, if the test statistic 

is significant, then the variables being tested must be treated as endogenous. 

 

Table 10: test of endogeneity 

Ho: variables are exogenous 

 

Durbin (score) chi2(International Energy Agency 

(IEA)) = 5.27529 

p = 0.0216 

Wu-Hausman F(1,2016)= 5.25008 p = 0.0220 

Robust score chi2(International Energy Agency 

(IEA)) = 5.42787 

p = 0.0198 

Robust regression F(1,2025) = 3.497085 p = 0.0616 

 

We now explore the degree of correlation between the additional instruments (energy prices in 

2011 and electricity rates) and the endogenous regressor (energy prices in 2012). Our 

exogenous variable can be considered a valid instrument if it is correlated with the included 

endogenous regressors but uncorrelated with the error term. Using a Stock and Yogo (2005) 

test, we can discuss the validity of the instruments. The null hypothesis of each of Stock and 

Yogo’s tests is that the set of instruments is weak. To perform the Wald tests, we choose a 

relative rejection rate of 5%. If the test statistic exceeds the critical value, we can conclude that 

Energy 

Class 

Number of 

observations 

At national 

scale 

Share of 

housing 

stock  (%) 

A-B 48 439 585 2 

C 281 2 724 895 12.6 

D 564 5 483 573 25.4 

E 598 6 322 821 28.3 

F 301 3 361 569 15.6 

G 248 3 257 038 15 
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our instruments are not weak. In our model, the F statistic is 89361.3 and largely exceeds the 

critical value. Our instruments are not weak. 

 

Minimum eigenvalue statistic = 89361.3 

 5%      10% 20% 30% 

2SLS relative bias                    13.91     9.08     6.46     5.39 

 

2SLS Size of 

nominal 5% Wald 

test     

22.30 12.83 9.54 7.80 

LIML Size of 

nominal 5% Wald 

test      

6.46 4.36 3.69 3.32 

 

Finally, to confirm our results, we perform tests of overidentifying restrictions. With the 2SLS 

estimator, Sargan’s (Sargan 1958) and Basmann’s (Basmann 1960) χ² tests are reported.  A 

statistically significant test statistic always indicates that the instruments may not be valid.  

Here, the tests are not significant, so our instruments are valid. 

 

Sargan (score) chi2(2) = 0.08529 p = 0.9583 

Basmann chi2(2)        = 0.084625 p = 0.9586 

 

C.2 Estimations 
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Table 11: Model estimates by subgroup of variables 

 

Whole Sample With heating 

temperature 

Subgroup 1 Subgroup 2 Subgroup 3 Subgroup 4 

 DC CC DC CC DC CC DC CC DC CC DC CC 

Energy price in 2012 0.153** -0.552*** 0.139* -0.521*** 0.150** -0.482*** 0.127* -0.474*** 0.135* -0.491*** 0.141* -0.504*** 

 (0.0736) (0.0608) (0.0739) (0.0603) (0.0738) (0.0412) (0.0736) (0.0430) (0.0737) (0.0453) (0.0740) (0.0472) 

Income (log) -0.112** 0.0921** -0.0965* 0.0830* -0.0751  -0.119** 0.0623** -0.123** 0.0700** -0.127** 0.0790** 

 (0.0529) (0.0443) (0.0526) (0.0435) (0.0488)  (0.0520) (0.0312) (0.0524) (0.0337) (0.0524) (0.0342) 

Preference for comfort: 

high 

-0.00153 0.102**   0.0717  -0.00260 0.103*** -0.00201 0.102*** -0.00415 0.104** 

 (0.0631) (0.0518)   (0.0579)  (0.0632) (0.0381) (0.0632) (0.0395) (0.0631) (0.0408) 

Preference for comfort: 

medium 

-0.0609 0.100*   -0.0200  -0.0605 0.0707* -0.0636 0.0780* -0.0554 0.0738* 

 (0.0677) (0.0558)   (0.0622)  (0.0679) (0.0411) (0.0679) (0.0425) (0.0678) (0.0439) 

Preference for comfort: 

low 

-0.0532 0.0621   -0.0306  -0.0547 0.0424 -0.0577 0.0479 -0.0462 0.0384 

 (0.0675) (0.0555)   (0.0618)  (0.0677) (0.0408) (0.0677) (0.0422) (0.0677) (0.0436) 

Heating temperature   -0.0463*** 0.0789***         

   (0.0164) (0.0135)         

Number of appliances 

(log) 

 0.146***  0.139***    0.131***  0.142***  0.139*** 

  (0.0324)  (0.0322)    (0.0322)  (0.0324)  (0.0323) 

Number of days of housing 

vacancy during heating 

period (log) 

 -

0.0299*** 

 -

0.0273*** 

   -0.0285***  -0.0296***  -

0.0294*** 

  (0.00910)  (0.00905)    (0.00911)  (0.00915)  (0.00908) 

Control for individual 

characteristics 

Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes 

Control for building 

characteristics 

Yes Yes Yes Yes Yes No Yes No Yes Yes Yes No 

Control for localization Yes Yes Yes Yes Yes No Yes No Yes No Yes Yes 

Control for building 

energy class 

 Yes  Yes  Yes  Yes  Yes  Yes 

Control for price 

endogeneity 

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

N 2040 2040 613 613 2040 2040 2040 2040 2040 2040 2040 2040 
Standard errors in parentheses:  *** p<0.01, ** p<0.05, * p<0.1.  The thresholds, or cut points, reflect the predicted cumulative probabilities at covariate values of zero. They are all significant at p<0.01. 
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Table 12: Marginal effects for the ordered probit model 

 

  

Whole sample 

 Outcome 1 
Outcome 

2 
Outcome 

3 
Outcome 

4 
Outcome 

5 
Outcome 

6 
Energy price in 2012 -0.0072 -0.0232 -0.0180 0.0073 0.0159 0.0251 

Income (log) 0.0053 0.0170 0.0132 -0.0053 -0.0117 -0.0184 

No. of persons 0.0023 0.0073 0.0057 -0.0023 -0.0051 -0.0080 

Preference for comfort: high 0.0001 0.0002 0.0002 -0.0001 -0.0002 -0.0003 

Preference for comfort: medium 0.0029 0.0092 0.0072 -0.0029 -0.0063 -0.0100 

Preference for comfort: low 0.0025 0.0081 0.0063 -0.0025 -0.0055 -0.0087 
Control for individual 

characteristics 
Yes Yes Yes Yes Yes Yes 

Control for building characteristics Yes Yes Yes Yes Yes Yes 

Control for localization Yes Yes Yes Yes Yes Yes 

Decile 1-2-3 

 Outcome 1 
Outcome 

2 
Outcome 

3 
outcome 

4 
Outcome 

5 
Outcome 

6 
Energy price in 2012 0.0006 0.0024 0.0026 0.0004 -0.0016 -0.0045 

Income (log) 0.0048 0.0202 0.0221 0.0036 -0.0133 -0.0375 

No. of persons 0.0028 0.0117 0.0127 0.0021 -0.0077 -0.0217 

Preference for comfort: high -0.0029 -0.0120 -0.0131 -0.0022 0.0079 0.0223 

Preference for comfort: medium -0.0030 -0.0127 -0.0139 -0.0023 0.0083 0.0236 

Preference for comfort: low -0.0008 -0.0034 -0.0037 -0.0006 0.0022 0.0063 
Control for individual 

characteristics 
Yes Yes Yes Yes Yes Yes 

Control for building characteristics Yes Yes Yes Yes Yes Yes 

Control for localization Yes Yes Yes Yes Yes Yes 

Decile 8-9-10 

 
Outcome 

1 
Outcome 

2 
Outcome 

3 
outcome 

4 
Outcome 

5 
Outcome 

6 
Energy price in 2012 -0.0322 -0.0911 -0.0410 0.0494 0.0607 0.0543 

Income (log) -0.0175 -0.0494 -0.0222 0.0268 0.0329 0.0294 

No. of persons 0.0020 0.0055 0.0025 -0.0030 -0.0037 -0.0033 

Preference for comfort: high 0.0139 0.0393 0.0177 -0.0213 -0.0262 -0.0234 

Preference for comfort: medium 0.0222 0.0627 0.0283 -0.0340 -0.0418 -0.0374 

Preference for comfort: low 0.0224 0.0634 0.0286 -0.0344 -0.0423 -0.0378 

Control for individual characteristics Yes Yes Yes Yes Yes Yes 

Control for building characteristics Yes Yes Yes Yes Yes Yes 
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Table 13: Distribution of income deciles for each energy-efficiency classification (%).  

 A B C D E F G 

D1 0 12 4 7 8 14 21 

D2 0 5 7 6 11 15 16 

D3 0 2 9 10 10 9 13 

D8 20 14 14 10 11 6 6 

D9 20 16 14 13 7 10 5 

D10 20 12 14 13 8 9 5 

Legend (upper table): 42% of the dwellings belonging to the energy class B are occupied by households in the 

three highest income deciles. 50% of the dwellings of energy class G are occupied by dwellings of the three lowest 

income deciles 
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