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Distributed Energy Resources (DERs), mostly in the form of solar photovoltaic 
(PV) or lithium-ion batteries, and electric vehicles (EVs) are emerging as three 
disruptive innovations in power grids. Recent studies have pointed out the 
potential synergies between these technologies, while others have studied the 
difficulty to design adequate network tariff when some consumers can adopt 
DERs (prosumers). In this paper, we fill gaps in both strands of the literature 
by investigating the combined effect of DERs and EVs on grid cost recovery. 
To study these effects, we use a bi-level model that captures the conflict 
between a regulator and the network users. In the lower level, prosumers can 
react to tariff changes by installing DERs and by adapting their EV charging.  
In the upper level, the regulator sets network tariffs by enforcing the total grid 
costs recovery and anticipating the prosuming behaviors of network users. We 
study how the levels of EV penetration and prosuming affect tariffs. The 
influence of the tariff structure is also investigated.  
First, we find that grid cost recovery concerns caused by load-defecting 
prosumers installing DER can be balanced by the diffusion of EVs in the 
network. Second, we highlight that EVs and DERs adoptions are conflicting 
through the network tariff design. In particular, we find that the more a tariff 
structure gives incentives for DERs, the less beneficial it is for EVs, and vice-
versa. 
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1. Introduction

The power sector faces deep transformations, motivated by environmental reasons and led by disruptive
technologies. Within these transformations, two of the main trends can be identified: energy self-supply and
electrification. On the one hand, distributed generation and storage allow some consumers1 to produce and
self-consume electricity with flexibility. On the other hand, the electrification of sectors (transport, heating)
should significantly increase consumers’ power consumption. To this regard, solar photovoltaic (PV)2 and
lithium-ion batteries for the first trend and electric vehicles for the second, are the main representative
technologies. Indeed, both solar PV and lithium-ion batteries have had a spectacular decline in costs
(Schmidt et al., 2017; IEA, 2018; Nykvist et al., 2019). Simultaneously, solar PV and EVs have been
supported by strong public policies and regulations (MIT, 2015; IEA, 2018).

In this context, the traditional organization of grids is being moved by these new technologies and network
uses. This paradigm shift of electricity use is challenging the current economic rules of power grids, with
fears of system e�ciency losses and fairness matters between consumers (Eid et al., 2014). Nevertheless,
smart association of these new technologies could bring economic gains for users as for the power system
(Richardson, 2013; Hoarau and Perez, 2018). Therefore new regulations are needed to cope with these issues
while ensuring a well-functioning power system. Among these, the design of network charges is a particularly
crucial issue (Pérez-Arriaga et al., 2017).

This paper investigates the tari↵ design of low-voltage distribution grids with high levels of adoption
DERs (solar PV and batteries) and electric vehicles (EVs), which is still a rather unexplored issue in the
literature (Pollitt, 2018). More precisely, it studies the interactions of the behavior of prosumers that are able
to invest in distributed energy resources (DERs)3, with the adoption of electric vehicles that significantly
increases the electric consumption of their owners4. The tari↵ design process is modeled as a non-cooperative
game between various classes of network users and a regulator who enforces the network cost recovery.
Numerical case studies are conducted with di↵erent scenarios of EV di↵usion and prosuming and di↵erent
tari↵ structures. The impacts on network tari↵s of increased proportions of prosumers and electric vehicle
owners in the network with di↵erent tari↵ structures are investigated. We describe precisely how network
costs are shared between the di↵erent users. Along with this, we provide evidences of conflicts between DER
adoption and EV adoption through the grid costs recovery enforcement by the regulator. These conflicts
generally translates into either cross-subsidy from EV owners to prosumers or by decrease of the profitability
of DER investments. We also determine how the tari↵ structure drives those conflicts. We found that the
more a tari↵ structure gives incentives for DERs, the less beneficial it is for EVs, and vice-versa. In addition,
the appendices of this paper provide results on the robustness of the previously described mechanisms to
(1) alternative tari↵ structures and (2) variable components in the grid costs structure.

The paper is organized as follows. First, the motivations of these research questions are presented with a
literature review on three related research topics. Then, the modeling framework and the assumptions of the
associated simulations are described. Results are presented on section 4 which discusses (1) the impact of
EV and prosuming on tari↵ design, (2) the spillovers between EV and DER adoption through tari↵ design.
Last section concludes the paper and discusses policy implications of this study.

2. Literature review

The contribution of this paper is at the intersection of three strands of literature. The first deals with
designing network tari↵s when grid users acquire DERs. The second one studies the integration of EVs in

1In this paper, such consumers will be designated by the term prosumers.
2
Abbreviations: EV, electric vehicle; TV, traditional vehicle; PV, photovoltaic; DER, distributed energy resources; DSO,

distribution system operator; SOC, state of charge; EVIC, EV incremental costs.
3By investing in DERs, prosumers may seek to minimize their electricity costs and are hence able to react to changes in

network tari↵s.
4For instance, (Andersen et al., 2017) has shown that for an household from the EU, charging an electric vehicle at home

can increase power consumption almost by a factor two.
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power grids. The interaction between electric vehicles and DERs constitutes the third body of literature. In
this section, we briefly present these three strands, and we review the elements of modeling needed to study
the interactions between tari↵ design, electric mobility and prosuming.

Volumetric tari↵ with net-metering have been the traditional way of recovering distribution network
costs. However, many scholars have evidenced that under such tari↵ structure, DERs and especially solar
PV, leads to ine�ciencies and fairness issues between network users (Eid et al., 2014; Simshauser, 2016;
Jenkins and Pérez-Arriaga, 2017). Indeed, prosumers become able to react to electricity prices to minimize
their bill by investing in solar PV. They save on energy costs as well as network costs with a volumetric
with net-metering tari↵. At some point, this could lead to threaten the financial balance of distribution
system operator (DSO). To prevent this, regulators would have to increase tari↵ levels and this for all users.
This results in an increase of traditional (passive) users’ bill and hence a sensible fairness issue between
network users. Numerous studies have investigated alternative tari↵s that would integrate solar PV both
e�ciently and fairly. For instance, (Simshauser, 2016) has argued that capacity tari↵s should remove the
over-incentives on solar PV brought by volumetric tari↵s. However, this issue is still controversial in the
literature (Brown and Sappington, 2018; Passey et al., 2017). For instance, (Kubli, 2018; Schittekatte et al.,
2018) have indicated that capacity tari↵s give incentives for the adoption of low-cost lithium-ion batteries,
which could also create similar fairness and e�ciency issues. This strand of literature mainly focuses on
tari↵ design with technologies that allow users to reduce their consumption (energy or peak power). To the
best of our knowledge, no study has considered adoption of technologies that would significantly increase
power consumption of users, such as electric vehicles.

Although EVs represent a potential huge source of revenues for electric utilities (Kempton and Letendre,
1997), numerous studies have pointed out that a disorganized deployment of EVs in power grids could
severely a↵ect the stability of networks5 and hence increase total network costs (Clement-Nyns et al., 2010;
Fernandez et al., 2011; Muratori, 2018; Verzijlbergh et al., 2012). Nevertheless, such e↵ects are dependent
on the robustness of the network (Neaimeh et al., 2015). Moreover, the flexibility of the EV battery provides
a wide range of options to mitigate these impacts on grids, thanks to so-called smart charging strategies
(Garćıa Villalobos, 2016). Assessing the economic and regulatory incentives to make EV drivers and fleet
managers to such uses is therefore a crucial issue for e�cient integrations of EVs (Eid et al., 2016; Knezović
et al., 2017). Among these regulations, electricity prices can give strong incentives to adopt smart charging.
Network tari↵s can therefore play a significant role, that yet needs to be described. We contribute to this
research field by assessing how the electricity costs of EV owners vary with the network tari↵ design and
how large EV di↵usion could a↵ect the tari↵ design.

Finally, we contribute to the literature on the interaction between EVs, solar PV and distributed storage,
which has gathered much attention recently (Richardson, 2013; Hoarau and Perez, 2018). This research
topic is motivated by the following reasons. Electric vehicles need low-cost power for charging and require
a low-carbon energy to have a significant environmental benefit against internal combustion vehicles (Ma
et al., 2012). PV generation needs flexible storage to face its variability and intermittency. Moreover, local
PV generation could alleviate electric vehicles’ impact on power grids (Islam et al., 2016). Nevertheless,
(Munkhammar et al., 2015) have pointed out that since EV charging should be synchronized with PV
generation hours, there should not be much synergy between EV and PV in residential areas, where EVs
are away most of the day. However, (Alirezaei et al., 2016; Kaschub et al., 2016) have shown that low-cost
home batteries could bypass this issue and ensure significant economic and environmental gains. Generally,
there is a lack of studies that integrate economic and regulatory aspects of couplings between EVs and DERs
(Hoarau and Perez, 2018). This paper fills one gap in this strand of literature by investigating the e↵ects of
network tari↵ design on the interactions between EVs and DERs. There are few papers that simultaneously
take into account EVs, DERs and network tari↵s. (Kaschub et al., 2016) study how the profitability of
home systems comprising solar PV and batteries was a↵ected by EV charging and retail tari↵, but there is
no feedback on the tari↵ design. In a recent paper, (Küfeoğlu et al., 2018) developed a case study on tari↵

5Typical e↵ect of massive uncoordinated EV charging in distribution network are increased power loss and reduction of
transformers lifetimes.

3



Passive network user Prosumer

Traditional vehicle owner

TV-passive user - Traditional user

• do not minimize electricity costs
• may not invest in DERs
• proportion: (1� pP )(1� pEV )

TV-prosumer - Regular prosumer

• minimize electricity costs
• may invest in DERs
• proportion: pP (1� pEV )

Electric vehicle owner

EV-passive user - Green commuter

• do not minimize electricity costs
• dumb charging of EV
• may not invest in DERs
• proportion: (1� pP )pEV

EV-prosumer - Full innovator

• minimize electricity costs
• smart charging of EV
• may invest in DERs
• proportion: pP pEV

Table 1: Description of the di↵erent network users with their attributes

study for British distribution grids and assessed that EVs were counterbalancing the increasing e↵ect on
tari↵s induced by solar PV, but the authors neither consider batteries or load flexibility.

A di�culty in the modeling of tari↵ design with EV and DERs is to consider key-elements of the three
fields that have been previously discussed. Studying the integration of EVs in power grids require to model
the e↵ect of the EV charging patterns on the single EV owner’s load profile and aggregate e↵ect of EVs on the
network peak power and network costs. At the same time, investigating the interactions between EVs and
DERs needs to model precisely the consumption of users and how they invest and optimize their consumption
(in energy and power) with electricity prices. Designing e�cient and fair network tari↵s requires to tale
into account the newly conflicting aspect of this problem. One of the main missions of the regulator is to
ensure the cost recovery of utilities in charge of distribution systems operations. In the network, some users
are now able to react to changes in their electricity costs by investing in DERs. Such conflicting situation
can be modeled by non-cooperative games. More precisely, a non-cooperative game between the regulator
and network users would be the appropriate methodology. Such games have been applied for the studies of
smart grids organized by an aggregator such as in (Yu and Hong, 2016; Tushar et al., 2012). Such modeling
methods allow to evaluate both distributive aspects and welfare aspects of the tari↵ design (Brown et al.,
2017; Schittekatte and Meeus, 2018). In a neighboring study on this paper, (Küfeoğlu et al., 2018) models
di↵erent penetration levels of solar PV and EVs and their implications on the network tari↵s. But the
authors neither model the precise load profiles of users, nor the reaction of some users to network tari↵ to
optimize their consumption, nor emit welfare considerations.

3. Methods and data

This section presents the methodology adopted in this paper. A detailed explanation of the modeling of
tari↵ design is followed by the description of the data used in the numerical case study.

3.1. Model

3.1.1. Overview

This paper models a regulator that designs tari↵s in a low-voltage residential grid in a stylized framework.
As pointed out earlier, one of his main missions is to design tari↵s paid by network users that will remunerate
the DSO so that it recovers its costs. In the previously defined context, he needs to anticipate the behavior
of some grid users that would push back by installing DERs in their home in reaction of increased electricity
prices. Moreover, the regulator takes into account the precise e↵ect of the adoption of other new technologies
by users (namely EVs in this paper).
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Figure 1: Model structure

The chosen approach of this paper is a game-theoretical model which is similar to the one used in (Schit-
tekatte et al., 2018; Schittekatte and Meeus, 2018; von Appen and Braun, 2018). The model is summarized
in Figure 1. More precisely, the interaction between the regulator that designs network tari↵ and users of
grid users is modeled by a non-cooperative game. As di↵erent tari↵ structures are considered by the regula-
tor, typical load profiles of network users need to be precisely modeled. Four kinds of representative network
users are considered, depending on whether they are prosumers or passive users, and whether they own an
EV or a traditional vehicle (TV)6. A description of user types is shown on table 1. Rational representative
users are considered. Prosumers are able to minimize their electricity consumption by investing in DERs
and to optimize the energy flows of their houses. On the contrary, passive users are not able to do so7.
Such di↵erentiation has been widely used in the literature (Brown et al., 2017; Gautier et al., 2018). We
assume that only EV owners that are also prosumers can optimize their EV charging (smart charging). The
proportion pP of prosumer is assumed to be independent of proportion pEV of EV owners8. To simplify,
we assume that all network users have the same typical electric consumption and that this consumption is
strictly inflexible. It is important to notice the asymmetry between EVs and DERs in this approach. EV
adoption is uncorrelated to electricity prices, mainly because electricity prices represent a small part of EV
total ownership cost (Breetz and Salon, 2018; Palmer et al., 2018). On the contrary, DER adoption is mainly
motivated by electricity prices (Karakaya and Sriwannawit, 2015). The model is solved numerically9 by an
iterative method10, where each level takes in argument the output of the other level until the algorithm
converges11.

6The user type ”TV owners” includes more generally all users that do not own a private EV at home.
7This inability has several causes, such as lacks of space for DER installation, cash access for investing, unavailable infor-

mation, etc.
8However, some correlation of adoption both DERs and EV has been evidenced in some regions (Delmas et al., 2017).
9Note that this model can not be solved analytically, unless a simple ad-hoc DER investment function is assumed.

10The model is solved in Python using CVXPY (Diamond and Boyd, 2016).
11For most of the simulations, less than 10 iterations were needed.
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3.1.2. Regulator level

In the upper level, the tari↵ design process is simplified. The sole objective of the regulator is to balance
the budget of the DSO. The DSO only reports its costs and the aggregated12 consumption of the whole
network13. Beside this reporting, the DSO is passive in the tari↵ design process. In the most part of the
paper, we consider only sunk distribution network costs. This important assumption is motivated by the
traditional ’fit-and-forget’ approach of grid planning that has led to over-dimensioned grid with large costs
(Pollitt, 2018). This assumption will be relaxed in the Appendix D. The tari↵ design is defined as follows.
First, the regulator chooses a tari↵ structure. This structure is a policy choice and is therefore exogenous
in the model. Network tari↵s are usually decomposed in three parts : volumetric (in e/kWh), capacity (in
e/kW) and fixed (in e). In the case where users are able to self-consume and/or feed-in power back to the
grid, net-metering has been generally applied. With net-metering, the volumetric part of the tari↵ applies to
the net electricity consumed (i.e. electricity consumed minus electricity produced)14. Network tari↵ design
is described in the model with three types of structure are considered (volumetric, capacity and fixed). This
allows a precise understanding of the particular e↵ect of each part of the tari↵15.
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Equations 1(a-d) describe the DSO cost recovery constraint16. The regulator enforces that the overall
networks costs C

N

should match the revenues of the DSO by setting tari↵s t
V

, t
C

, t
F

. These revenues are
composed of volumetric (energy) charges revenues R

V

, capacity charges revenues R
C

and fixed charges
revenues R

F

. Parameters ✏
V

, ✏
C

, �
m

describe the composition of the tari↵. For pure volumetric tari↵,
✏
V

= 1, ✏
C

= 0. For pure capacity tari↵ ✏
V

= 0, ✏
C

= 1. For fixed tari↵, ✏
V

= 0, ✏
C

= 0. With net-metering
(�

m

= 1), the user is charged on its net consumption (with FG,+
i,t

and FG,�
i,t

the power flows from and to
the grid of user i at time t), meaning that her self-production (e.g. from solar PV) is subtracted from its
consumption on a yearly basis17. Without net-metering, volumetric charges apply to the total power flows
of the user (consumption added to self-consumption). With capacity tari↵s, the user is charged based on its
annual peak load P̄

i

. p
i

is the proportion of user i in the network, which is exogenous in our model.

3.1.3. Network users level

In the lower level, network users minimize their electricity costs depending on their user class (EV-
prosumer, EV-passive, TV-prosumer or TV-passive) as follows:

Minimize (Electricity costs)
i

= (Energy costs)
i

+ (Network charges)
i

+ (DERs costs)
i

+Taxes (2)

With:

12Note that this aggregation allows rough classification of representative network users.
13Among others, the regulation can incentivize the DSO to certain e�ciency practices regarding grid reinforcements or

renewable curtailment (Abdelmotteleb et al., 2018; von Appen and Braun, 2018). Such considerations are beyond the scope of
this paper.

14Without net-metering, the volumetric tari↵ applies to the total electricity that went through the house power lines (i.e.
consumed electricity plus produced electricity). We consider this tari↵ structure only in the appendix.

15Note that if most countries implemented a mixed structure, pure tari↵s are adopted by several countries such as Holland
(100% power) or Romania (100% energy) in the EU. Other tari↵ structures are considered in Appendix C.

16All parameters and variables are described in the Appendix A.
17Note that net-metering could also applied on a lower time frame (monthly, weekly...).
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= cSS
i
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Equation 3 describes the energy charges component of the user’s bill. It is composed of the total power
bought from the grid at cost cG,� minus the total power sold to the grid at price cG,+18. FG,+

i,t

and FG,�
i,t

represent the amount of energy bought from and sold to the grid. Equation 4 refers to the network charges
component of the user’s bill. Note that in the case of a volumetric net-metering tari↵, network charges
cannot be negative by regulation, which imposes an additional constraint. The investments costs in PV
panels and batteries of the prosumer constitutes the DER costs in equation 5. PV capacity and battery
annualized cost are cS and cB . These technology costs are described in the section 3.2 on data.
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Equations 6(a-c) represent the physical constraints on power flows at the house level. The first constraint
represents power conservation at the house level (equation 6a), that enforces at every time t the equality
between the user’s regular load L

i,t

, solar PV self-production (S
i

yS
i,t

), the net energy flows from the battery

(FB,�
i,t

� FB,+
i,t

) and the EV (FEV,�
i,t

� FEV,+
i,t

). Equation 6b defines the peak power P̄
i

of the user, which
is the maximum total power (sum of grid power injection and withdrawal). To prevent having negative
network charges, the total net electricity called from the network is assumed to be positive (equation 6c)19.

S
i

 S̄
i

(7)

Equation 7 adds an upper bound on prosumers’ solar PV capacity. This hypothesis is motivated by
practical constraints that users face when installing solar PV. Indeed, users may have insu�cient space for
installing solar panels.

B
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 ⌫B,�B
i

(8g)

18Note that although they could be easily included, dynamic tari↵s are not considered in this paper.
19Note that this constraint only matters when volumetric and especially with net-metering, is implemented.
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Equations 8(a-g) refer to the battery constraints. As for solar PV, we allow the battery capacity to be
bounded by B̄

i

20. Equations 8(b-c) describes the battery dynamics that comprises bidirectional flows and
leakage. Charging and discharging involve losses that are characterized by e�ciency factors ⌘B,+ (charging)
and ⌘B,+ (discharging). A periodic condition is imposed in equation 8d, and the initial state of charge
(SOC) of the battery is set to zero. This enables the user to extract the maximal value from its battery.
Equation 8e indicates that the SOC cannot exceed the battery capacity. Equation 8(f-g) refers to charging
and discharging powers are limited by physical constraints of the battery, characterized by maximum rates
of charging/discharging ⌫B,+ and ⌫B,�.
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� dt

⌘EV,�FEV,�
i,t
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i,t

a
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i
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SOCEV � SOCEV

min

(9h)

To simplify the modeling, the following assumptions are made regarding EV charging. The EV battery
dynamics, described in equations 9(a-h), are roughly similar to the stand-alone battery dynamics. It is
assumed that all EVs have the same travel patterns. They travel every day the distance d, which translates
into an additional electricity need of �EV d for the user, with �EV the engine e�ciency of the EV and KEV

the capacity of the EV battery. Every day, the EV unplugs and leaves at t
d

and come back and plugs at t
r

.
As drivers are supposed to be commuting every day, EVs are away from home most of the day. In addition,
it is assumed that EV mainly charges at home. The boolean function hEV

i,t

returns 1 when the EV is plugged
at home and 0 else. This assumption is motivated by empirical evidences on early EV adopters (Langbroek
et al., 2017). Similarly to the standalone battery dynamics, a periodic condition is also imposed in equation
9c. Passive EV owners plug their vehicle at maximum power as soon as they have come back home (dumb
charging). Note that this dumb charging of the EV happens most likely happens during the house peak load.
The plugging power is assumed to be modest (3kW), which is consistent with the current plugs provided
by EV manufacturers for domestic use (Garćıa Villalobos, 2016). Only EV-prosumers include the vehicle
battery in their process of electricity costs minimization. In this case, the EV charging is flexible (smart
charging) and in addition it is assumed that EV-prosumers are able to discharge their EV battery to power
their house, without any damage on the battery21. It is likely that EV owners could charge their vehicle
smartly without being able to invest in DERs. To limit the number of agents’ behaviors, such option is
not considered in this paper22. It is assumed that the EV battery has the same technical parameters as
the stand-alone battery. It is assumed that EV owners require a minimal state-of-charge SOCEV

min

for their
battery.

Finally, all variables of the model are positive :

20Nevertheless, we do not impose a limit on battery investments
21This assumption may be strong, but several studies have demonstrated that discharging the EV battery is far from being

strictly costly for the battery (Apostolaki-Iosifidou et al., 2017; Thompson, 2018).
22As EV are assumed to be away from home during sunny hours, smart charging can only save on yearly capacity charges

by shifting the EV load every day. This implies a high level of commitment that we assume passive user do not have.
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3.1.4. Evaluation methods

Proxy Description
Tari↵ variation network tari↵ variation relatively to the reference case (without either EV nor prosumer)

EVIC (prosumer) cost di↵erence between EV-prosumers and TV-prosumers
EVIC (passive) di↵erence between passive owner’s costs and passive TV owner’s costs

DER payback time (TV ) payback time of DER investments made by TV-prosumers
Solar PV capacity (TV ) solar capacity installed by TV-prosumers
Battery capacity (TV ) battery capacity installed by TV-prosumers

Table 2: Proxies used to evaluate tari↵ designs

The interaction between tari↵ design and the di↵erent network users’ behavior are analyzed with di↵erent
proxies. In this study, we focus on three aspects. First, the impact of EV and DER penetrations on network
tari↵ levels, is computed with the variation of network tari↵. This tari↵ variation has been interpreted in term
of fairness between prosumers and passive users in the literature on tari↵ design with DERs (Schittekatte
and Meeus, 2018). The reference case is defined by the scenario with 100% TV-passive users (i.e. without
either EV nor prosumers).

Tari↵ Variation =
Tari↵(pP , pEV )

Tari↵(0, 0)
� 1 (11)

To quantify the spillovers of DER adoption on EVs ownership costs, we define as proxies EV incremental
costs for prosumers and passive users as follows:

EV incremental cost(prosumer) =
CostsT (EV-prosumer)� CostsT (TV-prosumer)

Costsref (EV-prosumer)� Costsref (TV-prosumer)
(12a)

EV incremental cost(passive) =
CostsT (EV-passive)� CostsT (TV-passive)

Costsref (EV-passive)� Costsref (TV-passive)
(12b)

EV incremental costs (EVIC) of prosumers (resp. passive users) are first defined by the di↵erence of
electricity costs of EV-prosumers (resp. EV-passive users) and TV-prosumers (resp. TV-passive users).
These di↵erences are then normalized by the same cost di↵erence using the tari↵s of the reference case23.
For passive users, the EVIC can be identified as the charging costs of the vehicle. Nevertheless, for prosumers,
the EVIC may also include additional costs or revenues due to additional DER investments.

Third, the impacts of EV di↵usion on DERs adoption and profitability are assessed with the characteristic
of prosumers without EV (TV-prosumers). DER adoption is directly measured by the installed capacities
in solar PV and battery of the prosumer. DER profitability is assessed by the payback time24 of the DER
investment, defined by the ratio of the initial DERs investments costs over the saving in the electricity costs
brought by these investments. Such savings are defined by the di↵erence between the TV-passive user’s bill
with the TV-prosumer’s bill :

DER Payback time =
Total DER initial investment cost

Costs(TV-passive user)� Costs(TV-prosumer)
(13)

23Note that for this proxy, the network tari↵s of the reference case are tari↵s with a fixed tari↵ structure.
24Other proxies are possible to consider as the net present value, internal rate of return...
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3.2. Data

As the goal of this paper is to analyze the links between the design of network tari↵s and grid users
behaviors and technologies, generic numerical examples are computed. They are based on stylized facts on
power consumption in Europe, technologies costs and technical parameters.

Cost types Proportion in bill Cost per year
Energy costs 45% 520e/year
Network costs 35% 400e/year
Other charges 20% 230e/year

Total electricity cost 0.18e/kWh 1150e/year

Table 3: Electricity bill of a TV-passive user in the reference case

Figure 2: Daily demand load profile of passive users (left, in kWh) with TV (yellow) and EV (blue); solar yield for prosumers
(right, in kWh/kWp)

The basic load of users represented with typical two-day load profile designed for this numerical experi-
ment (shown in Figure 2-left). Each daily profile incorporates one low peak in the morning and a high peak
in the evening. The two days are chosen to capture seasonal consumption pattern. The whole profile is
calibrated to reach an annual consumption of 6500kWh/year and a peak power of 4kW, which are medium
estimates between yearly household consumption in Europe and in the US (ACER, 2016).

The default electricity bill is defined by the situation without either prosumer nor EV owner in the
network. Parameters are shown in Table 3. The bill is computed over one year from the two-days net
consumption profile, with an annual factor �T of 182.5. The default bill is decomposed as follows : 45%
for energy purchases, 35% for network utilization and 20% for other charges and taxes. Such decomposition
is close to the one used in (Schittekatte and Meeus, 2018) and reflects an average composition of European
electricity based on (ACER, 2016). It is assumed that the regulator has complete information regarding
network costs. As discussed earlier, network costs are assumed to be sunk. This hypothesis will be relaxed
in the appendix. It is assumed that taxes on electricity are fixed and independent from energy consumption.
The final electricity cost is 0.18e/kWh, which is between the average European prices (0.21e/kWh) and
the average US prices (0.125 e/kWh).

A two-day solar yield per kWp of PV installed, shown in Figure 2-right, is calibrated on a yearly
production of 1160kWh/kWp and meant to capture winter/summer patterns. In line with (Schittekatte
et al., 2016) the e�ciency of standalone and EV batteries charging and discharging is set at 90%. The EV
battery capacity is set at 40kWh, which is largely su�cient for daily travels. As EV battery quality is much
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Tari↵
structure

Proportion of
EV owners

Proportion
of prosumers

Tari↵ Variation
(%)

Volumetric
5%

5% 2.6
25% 29.2

25%
5% -9.4
25% 15.2

Capacity
5%

5% -0.61
25% 13.5

25%
5% -12.9
25% 0.63

Table 4: Network tari↵ variation relative to the reference case. Variations are given for capacity and volumetric with net-
metering tari↵ structure, 5-25% EV owners and 5-25% prosumers.

higher than stand-alone home batteries, we assume that there is no leakage in the EV battery while the
standalone battery has leakage rate of 2%/h.

We assume relatively low investments costs of solar PV and lithium-ion batteries, which is in line with
studies on the short-term future development of these technologies (Lazard, 2018a,b). Investment costs of
PV and batteries are set to be respectively 1300e/kWp and 200e/kWh based on (Schittekatte et al., 2018).
Lifetimes of PV panels and batteries are respectively 20 and 10 years. With a usual discount rate of 5%,
annual costs for solar PV and batteries capacities are 104 e/kWp/year and 26 e/kWh/year. To avoid
over-incentives on solar PV caused by excessively high feed-in tari↵s combined with low price of PV panels,
feed-in tari↵ is set at low enough level (4c/kWh in the simulations) to exclude significant investment in solar
PV or battery with null network tari↵.

As already stated earlier, EV adoption is assumed to be exogenous in the model. Again, simplifying
assumptions are used for transport, since in the end, only the yearly peak load and the yearly energy
consumption matters for network tari↵ design. In our setup, EVs leave home at 7am and come back at
5pm25. The daily travel distance of EV owners is set at 40km, which is a typical order of magnitude for
Europe (Pasaoglu et al., 2014). It can be also considered that EV owners drive over longer distances, but
charge more frequently at workplace or at a commercial charging station. The EV engine e�ciency �EV is
set at 0.2kWh/km. In this setting, a passive EV owner consumes 45% more energy and has a 75% higher
peak load compared to a traditional passive TV owner.

Finally, four scenarios of penetration of EVs and prosumers will be considered. Low penetrations will be
modeled as 5% of users and 25% for high penetration. If ”low” (resp. ”high”) penetrations can be identified
to short (resp. long) term, high penetrations (of EVs and/or prosumers) can potentially occur in specific
locations despite low penetrations on larger scales (e.g. in California, Norway...).

4. Results

4.1. Impacts of prosumers and EVs penetration on network charges

This section focuses on tari↵ variations caused by prosumers or EV owners. Table 4 shows the variations
of tari↵ levels relatively to the reference case without either prosumers nor EV owners. Four major highlights
are described in what follow.

First, for both tari↵ structures and for both EV penetration scenarios, increased proportions of prosumers
have an increasing e↵ect on network tari↵. With volumetric tari↵ structure and for both EV penetration
scenarios, a 20% increase in proportion of prosumers results in a 24-27% increase in tari↵s. Under capacity
tari↵, such increase is in the range 13-14% for a 20% increase in proportion of prosumers. Such results
are well-identified in the literature and have been discussed in section 3. Indeed, both tari↵ structures give

25Several studies have pointed out that early evening charging is currently the most common way (Langbroek et al., 2017).
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incentives to invest in DERs. As shown in Appendix B, volumetric with net-metering tari↵ incentivizes
prosumers to invest in solar PV to save on network charges. Capacity tari↵s incentivize both solar PV and
battery capacities to lower prosumers’ peak load. For both tari↵ structures, prosumers’ DERs results in a
decrease of DSO’s revenues. As grid costs stay constant, the regulator has to increase tari↵ levels to balance
the DSO’s budget.

Second, for both tari↵ structures and for prosuming scenarios, increased EV penetration has a decreasing
e↵ect on network tari↵s. Under volumetric tari↵ structure, and for both prosuming scenarios, a 20% increase
in proportion of EV owners leads to a 12-14% tari↵ decrease. With capacity tari↵, the same increase in
EV penetration leads to a 12-13% decrease. This result can be interpreted as follows. Getting an EV
and charging at home significantly increases its user’ energy consumption and peak load (in our setup,
respectively by 45 and 75%). Hence, higher penetration of EVs in the network increases the DSO’s revenues.
Again, as grid costs are all sunk, the regulator lowers tari↵s to minimize electricity costs of network users
while ensuring DSO’s cost recovery.

Figure 3: Distribution of DSO’s costs between the four classes of network users for the case with 25% EV owners and 25%
prosumers. Three tari↵ structures are considered : volumetric, capacity and fixed.

Third, these two previous e↵ects seem to balance each other. With capacity tari↵, same proportions
of EV owners and prosumers in the network leave tari↵s almost unchanged compared to the reference
situation. Indeed, in the 5%-5% and in the 25%-25% scenarios, network tari↵s only deviate by 0.6%. With
the volumetric tari↵ structure, network tari↵ deviates slightly in the 5%-5% scenario, but by 15% in the
25%-25% scenario. However, in this scenario, tari↵ has increased by 15% compared to the reference case.
Although this partly contradicts the previous results, it is important to note that the decrease of tari↵
induced by EV is larger when proportion of prosumers is large. Indeed, the decreases of tari↵ induced by
20% additional EV owners are respectively 12% and 14% in the 5%-5% and in the 25%-25% scenarios.
An other way to analyze the e↵ects of EVs and prosuming on network tari↵s is to represent how grid costs
are shared between users. Figure 3 shows this distribution for the 25%-25% scenario. Three network tari↵
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structures are considered with a pure fixed tari↵ in addition to the pure volumetric and capacity tari↵s.
With fixed tari↵, every user pays the same fee for grid access regardless of their power consumption. Hence,
the proportion of the user class is equal to the share of this user class in grid costs recovery. In our set-up
fixed tari↵ does not give incentives neither for solar PV or for batteries, since network charges cannot be
avoided by prosumers. With volumetric tari↵, prosumers, especially TV-prosumers have withdrawn their
contribution to grid costs recovery. Indeed, solar PV investments allowed these users to completely escape
the network charges they were paying without their solar panels. The resulting missing revenues for the
DSO are then filled by passive users. TV-passive and EV-passive users respectively bear 65% and 33% of
grid cost, while 57% and 19% under the fixed tari↵ structure. Under capacity tari↵, similar results are found
with a reduced share of prosumers and an increase share of passive users in grid costs recovery. These latter
results clearly illustrate the non-cooperative behavior of prosumers in the regulation grid costs recovery.
Indeed with both capacity and volumetric tari↵, prosuming leads to free-ride network access, at the expense
of passive users.

Fourth, it is important to assess how network tari↵ structures a↵ect the combined e↵ects of EV and
prosuming on network tari↵s. In this study, we focused on volumetric with net-metering and capacity
tari↵ structures as they are the most characteristic forms of current network tari↵ designs. The results
described in Table 4 have shown that tari↵ variations are smaller under capacity tari↵ structure than under
volumetric tari↵, for all EV/prosuming scenarios. These results can be interpreted as follows. On the one
hand, volumetric structure gives higher incentives to adopt DERs. As shown in the Appendix B, prosumers
invest in their maximal possible26 solar PV capacity even for low tari↵s level. On the contrary, solar PV
and battery investments are much more progressive under capacity tari↵s. Hence volumetric tari↵ structure
results in higher missing revenues for DSO than with capacity tari↵s. On the other hand, EV owners are
more sensitive to capacity tari↵s as in our setting, their peak power is increased by 75%27 while energy
consumption is increased by 45%28. Hence electric vehicles represent a larger source of revenues for the
network operator under capacity tari↵. In addition, fixed tari↵s are the least costly tari↵ structure for
passive EV owners, while they do not give any incentives for DERs.

This last result highlights a crucial issue. Depending on the tari↵ structure, prosumers benefit and get
penalized and vice-versa. Next section will detail this highlight by investigating the conflicts between EVs
and DERs adoption through tari↵ design. Finally, it is important to note that the numerical results shown
in this section are dependent on several assumptions. The appendix provides results that demonstrate that
the mechanisms described in this section are also valid in the case of (1) other tari↵ structures and (2)
variable grid costs structure.

4.2. Conflicting e↵ects between EVs and DERs adoptions

As discussed earlier, EVs and DERs are identified as crucial technologies in the energy transition. While
these technologies will meet in power grids, their economic characteristics are asymmetrical in several ways.
First, the adoption of DERs is strongly dependent on electricity prices, contrary to the current EV adoption
patterns. Second, DERs adoption is even more incentivized by high electricity prices, while high electricity
prices will increase the total cost of ownership of the EV. In the context of tari↵ design, such asymmetry
leads to a conflicting situation between EVs and DERs adoptions. In this section, we extend the previous
analysis to investigate (1) how EV incremental costs are a↵ected by prosuming and (2) how DER adoption
and profitability are a↵ected by EV adoption.

First, EV incremental costs are increased by DER adoption. In Table 5, EV incremental costs as defined
earlier for passive users and prosumers are shown for the four scenarios of EV di↵usion and prosuming,
and for the two tari↵ structures. For both volumetric tari↵s and whichever the proportion of EV owners
and prosumers, there are no significant di↵erences in incremental costs between EV-prosumers and EV-
passive users. For instance, with the 20% increase in prosumers, EV incremental costs increase by 16-20%.

26Note that solar PV capacity is constrained in our model by equations (7c) and (8).
27Note that standard plug power can be much higher (e.g. 7kW, 22kW (Codani et al., 2016)).
28In opposition to the charging power, this increase is more probable to be lesser than higher, since the vehicle can charge

elsewhere.

13



Tari↵
structure

Proportion of
EV owners

Proportion
of prosumers

EVIC (%)
(prosumer)

EVIC (%)
(passive)

Volumetric
5%

5% 178 179
25% 194 199

25%
5% 170 170
25% 186 189

Capacity
5%

5% 73.0 215
25% 73.2 231

25%
5% 72.8 200
25% 73.0 216

Table 5: EV incremental costs (EVIC) for EV-prosumers and EV-passive users.

On the contrary, the capacity tari↵ shows huge di↵erences in EVIC between EV-prosumer and EV-passive
users. EV-passive users face a 15% increase in their EVIC for all scenarios when the proportion of prosumer
increases. Results show di↵erences for EV-prosumer costs. For all scenarios, the EV incremental costs
of a EV-prosumer are almost three times higher than for passive EV owners. Indeed, smart charging of
EV-prosumer allows them to significantly lower their peak for free, even without investing in stand-alone
batteries. Nevertheless, in our scenarios, EV-prosumers represent a small fractions of all users. Although
we assumed EV adoption to be independent from charging costs, these latter represent a rather small part
in the total cost of ownership of EVs (Wu et al., 2015). This increase can be interpreted as a cross-subsidy
from EV owners to all other users through network tari↵s, and especially prosumers.

Tari↵
structure

Prosumer
proportion

EV owners
proportion

DER
payback
time (y)

Solar PV
capacity
(kWp)

Battery
capacity
(kWh)

Volumetric
5%

5% 10.52 4.48 0.0
25% 8.82 1.83 0.0

25%
5% 9.92 4.48 0.0
25% 9.64 4.48 0.0

Capacity
5%

5% 6.17 1.19 2.93
25% 6.73 1.19 2.93

25%
5% 5.63 1.19 2.93
25% 6.12 1.19 2.93

Table 6: DER payback time, solar PV and battery capacity of the TV-passive user.

Second, DER adoption and profitability are a↵ected by EV di↵usion. Table 6 shows the di↵erent proxies
defined earlier, i.e. solar PV and battery capacities installed by TV-prosumers, and the payback time
of TV-prosumer’s investments in DERs. With the capacity tari↵ structure, increases of the proportion
of prosumers have similar e↵ects for both EV penetration scenarios. When the proportion of prosumers
increase by 20%, the payback time of DER investments increase by 0.6 year while solar PV and battery
capacity stay constant. With volumetric tari↵, the same increase in EV penetration has di↵erent e↵ects. In
the 5% EV penetration, solar PV adoption, the only DER adopted by prosumers with volumetric tari↵s,
decrease from 4.5kWp to 1.8kWp while the related payback time decrease. In the 25% EV scenario, solar
PV adoption stay unchanged, but solar PV payback time increase by 0.8 year. The interpretation of the
following results are similar. In every case, the increase in EV penetration has a lowering e↵ect on network
tari↵s. As DER adoption is determined by electricity prices, the e↵ect results in reducing the prosumer’s
valuation of DER investment.
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5. Conclusion and policy implications

This paper has studied several aspects of network tari↵ design with DERs (solar PV and batteries)
and EVs (with flexible and dumb charging) within a stylized non-cooperative game including four types of
network users (prosumers with and without EV, passive users with and without EV). It enlightened several
mechanisms that have relevant policy implications. First, EVs and DERs adoptions show counterbalancing
e↵ects through the grid costs recovery problem. When grid costs are sunk, EVs therefore decrease the risk
of the death spiral of distribution utilities as they constitute a large source of revenues. Then, through
the recovery of grid costs, DERs and EVs induce spillovers on each other. These are mainly due to the
asymmetrical characteristics of both technology uses. High electricity prices are the main driver of DER
adoption. On the other hand, EV adoption would be facilitated by low electricity prices, although it
is currently largely independent from them. This study has shown that with the main tari↵ structure
(volumetric and capacity), EVs and DERs may be conflicting by inducing negative externalities on each
other. This latter finding contradicts a part of the literature on EV/DERs synergies.

Changing regulation makes winners and losers. In this study, winners (or free riders in this case),
manage to escape network charges, leaving losers bearing the cost of the whole network. Regulation of
network charges mainly consists in choosing a tari↵ structure. It has been shown that with volumetric
tari↵ with net-metering, EV owners are the losers as they pay much more than what they would have
had with other tari↵s. On the contrary, prosumers are the winners. Depending on the proportion of EVs
in the network, the lowering trends on equity can be compensated. With capacity tari↵s, DERs are less
incentivized for prosumers, but EV owners are much more sensitive to peak load charges. The fact that
the situation EV owners may get worse needs to be discussed in term of public acceptance. Moreover, it
may penalize a technology which is currently strongly pushed by policies. Nevertheless, EV adopters are
generally a✏uent and therefore could perceive this situation lightly.

The implications of these mechanisms for policy making are twofold. First, by focusing only on the
impacts of DER di↵usion, the debate on network tari↵ design has eluded the trend of electrification. As
including electrification leads to less dramatic outcomes, this could incite regulators to be less willing to
modify tari↵ structures too soon. Second, a precise investigation of the winners and losers (in term of
both user groups and technologies) of a tari↵ design change should be made. Indeed, the evaluation of
tari↵ designs in term of e�ciency and equity may hide the existence of conflicting e↵ects between some
technologies that are deemed valuable for society. We therefore think that the EV industry should consider
this issue carefully and participate on network tari↵s.

Finally, this paper calls for several works in the future. This study assumed that EV and DERs were
the only drivers of power consumption of network users. Other flexible or inflexible consumption sources
would be added by electrification of other sectors (heating) or removed with sobriety or energy e�ciency of
appliances. A realistic case study on specific distribution grids should include these consumption sources
to compute the DSO’s revenues. Hence the e↵ect of DERs and electrification (EVs, heat pump) on tari↵
design. Such case studies could also include other grids than only low-voltage residential grids, as considered
in this study. Indeed, as such distribution grids would include large buildings and workplaces, EV charging
profile and solar yields could be more synchronized. This would allow to include the appropriate conditions
for EV/DER synergies. Then, we assumed simple roles for the regulator and for the DSO. Our framework
could be enhanced by making the tari↵ structure endogenous based on the regulator’s preferences and by an
active management of the grid by the DSO. Furthermore, more diverse tari↵ structures, including dynamic
tari↵s, should be investigated. Finally, the conflicts between policies that promote EVs and policies that
incentivize DERs should be studied in detail. Taking into consideration other support mechanisms of DERs
that also end up in increasing the retail price of electricity would therefore be appropriate.

15



Appendix A. Notations

Notation Set
i User index
t Time slot

Notation Variable
t
V

Volumetric tari↵ (e/kWh)
t
C

Capacity tari↵ (e/kW)
t
F

Fixed tari↵ (e)
P̄
i

Maximum peak power of user i (kW)
S
i

installed solar PV capacity by user i (kWp)
B

i

installed battery capacity by user i (kWh)

FG,+
i,t

power flow from the grid of user i at t (kWh)

FG,�
i,t

power flow to the grid of user i at t (kWh)

FB,+
i,t

power flow in the fixed battery of user i at t (kWh)

FB,�
i,t

power flow from the fixed battery of user i at t (kWh)

FEV,+
i,t

power flow in the EV battery of user i at t (kWh)

FEV,�
i,t

power flow from the EV battery of user i at t (kWh)
SOCB

i,t

state of charge of the fixed battery of user i at t (kWh)
SOCEV

i,t

state of charge of the EV battery of user i at t (kWh)

Notation Parameter
dt time step (h)
✏
V

volumetric tari↵ fraction (%)
✏
C

capacity tari↵ fraction (%)
�
m

net-metering indicator
�T annual factor
L
i,t

regular load of user i at t (kWh)
yS
i,t

solar yield at t for user i (kWh/kWp)
cG,� grid electricity price (e/kWh)
cG,+ feed-in tari↵ (e/kWh)
⌘B,� e�ciency of battery discharging (%)
⌘B,+ e�ciency of battery charging (%)
⌘EV,� e�ciency of EV discharging (%)
⌘EV,+ e�ciency of EV charging (%)
⌫B,� ramp down ratio of the battery (%)
⌫B,+ ramp up ratio of the battery (%)
⌫EV,� ramp down ratio of the EV battery (%)
⌫EV,+ ramp up ratio of the EV battery (%)
'B stand-alone leakage rate (%)
'EV EV battery leakage rate (%)
S̄
i

maximum solar capacity available to user i (kWp)
B̄

i

maximum battery capacity (kWh)
KEV

i

capacity of the EV battery of user i (kWh)
cS annualized cost of solar PV (e/kWp)
cB annualized cost of stand-alone battery (e/kWh)
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Figure B.4: Optimal solar PV and battery investment functions of TV-prosumers (up) and EV-prosumers (down) function of
the tari↵ level for volumetric (left) and capacity (right) tari↵ structures.

Appendix B. Optimal investment of prosumers

In our bi-level framework, the regulator (upper level) anticipates the reaction of prosumers (lower level)
to set network tari↵s. Such tari↵ level corresponds to the equilibrium of the non-cooperative game. These
optimal investments functions of EV-prosumers and TV-prosumers are shown on Figure B.4 for volumetric
and capacity tari↵ structures. With volumetric tari↵, only solar PV is incentivized and the reaction function
has almost a threshold. With capacity tari↵, both solar PV and batteries are incentivized. Contrary to
the volumetric tari↵, the optimal investment function is much smoother. Furthermore, with the volumetric
structure, prosumers with EV have similar investment decisions to TV-prosumers. Under capacity tari↵,
EV-prosumers only invest in DER if capacity tari↵s are high enough. Indeed, a smart charging of the EV
is su�cient to avoid much of the network tari↵.

Appendix C. Impacts of alternative tari↵ structures

Previously, we only considered pure tari↵ structures. In this section, we consider di↵erent tari↵ structures.
First, we consider another type of pure tari↵ structure, the volumetric tari↵ without net-metering. Second,
we investigate the impacts of mixed volumetric/capacity tari↵s.

Appendix C.1. Volumetric tari↵ without net-metering

Another possible tari↵ is the volumetric tari↵ without net-metering as defined in (Schittekatte et al.,
2018). With this tari↵, prosumers are charged for their feed-in to the grid. Table C.7 shows the tari↵
variation of the model with the four scenarios of prosuming/EV penetration. These results indicate that
the e↵ects of EV become dominant, as prosumers invest in little DER capacities. Indeed, such tari↵ gives
incentives for solar PV only if the produced power is self-consumed.
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Tari↵
structure

Proportion of
EV owners

Proportion
of prosumers

Tari↵ Variation
(%)

Volumetric
5%

5% -1.95
25% -10.7

25%
5% 0.05
25% -9.04

Table C.7: Network tari↵ variation relatively to the reference case, under volumetric without net-metering tari↵ structure.
Variations are given for C and VNM tari↵ structure, 5 and 25% EV owners and 5-25% prosumers.

Appendix C.2. Mixed energy-capacity tari↵s

Figure C.5: Evolution of tari↵ variations with the share of capacity tari↵ in the tari↵ structure. The usual four scenarios of
prosuming and EV penetration are considered.

In our framework, mixed tari↵ structure can be modeled with a pair (✏
V

, ✏
C

). Without a fixed component
in the tari↵ structure, mixed volumetric/capacity tari↵s are then defined with ✏

V

= 1�✏
C

. Figure C.5 shows
the evolution of tari↵ variation with the capacity component ✏

C

. Three observations are made about these
results on mixed volumetric/capacity. First, scenarios with small proportion of prosumers shows small tari↵
variations for the whole range of mixed tari↵ structures. Tari↵s decrease with higher capacity components as
EV owners pays more for their peak load. On the other hand, scenarios with high proportion of prosumers
shows non-linear dependence with the capacity component. A minimal tari↵ variation is achieved for capacity
components in the range 20-40%. Indeed, this range of tari↵ structure is enough to limit both over-incentives
for solar PV and for battery.

Appendix D. Impacts of variable grid costs

In the previous sections, we assumed that grid costs were only sunk costs. This hypothesis is adopted by
several studies in the field (Schittekatte et al., 2018). Nevertheless some other studies consider a variable cost
component such as (Schittekatte and Meeus, 2018). Moreover, several works have inferred that large electric
vehicles di↵usion, by increasing the network peak load, could significantly increase grid costs (Clement-Nyns
et al., 2010; Muratori, 2018). We discuss the consequences of such possibility in this section.

C
N

(P
tot

) = ↵
S

C
sunk

+ (1� ↵
S

)C
var

(P
tot

) (D.1)
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Grid costs function is defined in equation D.1, with C
sunk

and C
var

the sunk and variable components of
grid costs. C

var

depends on the network peak load. ↵
S

is the fraction of sunk grid costs. It is assumed
that the variable component of network costs is linear and calibrated with the reference level where there
are neither prosumers or EVs in the network:

C
var

(P
tot

) = C
sunk

P
tot

P ref

tot

(D.2)

With P ref

tot

the network peak load of the reference case. This way, we have C
N

(P ref

tot

) = C
sunk

.
We focus on a situation where a network has variable costs (20%), which is in line with several studies

in the literature. Such a variable component represents the additional costs due to increased damages in
the grid or additional reinforcements that have to be made to the grid. For instance, (Simshauser, 2016;
Pollitt, 2018) estimate the variable component of network costs to 20%. (Fernandez et al., 2011) estimates
the worst case scenario to 15% grid costs increase due to high EV penetration. In our model formulation,
load peaks of network users are exactly coincident. Remember that getting an EV leads to a 75% increase
of the EV owner’s peak load. Hence a 25% penetration of EVs with no prosumers leads to a 19% increase
of network peak load. Then this increase in peak load results in a 4% increase in grid costs.

Tari↵
structure

Proportion of
EV owners

Proportion
of prosumers

Tari↵ Variation
(%)

Volumetric
5%

5% 10.3
25% 38.3

25%
5% 3.7
25% 26.9

Capacity
5%

5% 6.2
25% 17.5

25%
5% -3.7
25% 7

Table D.8: Tari↵ variations for variable grid costs (20%). The previous prosuming/EV scenarios are considered. The reference
is still the 0%-0% EV/prosumers case

Two main highlights can be drawn from results shown in table D.8. First, as EVs increase the peak
load of their user, they increase the network peak load. This increase leads to higher grid costs, which are
then reflected on network tari↵s. However, this increase in grid costs is not entirely transmitted on tari↵s
since they decrease by 6-14% in both prosuming scenarios. Again, as EV owners consume much more power
than TV owners, they also pay much more network charges. In these settings, EV owners increase the
financial revenues of the DSO more than they increase grid costs. On the contrary, tari↵ variations caused
by prosumers are larger with this variable grid costs structure. Indeed, DSO missing revenues because of
prosumers is even more severe that grid costs are higher due to EV penetration, which leads to even higher
tari↵s. In summary, a grid costs structure with a variable component do not change significantly change our
previous results.
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