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1 Introduction

Research on diffusion in social and economic networks has focused on a wide range
of topics such as diseases (Klovdhal, 1985), rumors (Moreno, 2004), systemic risks
of bank failures (Elliott et al., 2014; Eboli, 2019), platform adoption (David, 1985)
and patenting (Aghion, 2015). These phenomena are, at least temporarily, irreversible
and share common features. First, diffusion is a social process and an individual’s
adoption behavior is highly correlated with the behavior of her contacts (i.e. network
externalities). Second, the structure of the network plays a critical role in the propa-
gation dynamics. While some processes remain contained in isolated clusters, others
spread to the whole network. Overall, these phenomena are path-dependent : their ir-

reversibility means that early history matters for the final outcome (Lim et al., 2016).

With respect to dynamics of propagation in networks, two main diffusion pro-
cesses are frequently identified : "simple contagion" and "complex contagion" dynamics
(Centola and Macy, 2007). If the former requires only one contact for transmission
(e.g. information, disease), the latter calls for multiple sources of reinforcement to in-
duce adoption (e.g. behavior, technology). On this issue, Centola and Macy (2007)
demonstrated that the impact of the underlying network structure changes accord-
ing to the diffusion process operating. While direct connections between agents (i.e. a
short path) allow for simple contagion phenomena to spread faster, clustering (i.e. the
tendency for nodes to form small groups) is a determinant of diffusion under complex
contagion scenarios (Beaman et al., 2018; Centola, 2018). Then, whether the goal is

to reduce contagion risk or to maximize adoption of a technology, understanding how



network structures affect diffusion cascades (i.e. propagation)' is relevant for effective

policy design.

A critical issue to explore for network studies is the case of technology diffusion
(Halleck Vega et al., 2018). Particularly, technologies subject to effects of learning
(i.e. costs tend to drop exponentially, at different rates that depend on the tech-
nology)? are of great interest as they are operating in different sectors (Farmer and
Lafond, 2016). For instance, this is the case for renewables (e.g. solar PV, wind tur-
bines, see IRENA, 2016) that must be deployed at a large scale to limit global warm-
ing "well-below" 2°C by the end of the 21st century (OECD, 2016). If the existing
literature on technology diffusion is large, little attention has been paid to network
perspectives (Halleck-Vega and Mandel, 2018). In particular, questions related to the
spreading of a costly technology in social networks (i.e. network of individuals) and
the associated impacts of network structures on diffusion remain unstudied. For the
case of clean technologies, these aspects are critical as public policies support the de-
ployment by implementing economic instruments (e.g. solar PV, biogas technology, see
Blazquez, 2018). Understanding how these costly innovations spread in networks could
bring new insights for designing efficient and cost saving policies. From another per-
spective, addressing these issues provide new perspectives on how to achieve a faster
deployment of low carbon goods. In the context of climate change, increasing this body

of knowledge is of great importance too.

In order to evaluate technological propagation in social networks, we build upon
the Linear Threshold Model (LTM) exposed by Granovetter (1978). Our main theo-
retical innovation is the introduction of a technology cost function subject to learning
effects. The latter gives to our approach a large scope of applications (e.g. renew-
ables). In our agent-based model, we call "a switch" an irreversible transition to new

state, such as adoption of the technology (Jackson, 2008). All agents in the network

'Tn this paper, we call "cascade" the dynamics of diffusion.
“See Farmer and Lafond (2016).



are initially switched off. Then, some agents are randomly switched, i.e., seeded. Ev-
ery heterogeneous agent in the network is endowed with two individual thresholds. We
assume that agents’ thresholds are randomly and independently drawn from a uni-
form distribution at the start of the cascade (Kempe et al., 2003). In the following
periods, if the cost of the technology falls below his first threshold and if the propor-
tion of neighbors that switches exceeds his second threshold, the agent also switches
(Granovetter, 1978; Schelling, 1978). This process propagates through the network. In
our approach, one can consider neighbors as agents with shared proximity (e.g. ge-
ographic, relationship, regular contacts). Moreover, once an agent has switched, he
remains switched forever. This assumption matches clean technologies investments
(e.g. solar PV, biogas installation in agriculture) for which buyers cannot easily step

away.

Our model assumes that agents react to stimuli both from the local and global
environments (i.e. neighborhood and cost dynamics). If the social threshold is widely
documented in the literature on complex contagion and threshold models (Granovet-
ter, 1978; Watts, 2002; Dodds and Watts, 2004), we assume agents’ ability to afford the
technology to differ. To capture this feature, we introduce a cost threshold as a proxy
measure. By doing so, we can investigate the diffusion of a costly product in social
networks of heterogeneous agents. Our setting, a generalization of the Watts model
(2002), is relevant as recent studies shed lights on the contagious feature of renewable
technology adoption (see Baranzini et al., 2017). We consider technology spreading as
an epidemic dynamics processing among agents in a network (Collantes, 2007). Then,
our framework is intertwined with the "complex contagion" modelling approach as the
distribution of neighborhood thresholds will require, in most cases, multiple neighbors

having switched to make the considered agent switch.

With respect to underlying social structures, we apply our contagion model to

three different classes of networks : lattice, small-world and random networks - as con-



structed by Watts and Strogatz (1998).° By doing so, we can investigate at a macro-
scopic level how diffusion spreads according to network clustering, path length and
technological learning. If the notion of path length is obvious (average distance between
any pair of two random agents), clustering refers to the share of peers of each node
being peers among themselves (Acemoglu et al., 2011). In the literature on diffusion in
networks, clustering has been extensively considered to capture the impact of network
structures on diffusion (Centola and Macy, 2007; Centola, 2010; Acemoglu, 2011; Bea-
man et al., 2018). For our purpose, this approach is relevant as social networks tend to
exhibit high levels of clustering (Watts and Strogatz, 1998; Levine, 2006). Therefrom,
our comparative approach allows us to evaluate aggregate levels of diffusion, associ-
ated cascades’ lengths and adoption speed of convergence from low to highly clustered

networks.

Our main results suggest that aggregate diffusion reaches higher levels in lattice
and small-world networks compared to random networks. The latter confirms the crit-
ical role of clustering in favouring propagation in networks. Interestingly, we also find
that adoption cascades in clustered networks are subject to greater variability (vari-
ance) with respect to final outcomes (i.e. adopters). The latter has strong implications
for public policy implementation. Indeed, for governments interested in maximising
diffusion of, for instance, green technologies, there exists a real tension between max-
imising spreading and uncertainty in results. We argue that implementing economic
instruments aiming at increasing affordability of the technology would limit such un-
certainty. In random networks, although propagation reaches lower levels, it processes
at an equivalent speed - compared to clustered networks - with a lower variability in
final outcomes. In practice, the use of data from social platforms would allow govern-
ments to design policies while being aware of underlying social structures. As these

platforms grow, there is a new potential to construct tools to design more effective

SRemember that lattice networks exhibit high levels of clustering and (comparatively) very long
path length; small-world structures demonstrate high level of clustering but with lower average path
length; random networks are subject to low clustering and low average path length.



policies to increase the exposure of agents to clean products. For instance, govern-
ments could match data from social platforms and technology buyers to target groups
in which the product has not percolated yet. With respect to the technology, whatever
the underlying structure, higher learning rates lead to larger adoption. Such findings
emphasize the critical role of governments in supporting the "good" product. Further
policy implications of our results are developed in the conclusion part (Section 4) of

this chapter.

The theoretical literature on cascades and diffusion in networks is vast. Irre-
versibility of our cascade dynamics (i.e. diffusion) sets the present paper apart as
a considerable part of researches supposes that agents can switch multiple times
(Ellison, 1993; Blume, 1995; Young, 2006; Montanari and Saberi, 2010; Adam et
al., 2012). Moreover, the double diffusion-reinforcing feedback that we introduce has,
to our knowledge, never been implemented so far. Indeed, diffusion itself makes it eas-
ier for others to adopt because of the social threshold, and learning makes it easier to
adopt because of the cost threshold. In contrast to some of the previous work (Ace-
moglu et al., 2011; Yildiz et al., 2011; Singh et al., 2013), we do not look at a particular
instance of a distribution of thresholds. Instead, we assume that agents’ thresholds are
randomly and independently drawn from uniform probability distributions at the start
of the cascade (Kempe et al., 2003). This is a reasonable assumption if the social plan-
ner has no reason to believe that some thresholds are more likely than others (Lim
et al., 2016). Moreover, papers mentioned earlier (e.g. Blume, 1993; Ellison, 1993;
Blume, 1995; Young, 2006; Montanari and Saberi, 2010; Adam et al., 2012) usually
assume that agents play a coordination game with their neighbors and analyze the dy-
namics using tools from game theory. For certain problems, such as the possibility of
contagion, the models are equivalent (Morris, 2000; Watts, 2002; Lelarge, 2012; Adam
et al., 2012).

On the issue of technology diffusion, a recent survey on the diffusion of green technol-

ogy pointed out the fundamental role of networks (Allan et al., 2014). In some of the



previous works mentioned, models of innovation and technology diffusion (e.g. Centola
et al., 2007; Montanari and Saberi, 2010; Acemoglu et al., 2011) provide insights on
the influence of the network topology on propagation dynamics. These models consider
a wide range of diffusion processes ranging from epidemic-like contagion to strategic
adoption and linear threshold models. Under complex contagion, research suggests that
innovations spread further across networks with a higher degree of clustering. Clusters
can promote diffusion where a seed node exists inside them, but are more difficult to
permeate when not targeted during the initial seeding phase (Halleck-Vega and Man-
del, 2018).

By implementing the linear threshold model and introducing a technology cost func-
tion, we complement the literature and contribute to a better understanding of tech-
nology diffusion dynamics. We are dealing with large complex networks of agents
interacting and switching over time (Centola et al., 2007; Centola, 2010; Acemoglu et
al., 2011). As carried out in the literature, we implement our agent-based model and
provide numerical analysis to capture cascades’ features and build our comparative

evaluation.

We proceed as follows. Section 2 describes the Watts-Strogatz algorithm (1998)
to create selected networks and expose the linear threshold model. Section 3 shows and
analyses numerical outcomes in terms of average aggregate adoption, speed of diffusion
and time of convergence for the three classes of networks. The relevant government
seeding strategy with respect to the amount of initial seeds is presented too. Finally,
Section 4 discusses the main findings as well as relevant policy implications and lays

out some directions for future research.



2 Model of Cascades in Networks

In this section, we present the Watts-Strogatz algorithm to generate lattice, small-
world and random network. We then expose our two-threshold model of contagion in

networks.

2.1 The Network

The algorithm of Watts and Strogatz (1998) is a powerful tool to create constant
network density graphs ranging from nearest-neighbor networks (lattice) to uniform
degree random networks. As exposed in Cowan and Jonard (2004), we assume that [
:{1 ., IN } represent a set of agents and for any ¢, j € I, we define the binary variable
X (%, j) such that x (7, j)=1 if a connection exists between ¢ and 7, and x (%, j)=0, if there
is no connection. Therefrom, the resulting network G :{X( i, j); 1, j € I} represents
all pairwise connections between agents. The neighborhood of an agent ¢ is the total
amount of her connections I'7 :{ jel:x(ij)=1 } while a path in G connecting
i and j is a set of pairwise relationships {(z, 1), (1k, ])} such that x(7, i) =...=
X (ix, j)=1. Finally, the distance d(i, j) between i and j is captured by the shortest

path between them.

To generate the lattice with n nearest neighbors, we consider each edge of the
graph and allocate a probability p to disconnect one of its edges, and connect it to
a node selected uniformly at random (with no self-connection (loop) and only one
connection between two agents). By setting p, we vary the graph structure from com-
pletely regular (lattice networks with p=0), through intermediate states (0<p<1), to
totally disordered (random networks with p=1). By doing so, we change the number
of edges per agent, keeping constant an average of n connections per agent and a total
of Nn/2 edges, Vp. We denote the final network produced to be G(n;p). Figure 1.1
below shows three configurations with increasing disorder as p is increased, for N=20

and n=6.



For the sake of neutrality in visualisation, networks are represented as circular lay-
outs. This is a common procedure in social network analysis. By placing all nodes at
equal distances from each other and from the center of the drawing, none is given a

privileged position (Huang et al., 2007).

Figure 1: Transition from a locally ordered network (lattice) to a disordered one
(random) via a small-world state. From left to right : p=0 (Lattice), p=0.1 (Small-
World), p=1 (Random).
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Based on the algorithm output, Watts and Strogatz suggest that the properties
of such networks are captured by two complementary parameters : average clustering
and average path length. Precisely, the clustering of a set S C [ is the proportion of

pairwise relationships in S over the total possible number of relationships, that is :

Zi,je x(i,7)
US) = Z5as— 13

In network science, clustering is commonly define as the share of friends of on individ-
ual who are also friends of each other. This parameter is used to measure local coher-
ence or redundancy by taking S to be the neighborhood of an agent. Then, the local
structure in the network is measured by the average neighborhood clustering C(p) =
Sier cl(I';)/N. With respect to average path length, this measure captures the average

number of edges separating two random agents (i.c. L(p)=>"; jc;d(i,7)/(N(N—1)/2)).



Although clustering and path length are strongly dependent, Watts and Strogatz
expose the existence of an interval for p over which L(p)~L(1) yet C(p)>C(1). The
small-world network arises in such interval. The latter is due to the following : with a
small amount of long distance links, their marginal effect on average path length is large
because introducing a long-range link provides a shortcut between the two nodes that
this edge connects, and for immediate neighbors as well, and so on. On the opposite,
removing one link affects the clustering of only a small number of neighborhoods and
has little effect on the population average. The evolution of path length and clustering
with p is shown in Figure 1.2, where the averaged normalized values of L(p)=L(0) and

C(p)=C(0) are plotted over a sample of 500 different graphs.

Figure 2: Average clustering and average path length as a function of p
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We note that normalized average clustering remains almost constant when p is rea-
sonably small and falls slowly for large values of p. By contrast, average path length
decreases quickly for very small p values. Hence, for p € [0.01,0.1], clustering and path
length diverge, creating a small-world region in the space of network structures. There-
from, working on these three network structures allows us to investigate the role of
clustering and path length on technology diffusion. Hereafter, we expose our two-

threshold model of technology contagion in networks.



2.2 Technology Adoption
2.2.1 Preliminaries

We assume that technology propagates in these three classes of networks. Suppose
that G(V,E) is an unweighted and undirected connected graph representing a set of n
agents V:={1,...,n} and m links E. Neighbors of i € V are denoted as N;(G):={j|(j,
i) € E} and the degree of each agent i is defined as d; := |N;(G)|. Two thresholds are

allocated to each agent ¢ € V :

e A cost threshold is a random variable u; drawn independently from a probability
distribution with support [0, 1]. The associated multivariate probability density

function for all the nodes in the graph is fi (). The cost threshold profile of

agents is p = (i;)iev-

e A social threshold for agent 7 is a random variable 6; drawn independently from a
probability distribution with support [0, 1]. The multivariate probability density
function for all the nodes in the graph is f2(#). We define the social threshold

profile of agents as 6 := (6;) v

As mentioned, we assume that agents’ thresholds are randomly and independently
drawn from uniform probability distributions as the government has no reason to be-
lieve that some thresholds are more likely than others (Kempe et al., 2003; Lim et
al., 2016). Then, a network G, is a graph endowed with the two profiles of thresh-
olds.

Let C; be the cost function of the technology at time ¢, bounded between [0, 1]. This
property ensures the matching between the cost function and corresponding agents’
thresholds u;. To introduce the learning characteristics, we assume « to be a techno-
logical learning effect on the cost function. As a result, shapes of the cost curve will
follow a decreasing and convex trend (matching cost trajectories observed for some

renewables (e.g. solar PV)). We then evaluate the effect of learning on diffusion by

10



discretizing « over different constant rates (i.e. [0.1; 0.3; 0.5; 0.7]).* This allows us to
capture the relationship between technological learning and diffusion. In our setting,
« is bounded between [0, 1] - meaning that the cost of the technology decreases from

1 to 0 with respect to the number of adopters S. That is :
Gy = Gy x (|Uh S,y

2.2.2 Conditions for switching

We now consider dynamics of diffusion cascades in a network G, . The binary state
of agent 7 at time ¢ is denoted z;(t) = {0, 1}, referring to off and switched. The set
of additional switches in network G at time ¢ is defined as S;(G, ). To launch the
process of diffusion, we assume the government to seed a random set of agents with
the technology at time ¢ = 0. This subset of agents is denoted as Sy C V, at to. Then,

at t =1, any agent ¢ € V' \ Sy (G,.0) will switch, i.e., i € S;(Gp) if

|SO<GM,9) N Ni(Guﬂ)’
INi(Gpio)l

CulSo(Gpa))| < iy and >,
This means that at ¢t = 1, agents switch only if the cost of the technology is lower than
their respective threshold pu; and if the proportion of their neighbors having adopted
exceeds their threshold #;. This hypothesis matches the literature on innovation diffu-
sion and complex contagion in networks (Delre et al., 2007; Beaman et al., 2018). Then,

for a given period ¢ > 0, node i € V' \ U'Zj S, will switch at ¢, i.e., i € S;(G4) if

’{Ui_:l()ST<Gu,9)} N Ni(Guﬂ)’ > 0.

(1) |C(UhS (Guo)) < i, and (2) [Ni(Gpop)l -

Eq.(1) and Eq.(2) represent the necessary conditions for switching. This means that
any agent who has not switched by some period ¢, switches in time period t + 1 if

the cost of the technology falls below his threshold u; and if the proportion of his

“We relegate extreme scenarios a={0;1} to the Appendix, Section 1.1.
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neighbors who switched is greater or equal to his threshold 6;. In other words, there
is a reinforcing feedback : the more agents adopt, the more the cost decreases leading
to more agents to adopt in the subsequent period. This pattern has been observed for
clean technologies such as solar PV (Farmer et al., 2019). For a given G, ¢, define the

fixed point of the process such that :
So(X) = S(Gpe, So) —> Si(GLe) =0 for all ¢ > 0.

2.2.3 Expected size of switches

Although not implemented in the following sections, we can estimate the expected
average size of the resulting cascade of switches from f(u,0), separable into two in-
dependent and non-correlated probability density functions fi(u), fo(f) (cf. Lim et
al., 2016). For a given graph G and Sy, we can map the realization of f(u,6) to a set
of switches S(G, 9, So) and treat S(G, g, So) as a random variable with a probability
distribution f(, 6 ), keeping into account the cost rule.

Therefrom, we compute the expected probability of any particular agent 7 switching,

given a seeded subset of agents Sy, by taking the expectation with respect to f(u,0) :

PG So) = [ [ 1S(Cha) 0 S (. O)dpt

Then, the expected number of switches in graph G' when Sy is defined is :

S(G, So)] // S(Go, So)lf (1 )dudQ—ZPGSO)

12



3 General results and Analysis

3.1 Preliminaries : Numerical Setting

We consider a population of N=100 agents with n=10 connections per agent.® Agents
are placed on three distinctive graphs created according to the Watts Strogatz al-
gorithm (1998).° The network is fixed throughout a simulation run. Each agent is
endowed with two thresholds profiles p; and 6;, drawn independently from a uni-
form probability distribution with support [0, 1]. At ¢y, we set the number of initial
seeds Sy € [0,..., 100], randomly selected, to launch the cascade process. We test
this approach on four learning effects scenarios where « takes the respective values
[0.1; 0.3; 0.5; 0.7]." In each single history, we randomized the agents in the seed set
and the associated thresholds allocation. Resulting cascade follows the dynamics ex-
posed in Section 2. This framework guarantees that the process eventually stops. To
examine the considered graphs, we set for every edge - following the Watts Strogatz
algorithm described above - the rewiring probability p to [0; 0.1; 1]. For each p value,
1000 different graphs are created and on cach graph a single history is run. For lattice
networks (p=0), note that the structure of the network remains unchanged between

simulation runs (i.e. only thresholds and seeds vary).

We are interested in evaluating how diffusion processes in lattice, small-world
and random networks, where clustering ranges from high to low levels. To this end,
we examine the average number of aggregate adopters, length of cascades as well as
speed of adoption convergences. Such a macroscopic perspective brings insights on the
role of clustering, path length and learning in diffusion propagation. In the remainder
of the paper, the curves provided are averages over 1000 replications and presented for

each class of networks. We expose the number of aggregate final adopters, associated

5 Although social networks are sparse, meaning they exhibit fewer links than the possible maximum
number of links within that network (Hu and Wang, 2009), such framework is common in the literature
on complex social networks (Cowan and Jonard, 2004; Zhaoyang et al., 2018; Snellman et al., 2019).

6¢cf. Section 2.1 for description.

ef. Appendix, Section 1.1 for a={0;1}.
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times of convergence as well as resulting cascades process per period. With respect to
times of convergence and per period cascading processes, we only show relevant results

(So=[5; 35]) for clarity of presentation.

3.2 Understanding diffusion (I) : Seed set and Learning effects

For lattice, small-world and random networks, Figure 1.3 and Figure 1.4 hereafter
exhibit the relationship between initial seed set Sy and average aggregate diffusion

under four scenarios of learning (i.e. a=[0.1; 0.3; 0.5; 0.7]).

Figure 3: Aggregate diffusion as a function of initial seed sets

a=0.1 a=0.3
100 * 100 *
*
*
¥
< 80 . < 8 N
g g .
c c 2
[} k] * s
é 60 # é 60 - o
bS] M o o
o s 2 &
% 40 ™ g aof 0y
3 .,/f ) £
=3 [= L
< 20 f' % Lattice < 2 rA * Lattice
V. Small World P Small World
.«“" + Random f * Random
e e T
0 10 20 30 40 50 60 70 80 920 100 10 20 30 40 50 60 70 80 920 100
Initial Seed Set Initial Seed Set
a=0.5 a=0.7
100 i " . 100 + .
" * - * * &
. oty
- 8 * . _ 8of /f ’
X e I S
< ¥ * = + -
c F s *
O & * o p.. -
3 60 & o~ 3 €0 + o
= & + £ % o
o &~ ¥ o » Fa
2 » o o ¥ &
¥ L +
g 40 LA g 40 L
o * o L
=3 P 2 * ¥
= . - (=] Py
< ol *4F * Lattice < ool * o ¥ Lattice
& Small World » Small World
e + Random - + Random
;’ o
0 10 20 30 40 50 60 70 80 920 100 0 10 20 30 40 50 60 70 80 90 100
Initial Seed Set Initial Seed Set

Overall, aggregate diffusion in the non-seed population (cf. Figure 1.4) is a non-
monotonic function of Sy, concave where the function equals zero at extremes [0; 100]
(i.e. when Sp=[0; 100], the diffusion is either null or full). A peak in resulting dif-
fusion (i.e. after seeding) is observed when Sy lies somewhere between 24% and 50%
(cf. Fig.1.b.). Precisely, for each network configuration, minimum diffusion peaks occur

when a=0.1 (e.g. when Sy=50, diffusion reaches 9% of adopters in random networks)

14



while maximum peaks are observed when a=0.7 (e.g. approximately 57% final adopters

for 26% initial agents seeded in lattice and small-world networks).

Figure 4: Aggregate diffusion as a function of initial seed sets (non-seed population)
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With respect to clustered structures, results suggest that the more learning rate
increases, the larger the cascade is, and the lower the amount of the initial seed set
needs to be to reach high levels of spreading. This feature is captured by the following
. increasing the learning effect fosters the impact of one agent adopting on the tech-
nology cost function. In other words, with higher rates of learning, fewer new adopters
are required to reach an equivalent decrease in the cost function. Therefrom, a faster
drop in technology cost leads to a larger scope of agents whose thresholds p; is crossed
(for the same amount of initial seeds). The latter suggests that aggregate diffusion
and learning rates are intertwined with one another. To better investigate this fea-
ture, we map in the Appendix (Section 2.4) aggregate diffusion in a one threshold
scenario (social effect). Interestingly, results reinforce our findings. In a model only

based on neighborhood influence, diffusion reaches higher levels in the non-seed popu-
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lation (e.g. for 20 initial seeds, diffusion in the non-seed population reaches 67 agents
in clustered networks and 33 in random networks). Then, adding a cost threshold
contains the dynamics of adoption and increasing the learning parameter allows the
technology to percolate as the cost condition (1) is more easily met in the set of agents
(cf. Section 2.2). Overall, the higher the learning paramecter is, the closer to a one
threshold scenario diffusion levels stand. This observation is particularly relevant for
policy makers as the choice of the technology to support and its associated learning

dimension have a great influence on diffusion dynamics.

From a network approach, the aggregate amount of final adopters differs in ev-
ery scenario. Indeed, lattice and small-world networks, both exhibiting high levels of
clustering, perform better than random networks, whatever the levels of learning and
initial seeds - except extremes (i.e. Sop=[0; 100]). Moreover, as the learning param-
eter grows, the diffusion gap® between clustered and random networks gets larger,
embodying the strong influence of learning and the critical role of clustering in dif-
fusion. As an example, for Sy=24 and a=0.7, diffusion levels achieve nearly 81% in
clustered networks while in random networks, technology propagates to less than 54%
of agents. This result matches previous researches on complex contagion diffusion in
networks, suggesting that clustering is critical for innovation spreading (Centola and
Macy, 2007). Following the recent work of Centola on complex contagion (2018), we as-
sume the process of technology diffusion to start out locally, then spilling over to nearby
neighborhoods, and ultimately percolating through the population of agents. Overall,
our results suggest that clustered structures and learning effects favour the adoption
of a technology subject to learning. These networks exhibit higher diffusion levels

compared to dynamics examined in random networks.

Considering small-world networks, technology tends to diffuse a bit lower than
in lattice structures (cf. @=[0.5; 0.7]). Here, one can assume that differences between

small-world and lattice networks explain this observation. Although exhibiting high

8cf. Appendix, Section 2.1.
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level of clustering, small-worlds are less clustered than lattice structures - due to some
short paths crossing the whole network (cf. Section 2.1). Hence, we can treat small-
worlds as halfway structures between lattice and random networks. In this case, a lower
clustering coefficient explains the relative underperformance of small-worlds compared
to lattice networks. Again, note that the largest diffusion gap between clustered and
random networks is observed when the learning effect is the highest (a=0.7) for an
initial seed set fixed at 13%. We conclude that parameter « drives the diffusion and

associated adoption gaps between considered networks.

3.3 Understanding diffusion (IT) : Cascades’ spreading

We are now interested in evaluating the heterogeneity of diffusion with respect to net-
works. We base our analysis on the variance of diffusion rate between models run as
it represents a natural measure of dispersion (Cowan and Jonard, 2004). Remember,
our results are averages over 1000 numerical replications. Moreover, studying how cas-
cades spread is relevant for questions related to policy design and associated outcomes’
uncertainty. Figure 1.5 reports the variance of aggregate diffusion as a proxy for hetero-
geneity. Interestingly, heterogeneity and diffusion behave in a similar manner. In every
scenario, a peak in heterogeneity is observed for both examples of clustered networks,
displaying highest levels of disparity in cascades outcomes. Heterogeneity increases as
a function of learning with larger ranges for clustered networks (e.g. for Sy=7 and
a=0.7, aggregate diffusion variance in lattice, small-world and random equal 567, 522
and 92 respectively). Moreover, in lattice and small-world networks, an increase in
learning leads to fewer initial seeds required to reach highest levels of variance (as
observed for aggregate diffusion).

To gain more qualitative insights on this issue, we also map heterogeneity in the case
of a one threshold scenario (6;).” We observe that in the absence of a cost thresh-

old, heterogeneity decreases as a function of initial seeds in clustered networks. In

9cf. Appendix, Section 2.4.
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our scenarios, as noticed for aggregate diffusion, an increase in learning brings levels of
variance and diffusion closer to the ones observed in a one threshold setting (6;) - high-
lighting again the critical effect of learning parameters. Moreover, in a two-threshold
setting, variance increases to reach highest peaks associated with highest levels of
diffusion while in a one threshold model, variance decreases as a function of initial
seeds. We conclude that adding a second condition to adoption (i.e. cost threshold)
also has a strong impact on heterogeneity in clustered networks compared to a one
threshold configuration. For random networks, diffusion and heterogeneity follow the

same pattern in the two designs.

To provide some perspectives to our results, levels of heterogeneity observed in
clustered networks refer to the percolating process. As exposed, the diffusion starts
out locally, then spreads to nearby neighbors, and ultimately percolates through the
network. This process tends to be subject to a clear "rigidity" in terms of diffusion
dynamics. On the one hand, if diffusion percolates, it reaches high levels of global
spread; on the other hand, if it does not propagate in the initial clusters (i.e. where
the initial agents are seeded), diffusion is capped to a low number of adopters. In
random networks, the process is smoother as short path lengths do not contain or
exacerbate diffusion. These observations complement researches on seeding strategy
and percolation in networks. As Acemoglu (2011) developed, diffusion in clustered
networks requires at least one initial sced among clustered groups to make percolation
in the whole neighborhood possible. Here, heterogeneity of our aggregate diffusion re-
sults reinforces this view - that technology only "diffuses" in random networks while
in clustered networks, diffusion is exacerbated to one extreme or another (i.e. low or
high level). From a policy perspective, this observation is critical. Indeed, it suggests
a possible trade-off between maximising adoption and uncertainty in results. Namely,
where aggregate diffusion levels are the highest, dispersion is the largest. If there is a
strong connection between diffusion and network structures, this may indicate a policy

tension : targeting diffusion levels with lower expected variability or favouring maxi-
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mum adoption with more uncertainty in terms of final results. Because uncertainty is
critical for public policy design, this observation calls for a different policy approach
with respect to the objective targeted. In the context of climate change, this dimension
is critical as public policies tend to implement strategies dealing with peer effects and
social influence. Designing policies aiming at targeting clustered network (e.g. coop-
eratives of farmers) does not imply that diffusion will be successful. Then, to limit
variability in results, economic instruments targeting a specific class of agents could
be implemented to allow the technology to percolate within groups. Such perspectives

are discussed in conclusion of this work (Section 4).
Figure 5: Diffusion heterogeneity measured by variance
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3.4 On Cascades’ lengths and Adoption dynamics

To this point, our evaluation has focused on aggregate diffusion properties. We now

turn to the transitory analysis of the model. The speed at which the technology diffuses
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is a major policy concern, especially for technologies aiming at reducing greenhouse
gases emissions (IEA, 2018). Here, we address this issue and examine how spreading
dynamics is affected by network structures. We name "time of convergence" the number
of time periods required for a cascade process (i.e. a simulation) to stop. For ease of
presentation, we only consider lattice and random networks as small-world configura-
tions mimic lattice curves in our results. Indeed, in our two-threshold model, clustering
tends to overcome path length dimension in diffusion dynamics in the small-world con-
figuration. This outcome was expected as high levels of clustering favour diffusion (see
Centola (2018) for a review). In addition, we focus on scenarios where Sy=[5; 35]'" as

they exhibit the main interesting outcomes.

Then, Figure 1.6 and Figure 1.7 show the relationship between the total amount
of simulations (i.e. 1000) in percentage and the associated speed of convergence, re-

ported up to 32 time periods.

Figure 6: Rate of Cascades convergences as a function of time, Sy=¥5
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Figure 7: Rate of Cascades convergences as a function of time, Sy=35
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As a reminder, random networks have little local structure and short paths con-
necting agents. In this case, simulations converge faster after the launch of the pro-
cess. Precisely, at least 70% of simulations have converged at t<4 in most scenarios,
reaching relatively low levels of aggregate diffusion. For lattice networks, early diffusion
tends to spread slower than in random networks (e.g. at t<4, some scenarios exhibit
rates of convergence lower than 5%, cf. a=0.7, Sy=35). But the process continues
longer, and reaches higher levels of aggregate diffusion.
Again, note that the learning parameter « influences cascades’ lengths. Indeed, in-
creasing its effect leads to, in most cases, additional periods to converge, whatever the
level of initial seeds. When a=0.7, speeds of convergence in lattice networks are the
slowest observed for each period, in every scenario. By matching this observation with
aggregate number of adopters, we suggest that lower times of convergence stem from
a larger scope of agents whose thresholds 6; are crossed. The latter induces a longer
and higher adoption dynamics in clustered networks.

We also observe that a larger initial seed set combined with high values of learning
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leads to S-shaped curves for cascades’ convergences. In other words, once a period
threshold is crossed, cascades tend to stop processing (cf. «=0.7, Sy=35). In order to
strengthen our claim, we map in Figure 1.8 and Figure 1.9 (at the end of this section)
the associated times of convergence with respect to aggregate amount of adopters at
each period for Sy=[5; 35]. This approach sheds light on two key aspects. First, diffu-
sion dynamics in lattice and random networks share common features as regards speed
and aggregate diffusion. For Sy<35, in early periods (t<3), they perform equivalently
regarding final aggregate diffusion. Second, when the process converges in random net-
works, diffusion in clustered structures propagates to reach higher levels, increasing

the length of the cascade. This observation confirms our previous expectations.

Overall, if our results suggest that high diffusion is coupled with clustering, we
found out more heterogeneity (i.e. variance) in cascades propagating in these net-
works. Following our findings on cascades lengths, it might not be relevant for policy
makers to favour clustered structures if the amount of diffusion targeted is low. The
latter confirms previous researches suggesting that for low levels of seeds and small
values of ¢, networks exhibiting a low degree of clustering might diffuse the innovation
further (Acemoglu et al., 2011). However, when it comes to large spread of technolo-
gies subject to learning, clustering performs better. Adding up to these results, the
next section evaluates the relevant government strategy in terms of initial seeds to

efficiently maximize diffusion in networks examined.
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3.5 Efficient Strategy : Tipping Points in Seeding

From a government perspective, maximizing or limiting the spread of diffusion comes
with a cost of action (e.g. number of seeds in our case). These issues have been largely
documented in the literature (Kempe et al., 2003; Akbarpour et al., 2018). In the con-
text of climate change, deploying environmental-friendly technologies at least cost is
a key objective for governments - already subject to public debt. In our framework, a
cost efficient strategy for a public intervention would be to set the level of initial seeds
(i.e. cost) such that it maximizes final aggregate adoption. In other words, maximizing
the ratio between aggregate diffusion and initial seed set, in which seeding one sup-
plementary agent leads to a larger effect on aggregate diffusion. By investigating the
issue of marginal seeding, we complement our previous policy outcomes on the role of
learning and network structures in diffusion. Indeed, an increase in the learning param-
eter leads to larger diffusion and to lower associated amounts of seeds required (i.e. in
clustered networks). From a government perspective, this suggests that it could be in-
efficient to target high amounts of initial seeds to reach high levels of adoption. If this
result is critical, it fails to precisely evaluate the impact of seeding one supplementary

agent (i.e. cost) on aggregate diffusion.

To address this question, we map in Figure 1.10 below the marginal change of aggregate
diffusion divided by the number of seeds in lattice and random networks (i.e. high and
low clustered structures). If the corresponding value is positive, seeding the associated
amount of agents is beneficial for diffusion. In other words, an additional seed leads
to more than one additional adopter. On the contrary, a negative value suggests that
the size of the seed set outweighs the final diffusion benefits (i.e. adopters), even if
diffusion still increases (note here that it remains optimal to seed at a rate indicated
by the peak observed in Figure 1.4). Here again, we focus our analysis on lattice and

random structures as small-world mimic lattice structures).

From Figure 1.10, we note that the learning parameter has two main effects :

24



first, moving from low to high levels of learning decreases the angular variation pattern
observed. Second, higher learning parameters lead to a smaller amount of initial seeds
subject to positive ratio values.'! Overall, the level of initial seeds having positive values
is always lower in clustered networks compared to random networks which makes a
government intervention (i.e. seeding) less costly in these configurations. The latter
matches previous observations on the impact of the learning parameter on diffusion in
clustered networks - namely, higher learning effects lead to larger diffusion with lower

amount of initial seeds required to reach maximums.

Figure 10: Marginal change of aggregate diffusion divided by the number of seeds
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4 Conclusion

For some types of technologies, the cost of a unit decreases exponentially over time. As

for hardware technologies, green technologies like solar PV follow this trend (Farmer

I'Note : here we report associated seeds above which we observe no more positive values : when
a = 0.1, negative values arise when Sy=25 (lattice), Sp=29 (random); when a=0.3, negative values
appear when Sp=14 (lattice) , Sp=25 (random); when «=0.5, negative values arise when Sp=10
(lattice), So=15 (random); when «=0.7, negative values arise when Sy=7 (lattice), Sp=14 (random).
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and Lafond, 2016). We have shown that under a complex contagion approach, the
spreading of these technologies is clearly affected by the structure of the social net-
work over which it takes place. In the context of global warming, these findings are
critical as public policies aim at maximising their deployments by implementing eco-
nomic incentives (e.g. subsidies). In this paper, we provide clear evidences that under
a particular diffusion process (i.e. contagion), clustered organizations are critical to
spread a technology. By adding a cost dimension, we innovate with respect to previ-
ous researches on epidemic diffusion in networks and gives practical insights to policy
makers. Among those, targeting clustered organisations (e.g. favouring cooperatives of
farmers in agriculture (Viardot, 2013)) comes at a cost : greater uncertainty in global
adoption outcomes. This is the very old efficiency versus uncertainty trade-off. When
network structures result in a high average aggregate diffusion rate, they also generate
higher variances. That is, the distribution of cascade results is relatively variable. To
the extent that efficiency in policy implementation remains a governmental concern
and if diffusion of technologies is considered as a key input to develop regions - and
ease global warming-, policies aimed at inducing efficient diffusion will have to address
the consequent uncertainty in results. But whether or not this concern is real depends
on the measure used — if variance is the appropriate measure of distribution, there is
a real problem. As exposed, the impact of learning rates - on associated cost function -
remains critical for spreading. In this context, the choice of the technology to promote

is of great importance for the design of effective policies (e.g. case of renewables).

Practically, to target clustered structured, government should be aware of un-
derlying social networks in the selected population. On this issue, the growth of social
platforms and the associated increasing amount of data (e.g. social, geographic, con-
sumption) could help capturing underlying social structures and would provide pow-
erful informations for policy makers. For instance, one objective could be to increase
the social exposure of an agent to clean products by targeting agents in her social

neighborhood. On this issue, a recent study based on PV adoption data demonstrated
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the contagious feature of such a technology (Baranzini et al., 2017) while the use of
facebook data has already been explored to capture the diffusion of epidemics across
agents (Kuchler et al., 2020). For the specific case of agriculture, the role of coopera-
tives to diffuse knowledge and technology has been pointed out over the last decade
(Joffre et al., 2019). In this field, governments could design adoption incentives relying
on membership data of cooperatives to increase likelihood of adoption. Overall, our
model paves the way to applications using such data.

From another perspective, if the underlying network is estimated, mapping the con-
tagion of a technology in a network of agents could give an estimate of the potential
future cost of the technology. By doing so, policy makers could evaluate the learning
parameter of the technology as it is a key determinant for diffusion. However, reaching
this objective depends on first periods of diffusion (i.e. launch of the process). Then,
governments should promote key technologies able to reach a certain amount of adop-
tion. The learning dimension is a critical aspect to deploy green technologies (e.g. PV,
wind turbine) and tackle climate change.

Finally, policy makers could limit uncertainty in results in cluster structures by giving
access to the technology to agents less able to afford such a product. Indeed, those
agents, exhibiting a low cost threshold (i.e. they cannot afford the technology if the
latter does not diffuse massively), are hampering the diffusion as they are not adopt-
ing the product. By implementing economic mechanisms to support such population
to adopt, diffusion would be less subject to heterogeneity and could reach higher lev-
els. Such policies would allow a large share of the population to adopt the technology,

creating feedback effects for the rest of the population.

With respect to our model, it could be extended in several obvious ways. We have
taken the network structure as given, and have examined its effect on the diffusion
process. Apart from paving the way to applications in the field of technology adoption
and diffusion, our model could be extended by investigating relevant economic ques-

tions. Indeed, we exposed the impact of learning on diffusion and the associated cost
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function but we did not investigate the optimal decreasing path of the cost function
with respect to threshold distribution. This approach would bring insights on how
should a cost decrease behave. In the wake of network science analysis, some studies
would be valuable to apprehend the impact of degree distribution on general diffusion
under a two-threshold approach. The latter would fill the gap in the literature and
would allow some comparisons with other complex contagion problems. In terms of
modelling, other models of diffusion could also be implemented such as the Indepen-
dent Cascade Model (ICM). This could bring some relevant comparisons in terms of
outcomes. Finally, in the model in this paper, there is no innovation, only diffusion
after a government random seeding action (which is proven to not be the most effec-
tive (Singh et al., 2013)). Questions related to the centrality of agents in networks and
their potential cascading powers are relevant to explore, especially if some are to be
characterized as innovators. Overall, our model could be implemented to real cases of

technology diffusion (e.g. energy technologies exhibiting experience curve patterns).
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Appendices of Chapter 1

1.1 Aggregate diffusion and variance, a=[0;1]

1) For a=0, the cost function is :
Cr=Co x ([U75pS:) " =11

whatever the initial seed set. Then, we observe no diffusion in networks at all as the
cost remains too high.
2) For =1, we have (for steps of 5 seeds):
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2.1 Diffusion gaps

Figure 11: Diffusion gaps, baseline lattice
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2.2 Cascades convergences

Figure 12: Cascades convergences, Sy=[5; 15; 25; 35|
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2.3 Adoption convergence

Figure 13: Adoption dynamics with respect to time, So=[5; 15; 25; 35]
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2.4 One threshold scenario 6;

Figure 14: Aggregate diffusion (except initial seeds) and heterogeneity in a one thresh-
old scenario (neighborhood effect without cost dimension)
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2.5 Variation in cost threshold distribution

Figure 15: Aggregate adoption and heterogeneity for different scenarios of cost thresh-
old distribution over specific intervals (0,1;1); (0,2;1); (0,3;1); (0,5;1); (0,7;1), with
So=15]
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2.6 Robustness check : Number of connections per agent &

Aggregate diffusion

2.6.1. For Sy=[5]

Table 1: n=5
Learning effects a | Lattice | Small-World | Random
0.1 6 6 6
0.3 10 9 7
0.5 18 15 9
0.7 36 26 10
Table 2: n=20
Learning effects o | Lattice | Small-World | Random
0.1 6 6 6
0.3 9 9 8
0.5 15 13 11
0.7 26 23 12
Table 3: n=30
Learning effects a | Lattice | Small-World | Random
0.1 6 6 6
0.3 9 9 7
0.5 15 14 10
0.7 23 22 16
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Learning effects

0.1
0.3
0.5
0.7

2.6.2. For S;=[35]

Learning effects «

0.1
0.3
0.5
0.7

Learning effects a

0.1
0.3
0.5
0.7

Table 4: n=40

Lattice | Small-World
6 6
9 9
15 16
21 22
Table 5: n=5
Lattice | Small-World
44 43
65 64
81 81
92 89
Table 6: n=20
Lattice | Small-World
44 44
63 63
80 79
&7 7

36

Random
6
9
14
19

Random
42
61
58
59

Random
43
60
69
76



Learning effects «
0.1
0.3
0.5
0.7

Learning effects
0.1
0.3
0.5
0.7

Table 7: n=30

Lattice | Small-World
44 44
62 63
78 79
86 86
Table 8: n=40
Lattice | Small-World
44 44
62 62
79 7
86 85

37

Random
44
61
72
79

Random
43
60
73
79
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