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1 Introduction

The withdrawal of the American federal government from the Paris Agreement (2015)

has been largely debated and documented worldwide (Zhang et al., 2017; Pickering et

al., 2018). Although defined as "a major disappointment for global efforts to reduce

greenhouse gas emissions and promote global security" (United Nations, 2017), it cre-

ated unexpected new dynamics across the country. Namely, some American governors

publicly expressed their willingness to take the political lead against global warming

by setting domestic environmental policies. For example, states such as California,

Massachusetts and Minnesota are at the forefront while Wyoming, North Dakota and

Arkansas appear more reluctant to push forward pro-environmental laws (New York

Times, June 2019). If implemented at a larger scale, states’ policies could significantly

mitigate the federal decision (ie. Paris Agreement withdrawal) and keep the country

on track with respect to its COP21 contribution (ie. reducing U.S. emissions to at

least 26% under 2005 levels by 2025 (UNFCCC, 2016)). However, this comes with a

challenging requirement : a widely spread adoption of environmental policies across

American states.

With respect to past researches on policy adoption, the case of American states

has attracted many interests. Indeed, federalism provides a peculiar political envi-

ronment by encouraging member governments to compete with or learn from one

another. U.S. states represent a salient example of such a system (e.g. Berry and

Berry, 1990). The states are connected in many ways, including history, culture, the

exchange of goods, citizens’ migration, and overlapping media markets (Gray, 1973;
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Shipan and Volden, 2012). A key result of these features is that states tend to "look

to each other" when making policy (Desmarais et al., 2015). For the specific case

of environmental and climate policies, political scientists as well as sociologists have

classified the drivers of adoption as either internal (eg. extreme climate events, pro-

climate groups) or external (eg. states bilateral/international agreements).1 These are

important results as they add up to the literature on environmental and climate pol-

icy shaping (Bromley-Trujillo et al., 2016). In sum, much of the previous works have

investigated the factors that influence policy adoption from a state-based perspective.

A critical limit of this approach is to fall short on observing national dynamics of

diffusion, thus leaving unclear how environmental policies spread. For instance, is

there any existing diffusion pattern across American states ? (eg. once California

has enacted a set of policies, do we observe regular patterns in terms of following

states/adopters). And if yes, which states act as facilitators of the diffusion ? (ie. those

maximising the diffusion likelihood across the whole country). In the context of global

warming, answering these questions is relevant for at least two reasons. First, it would

enhance the understanding of how diffusion behaves in the U.S. by capturing a na-

tional scale process (ie. diffusion patterns). Secondly, identifying states facilitating the

spreading across the U.S. would bring multiple benefits. Among those, targeting such

states (ie. governor, representatives) to maximize the likelihood of diffusion at a larger

scale would be a relevant strategy for various types of actors (eg. NGOs, citizens,

companies’ representatives), especially those interested in passing pro-environmental

laws in "big emitter" states. From another perspective, it would also bring insights to

private firms on the possible pattern of environmental regulation diffusion. As differ-

ences in legislation across states drive day-to-day business decisions of private actors

(eg. investments, market strategy etc.), answering this question is critical in that re-

spect (Bradbury et al., 1997).

Therefrom, a second intertwined issue to address is about the determinants of the
1See Massey et al. (2014) for a review.
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observed patterns of diffusion. Namely, what are the underlying factors driving policy

transmission between states-pairs ? As suggested in the aforementioned literature, do

we observe higher likelihood of transmission between states sharing common charac-

teristics ? (eg. economic, political, climate change risks etc.). Investigating the latter

would enlarge the understanding of determinants driving diffusion and provide an

in-depth approach to pro-environmental policy diffusion across U.S. states.

In order to address these questions, this paper proposes a methodology to in-

fer, from adoption data (ie. laws enacted), the network structure of environmental

policy transmission likelihood between American states. Precisely, environmental and

climate policies being a powerful tool to drive changes toward a cleaner economic sys-

tem (IPCC, 2019), we apply our methodology using a comprehensive dataset of 74

policies - that have spread - from 1974 to 2018. We consider environmental legisla-

tions that were not enacted at the federal scale. This allows us to map the legislative

diffusion from state to state. For each policy, data (ie. date of the enacted law in

the state) were collected from the Database of State Incentives for Renewables &

Efficiency (DSIRE),2 the Center for Climate and Energy Solutions (C2ES) and the

United States Congress platform. As a result, our compiled database encompasses

both environmental and climate legislations, covering a large scope of policies that

tackle environmental as well as climate-related issues (eg. renewables support, carbon

pricing, greenhouse gases reduction targets, recycling, biodiversity etc.). We assume

this approach to be relevant as climate and the environment are intertwined con-

cepts, impacting each other in sophisticated ways (eg. physical, chemical, see IPCC

1.5 Report, 2019 for more description). Following Halleck Vega, Mandel and Millock

(2018), we provide an empirical contribution by identifying existing influences in the

environmental policy diffusion network (ie. states-pairs) and by assessing the impacts

of different attributes (eg. economic and political proximity, environmental features)
2This database is provided by the U.S. Department of Energy and NC Clean energy Technology

Center.
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on the formation of the existing structure over time. Importantly, we implement an

ex-post analysis of environmental policies diffusion based on enacted laws. The latter

sets our paper apart as previous researches have mainly focused on the rationale of

policy adoption (eg. emulation, competition, coercion, and learning).3

Our main conceptual innovation is to adopt a network-based approach. By doing

so, we provide a systemic perspective that accounts for the impact of each state not

only on its direct connections, but also on the global diffusion process. Indeed, a state

might be quantitatively neither the most important source nor the most important

adopter of a policy, but still play an important role as a hub in the diffusion. The fun-

damental role of such network effects has been identified in a wide range of contexts

such as epidemics and contagion processes (e.g. Pastor-Satorras and Vespignani, 2001),

social dynamics (Watts and Strogatz, 1998; Castellano et al., 2009), spatial economet-

rics (Lesage and Pace, 2009; Elhorst, 2014), or the diffusion of innovations (Rogers,

1995; Centola and Massy, 2007; Beaman et al., 2018).

From a methodological point of view, an important difficulty is that policy diffusion

networks are generally not directly observed. To address this issue, we build upon the

independent cascade model of Gomez-Rodriguez et al. (2010, 2011, 2014) and infer the

structure of the network by maximizing the likelihood of the observed patterns of poli-

cies adoption using a parametric model of diffusion. This allows us to reconstruct the

national policy diffusion network over time. We then perform a statistical analysis of

the network. It highlights a relatively inefficient organization, characterized in partic-

ular by a great heterogeneity between states in terms of centrality in the network. The

latter leads to inefficiencies and induces relatively long lags in the diffusion process. We

identify Minnesota, California and Florida as the central states in the diffusion process

(ie. facilitators), against Alaska, South Carolina and South Dakota. Targeting the facil-

itators would maximize the diffusion likelihood across the country as they are the main

hubs in the network. We also find out a relative disconnection between Northeastern
3See Dobbin et al., (2007) for a review.
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states and the rest of the country. The latter suggests that in this region, transmis-

sion activity is concentrated between neighborhood states. From these observations,

we then estimate the impact of several attributes - covering economic and political

scopes as well as environmental features (eg. environmental-friendly economic system,

expected cost of climate change (% GDP)) - on observed diffusion patterns. Our re-

sults suggest that contiguity and GDP per capita are among the key drivers of policy

flows. We also identify Genuine Progress Indicator, a proxy for economic sustainability,

to have significant effects (ie. positive impacts) while states being subject to high ex-

pected economic losses due to climate change do not favour policy diffusion. The latter

informs us on how spreading occurs across sustainable states and those vulnerable to

future climate impacts.

The remainder of the paper is organized as follows. Section 2 reviews the re-

lated literature. Section 3 outlines the methodology and Section 4 applies it to the

diffusion of environmental policies. It is then followed by an in-depth analysis of the

network. Section 5 aims at evaluating the role of several economic, political and en-

vironmental attributes in the formation process of the network. Section 6 gives some

elements of conclusion.

2 Related Literature : Policy adoption, Diffusion

and Network perspectives

Our work is at the interface between different strands of the academic literature. By

considering environmental policies, our paper fits in the wide literature of environ-

mental policy while our singular network approach matches previous researches on

diffusion in networks.

When considering the case of environmental policy adoption in American states,

past research has examined the role of determinants (Huang et al., 2007; Lyon and
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Yin, 2010) as well as features of policy diffusion (Carley and Miller, 2012; Chan-

dler, 2009; Matisoff, 2008; Stoutenborough and Beverlin, 2008). Overall, conclusions

provide disparate results for the determinants of environmental and climate change

policy adoption. With respect to internal drivers, research often indicates a relation-

ship between climate change policy adoption and political factors. In a cross-sectional

study of a large set of climate change policies, Matisoff (2008) finds citizen ideology

to be the primary driver. Similarly, Matisoff and Edwards (2014) identify a strong

positive relationship between liberalism and policy adoption. In their examination of

Renewable Portfolio Standards adoption, Huang et al. (2007) find out a significant

effect through partisan control of the state legislature. In addition, higher membership

levels in environmental organizations tend to increase environmental policy activity

(Newmark and Witko, 2007). This leads Bromley-Trujillo et al. (2016) to conclude

that states with political environments that are more favorable to climate change pol-

icy, will adopt at a higher rate (e.g. more liberal states, democratically controlled

states, and states with a greater level of environmental interest group activism).

The literature also indicates that states’ economic factors influence decision to imple-

ment environmental policy. State economies that depend on manufacturing and mining

may be less likely to pass policies that could potentially harm these industries. In ad-

dition, less developed states tend to favour economic policies targeting growth as a

priority, resulting in the increase of adoptions among wealthy states (Ringquist, 1994;

Matisoff and Edwards, 2014). The latter suggests that states with economic envi-

ronments that are particularly sensitive to climate policy will adopt at a lower rate

(e.g. states with high levels of mining or manufacturing and poorer states).

With respect to external drivers of policy adoption, research is abundant since the

pioneering work of Berry and Berry (1990). Through the use of event history anal-

ysis, scholars have determined that a number of policies are spreading across states

based on geographic proximity (Berry and Berry, 1990, 1992; Mooney and Lee, 1995;

Wong and Shen, 2002). Policy learning is argued to drive this process (Walker, 1969;
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Boehmke and Witmer, 2004; Karch, 2007). Despite this rich literature on "horizontal"

diffusion, Mooney (2001) asserts that the learning process moves beyond simple geo-

graphic proximity. For instance, states may be more likely to learn from states that

share basic characteristics (ie. budgets, politics, and demographic (Volden, 2006)). Re-

cent researches point out the importance of ideological distance between states (Chan-

dler, 2009). Grossback and colleagues (2004) develop a measure of ideological distance

between previous and potential adopters. Their results indicate that states use infor-

mation concerning the ideology of previous adopters when deciding to adopt. This

measure moves the literature forward in understanding the information used by states

when looking to others for guidance on policy action. Overall, determinants of environ-

mental policy adoption are often categorized as internal and external. From another

perspective, some of the previous works have also investigated the rationale of policy

diffusion across states. As exposed by Dobbin et al., (2007), it could stem from differ-

ent underlying forces operating across states (eg. coercion, learning, emulation). On

this issue, Boehmke (2009) demonstrated that observing multiple policy adoptions is

not necessarily evidence of an influence or a flow of ideas, it could be independent

responses to the same issue.

As exposed in the introduction, the previous literature has not explored the role

of networks in the context of policy diffusion. To the best of our knowledge, the work

of Desmarais et al. (2015) and Boehmke et al. (2018) are the only attempts so far. In

their papers, they infer the national policy diffusion network. Focusing on the U.S.,

Desmarais et al. (2015) evaluate the redundancy of a policy transmission between

states to generate a global diffusion network based on 187 policies. Their results sug-

gest that diffusion ties connect states that are not geographic neighbors (contradicting

the literature) and the existence of leadership, with larger and wealthier states more

often acting as sources of diffusion. More recently, Boehmke et al. (2018) provided

a methodological contribution with respect to static and dynamic policy innovative-

ness for U.S. states. Based on a database of 728 policies covering numerous areas (eg.
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health, agriculture, transportation, domestic commerce etc.), they propose different

sets of comparisons with respect to latent diffusion policy pathways, using the algo-

rithm NetInf (Gomez Rodriguez et al., 2010). Their results suggest that New York,

California, and Minnesota are among the most redundant states in the policies diffu-

sion network.

More generally, researches on diffusion in networks have focused on innovations and

technologies (Beaman et al., 2018). Recently, a network approach to the diffusion of

wind technologies (Clean Development Mechanism projects) at the world scale has

been implemented by Halleck Vega, Mandel and Millock (2018). Their conclusions

indicate a relatively inefficient organization of the network with a lack of South-South

diffusion links, leading to longer lags in technology spreading. Although the literature

has mainly apply network approaches to innovation diffusion, we assume our paper to

fall apart as we focus on the adoption of environmental policies. As a result, we expect

the drivers of policy diffusion to be different compared to private products and inno-

vations. Our peculiar focus on environmental policies is relevant as previous research

has not considered environmental policies per se but as a part of a larger set of policies

(eg. in Boehmke et al. (2018), only 2% of policies deal with the environment). In ad-

dition, over the past decades we have observed an increasing amount of environmental

policy adoption in the U.S. (CCCEP, 2018). The latter gives robustness (ie. number

of observations) to evaluate underlying diffusion dynamics and the rationale behind

it, allowing for comparisons with previous findings.

Overall, we can distinguish two main approaches. The first are non-network stud-

ies such as descriptive and econometric analyses of factors driving environmental policy

adoption, through internal or external intermediaries. The second focuses on under-

standing how the topology of the network affects diffusion. The present paper is at the

interface of these two research areas.
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3 Methodology : Inferring the network

The cornerstone of our approach is to use the independent cascade model of Gomez-

Rodriguez et al. (2011) to infer a network of environmental policy diffusion from time-

series of observations of the enacted date of subsequent legislations of environmental

policy within American states. The weights of the resulting network are interpreted as

the rates at which a subsequent environmental legislation is likely to be transferred be-

tween states. These weights summarize the effects of a number of latent variables that

govern the bilateral diffusion between states (e.g. geographic proximity, political close-

ness), and the systemic role that certain states can play by serving as intermediaries

in the national diffusion process.

More formally, we consider that we are given series of observations of the diffusion

of subsequent types of an environmental policy legislation. Each type c is characterized

by a cascade of adoptions4 tc = (t1c,...,tNc), which is an N -dimensional vector of

observed activation times. More precisely, for each node i, tic is an element in [t0c, t0c+

T] ∪ {∞}, which is equal to the time at which state i enacted the legislation c if finite

and is infinite if the state did not enact during a time interval of length T starting

with the first adoption at time t0c. Note that the fact that a node is assigned +∞

as activation time does not mean stricto-sensu that the node did not get activated,

but rather that his activation was discarded given the time-window considered as

relevant. The data can then be represented by a set c of cascades, one cascade for

every legislation, and denoted as C := {t1,..., t |C|}.

Our aim then is to infer from this data a diffusion network consisting in a pair

(G,A) whereG=(V,E) is a graph (i.e. a set of nodes V and a set of edges E representing

the potential diffusion paths of the environmental legislation and A = [αj,i] is a matrix

of transmission rates, i.e. αj,i > 0 quantifies how likely it is that a policy spreads from

node j to node i if (j,i) ∈ E (and αj,i = 0 if (j,i) /∈ E). The principle of the independent
4In this paper, we call "cascade" the diffusion of a policy.
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cascade model is to infer the maximum likelihood network under the assumption that

each cascade is an independent instance of a diffusion process drawn from a parametric

model in which the probability of diffusion from node j to node i is parameterized by

the transmission rate αj,i that is to be determined.

Precisely, the building block of our approach is the probability f(ti|tj;αj,i) that

node i gets activated by node j at time ti, given node j was activated at time tj and

assuming a transmission rate αj,i between nodes j and i. One then says that node j

is the parent of node i. The functional form of f conveys the structural assumptions

about the diffusion process (see the discussion below). Now, given the conditional

density f(ti|tj;αj,i), one can infer the likelihood of a set of cascades {t1,..., t |C|} given

a network A = [αj,i] as follows (see Gomez-Rodriguez et al., 2011 for a comprehensive

discussion).

First, given a cascade tc = (t1c,...,tNc), the likelihood of node i being activated

by node j is given by :

f(ti|t1, ...tN \ ti;A) = ∑
j:tj≤ti f(ti|tj;αj,i)×

∏
j 6=k,tk≤ti

S(ti|tk;αk,i)

where S(ti|tj;αj,i) is the survival (anti-cumulative distribution) function of edge j→ i,

that is the probability that j does not cause i to activate by time ti. Indeed, assuming

a node gets activated only once, one shall consider it is activated by node j only if it

has not been activated before by another node in the cascade.

One can then compute the likelihood of the activations in a cascade before time T :

f(tc≤T ;A) = ∏
ti≤T

∑
j:tj≤ti f(ti|tj;αj,i)×

∏
k:tk<ti,k 6=j

S(ti|tk;αk,i)

Further, the likelihood of a cascade accounts for the fact that some nodes did not get

activated (we consider that nodes not activated before time T never get activated). It

is therefore given by :
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f(tc;A) = ∏
ti≤T

∏
tm>T

S(T |ti;αi,m) ∏
ti≤T

∑
j:tj≤ti f(ti|tj;αj,i)

∏
k:tk<ti,k 6=j

S(ti|tk;αk,i)

Finally, the likelihood of a set of cascades C = {t1,..., t |C|}, assuming each cascade is

independent, is the product of the likelihoods of the individual cascades given by :

f({t1, ..., t|C|};A) = ∏
tc∈C f(tc;A)

The objective of the network inference problem then is to find A = [αj,i] such that the

likelihood of the observed set of cascades C = {t1,..., t |C|} is maximized. More precisely,

we aim at solving the following maximum likelihood (ML) optimization problem:

minimize A −
∑
c∈C logf(tc;A),

subject to αj,i ≥ 0, i, j = 1, ..., N, i 6= j

In practice, we solve this minimization problem using CVX, which is a general

purpose package in MATLAB for specifying and solving convex programs (Grant and

Boyd, 2015) and the algorithm NETRATE (Gomez-Rodriguez et al., 2011), which

are publicly released open source implementations. As emphasized above, structural

assumptions about the diffusion process are embedded in the functional form cho-

sen for the function f. Our baseline assumption will be to consider that once a state

has enacted a legislation, the probabilistic rate at which it diffuses it to one of its

neighbor is constant over time (although it might depend on the neighbor under con-

sideration). This amounts to considering the diffusion follows a Poisson process and

therefore leads to an exponential model for the conditional density of diffusion over

time (Kingman, 1993). That is f(ti|tj;αj,i) = αj,ie−αj,i(ti− tj) (if tj < ti and zero oth-

erwise) where αj,i is the diffusion rate. The Poisson assumption of a constant diffusion

rate is a simple and natural benchmark in absence of specific information about the

dynamic aspects of the diffusion. In particular, a Poisson process emerges if diffusion

opportunities are distributed uniformly across time.
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Independently of the underlying diffusion model, the network inferred by maxi-

mum likelihood provides two main types of information. First, the adjacency structure

of the network indicates which routes environmental policies are likely to follow in

their diffusion. Secondly, the weight of an edge gives an estimate of the speed at which

diffusion is likely to occur between nodes.

4 The U.S. Environmental Policy Network

4.1 General Context and Data

In the United States, the Trump administration’s decision to withdraw from the Paris

Agreement (2017) has deeply changed the environmental legislation dynamics within

the country (Hejny, 2018). In the wake of this announcement, some sub-national actors

such as local states governors publicly expressed their ambition to take the political

lead in the fight against global warming (Georgetown Climate Center, 2017). The

launch of the U.S. Climate Alliance (June, 2017), a coalition of states and unincor-

porated self-governing territories in the United States that are committed to achieve

the objectives of the Paris Agreement within their borders is a salient example. Other

examples include California, Illinois, New York and Connecticut, currently creatively

pushing their portions of the electric grid away from fossil fuels (CCCEP, 2018). By

implementing aggressive environmental policies, states’ action could "mitigate" neg-

ative impacts of the federal administration’s decision (Zhang et al., 2017). However,

keeping the U.S. on track with respect to the out-dated COP21 commitments calls

these local policies to diffuse rapidly across states. This further emphasizes the need

of efficient policy diffusion to ensure that newly enacted climate laws are spreading

faster and as much as possible across the country. In this respect, very little observation

data is available on the diffusion process of environmental and climate policies. Yet,

understanding the structural properties of the diffusion network is a prerequisite to

determine key states in the process. In this perspective, the methodology we have in-
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troduced in section 3 allows to infer the structure of the diffusion network from enacted

environmental and climate policies data, which is much easier to collect than diffusion

data.

To do so, we build a dataset of 74 policies (ie. cascades) upon three initial

databases: the Database of State Incentives for Renewables & Efficiency (DSIRE), the

Center for Climate and Energy Solution (C2ES) and the US Congress Platform. Al-

ready used in the literature (Bromley-Trujillo et al., 2016), DSIRE and C2ES are

relevant databases to consider as they give details about states’ legislative action

and associated enacted time-windows. More precisely, DSIRE encompasses policies

dealing with renewables support schemes (eg. wind energy supports, solar rebate,

sales tax incentives) and energy efficiency (eg. smart meters policies, energy audit re-

frigerator/cooling, rebate program). These policies represent more than 40% of our

dataset. C2ES refers to climate policies and related adaptation actions (eg. climate

adaptation plan, water plan, droughts plan). Finally, we collected policies from the

Congress platform as it provides state by state laws description (enacted date, con-

tent). In this case, we constructed cascades based on the first occurrence of a word

(eg. GMO) in the laws of the corresponding state.5 We gathered 27 policies target-

ing transportation (eg. biofuel policies, LEV Californian standards), sustainability

(eg. composting, plastic bag, electronic recycling program) and environmental man-

agement (pesticides regulation, bees keeping policies, environmental cleanup, wildlife

conservation).

As a result, for each cascade, we collected the enacted dates of the policy in

each state wherein the policy has been implemented. It allows us to map the cascade

diffusion across states as a function of time. Note that we do not look at the intensity

of the policy, our focus is more on the extensive than the intensive margin of environ-

mental policy diffusion. Overall, policies fit into seven categories exposed in Table 16

5See Appendix, Section 2 for keywords list.
6For full description, see Appendix, Section 1.

13



and cover the scope of environmental and climate state-based legislative actions from

1974 to 2018.

We include policies related to climate action, the energy sector (mainly renewables),

transportation, and buildings. Our primary goal was to gain as much variation in

policies as possible, while still maintaining generalizability to other climate-related

policies. In this framework, we consider states as our nodes and set the "activation"

time of a given policy in a state as the enacted date of the policy (ie. a state become

active once the policy is enacted). By convention, the activation time of a state not

enacting the policy is set to infinity. We hence constructed the cascades spanning 51

states over a period of 45 years (1974-2018).

Table 1. Environmental and Climate Change Policies collected in Brief.

Scope (Number) Policies Description

Climate Policies (5) Action Plans and reduction targets

Climate Change Adaptation (9) Plans to cope with current climate damages

Renewable support (24) Promoting the use of clean energy

Energy Efficiency (9) Targeting emissions in the dwelling sector

Transportation (8) Promoting the use of clean fuels/vehicles

Circular Economy (7) Targeting recycling/products efficient use

Environmental Concerns (12) Regulating environment management/health

We then proceed with the maximum likelihood estimation of the network follow-

ing the procedure described in section 3.
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4.2 Statistical Analysis of the Network

4.2.1 Generalities

As illustrated in Fig.1, the inferred network7 first provides a map of existing diffusion

routes and hence a much broader view than obtained from the sole consideration of

bilateral influences among states. For example, in our setting, it could be the case

that California and Oklahoma are not linked by a direct link, but that there exists a

very short path from California to Oklahoma through Minnesota, hence diffusion would

nevertheless occur relatively rapidly from California to Oklahoma. On the contrary, the

path from California to New Jersey could be relatively long (going through Wyoming,

Florida, Maryland, Maine, Connecticut, New York, and so forth), which would suggest

a relatively long lag in the diffusion from California to New Jersey.

Overall, Fig.1 puts forward the existence of a strongly connected network formed

by all American states. This observation suggests that every state belongs to the net-

work. In other words, there is a path connecting each pair of states. The latter matches

the literature on diffusion in a federal context as states tend to compete and mimic each

other in terms of policy implementation (Desmarais et al., 2015). From a quantitative

perspective, structural properties of the diffusion process can be characterized via a

statistical analysis of the network (Halleck Vega and Mandel, 2018). In this respect,

key features of the network are reported in Table 2.

7We relegate to the Appendix, Section 9 supplementary inferred networks (ie. Energy Network
(Renewable Support + Energy Efficiency); Environmental and Climate Network (remaining policy
categories)).
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Fig.1. Reconstructed environmental policies diffusion network in the U.S. using

geographical layout.

First, the basic measure of importance of a node is the degree, which measures its

number of connections. In a directed network, one distinguishes the in-degree (number

of incoming links) and the out-degree (number of outgoing links). As regards policy dif-

fusion, they respectively measure the direct potential to adopt or spread a policy. Here,

the inferred network has 440 edges, i.e. 440 links among the 51 states. In other words,

the average degree is approximately 8.6 and the network density, i.e. the ratio be-

tween actual and total potential number of links, is 0.173. These values are in line

with those generally observed in socio-economic networks (Albert and Barabási, 2002;

Chandrasekhar, 2016). The basic measure of distance between two nodes is the short-

est path, also known as the geodesic distance, which corresponds to the length of the

path that connects them with the smaller number of edges. The average path length

of the network is then computed by summing up all the shortest paths and dividing
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by the total number of pairs. In the context of environmental policy diffusion, the av-

erage path length can be seen as a measure of the average policy distance between two

states. In our setting, it has a value of 2. This is close with respect to the random graph

benchmark8 usually satisfied by socio-economic networks (Albert and Barabási, 2002)

and for which the average path length corresponds to the log ratio between number of

nodes and average degree (1.8 in our setting).

A common property of social and economic networks is to exhibit clustering,

indicating the tendency for nodes to form small groups (Centola, 2010). The clustering

coefficient in our setting has a value of 0.211 which is in line with previous findings

in economic networks (Soramaki et al. 2006; Halleck Vega and Mandel, 2018) and

greater than in random graph (0.169). This complements our observations, suggesting

some local structural organizations. Furthermore, the diameter of the network (the

shortest path between the two most distant nodes) has a value of 4 in our setting,

which is relatively large with respect to the random graph benchmark (it ought to

be close to the average path length following equation (16) in Albert and Barabási,

2002). These values (ie. diameter and average path length) hint at the existence of lags

in the diffusion process as well as heterogeneity in terms of nodes attributes (eg. degree,

centrality).

8Random graph is often used as benchmark in network analysis as some network properties could
have emerged by chance. For this reason, we turn to the random network model as a guide: if the
property is present in the model, it means that randomness can account for it. If the property is
absent in random networks, it may represent some signature of order, requiring a deeper explanation
(Albert and Barábasi, 2014).
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Table 2. General Properties of the Network.

Overall Network Characteristics Exponential Model

Number of Nodes 51

Number of Links 440

Network Density 0.173

Mean Degree 8.627

Mean Path Length 2.075

Network Diameter 4

Mean Clustering Coefficient 0.211

To gain more quantitative insights, we provide a systemic characterization of the

network via its degree distribution, which is constructed by computing for each poten-

tial value of the degree, the number (or the share) of nodes assuming that particular

value. The degree distribution hence summarizes the structure of the network. The

out-degree and in-degree cumulative distributions of the environmental policy diffu-

sion network are shown in Fig.3 in log-log scale.

The distribution clearly has fatter tails than normal, consistently with the presence

of highly connected nodes in the network. Indeed, we note that 70% of nodes have

less than 10 out-degrees while 2% of nodes have more than 17 out-degrees. However,

these nodes could play different roles, either by their abilities to spread the policy

(out-degree), to contain it or both.
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Fig.3. Cumulative distribution of states’ out-degree and in-degree.

4.3 Centrality Analysis : Looking for Facilitators

In this section, we analyze how centrality measures are distributed among nodes to

capture central nodes and vice versa in the network. The former represents states

facilitating diffusion (hubs) suggesting a strong ability to spread a policy in the network

while the latter points out less integrated states. We base our centrality approach on

several measures developed in the literature (see Jackson, 2008 for an overview). For

clarity of presentation, we relegate centrality measures’ description and associated

tables of results in the Appendix.9

Overall, it is clear that among the most prominent states are Minnesota (Mid-

west), California (West) and Florida (South). In fact, many overlap across the different

centrality measures. Maryland and Louisiana also appear among the top for some of

the indicators. In addition, it can be observed that some other states including Hawaii,

Idaho and Utah have a relative presence. These leading states are facilitating the diffu-

sion across the network. Namely, once such states have enacted a policy, the likelihood

for that policy to diffuse in the network is high (compared to other states). On the

opposite, states such as Alaska, South Dakota as well as South Carolina are among
9See Appendix, Section 4 Centrality measures description; Table 5. a.b.c.d.
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the worst performers with respect to centrality indicators, suggesting a low integration

in terms of connections and positions in the network10. As for centrality leaders, many

overlap across measures.

Although out-degree can be seen as reflecting a spreader of policy, with a higher

number implying greater coverage, in-degree can also be a key indicator of the recep-

tiveness to the policy. Since the diffusion process involves the accumulation of policy

over space and time arising from adoption decisions, both the ability to spread and

absorb new policies are interrelated and important. In aggregate, main hubs are Min-

nesota, California and Florida while District of Columbia, South Carolina and Alaska

have less than ten connections each (worst performers). With respect to closeness cen-

trality, which provides an indication of which states can reach all other reachable nodes

quickly, Minnesota, California, Florida and Massachusetts are among those taking top

positions. Again, South Carolina and South Dakota take the last rankings.

Moving to betweenness centrality measure, results are particularly insightful. As pre-

viously discussed, it determines the relative importance of a state by measuring the

amount of flows through that state to other states in the network, thus acting as a

bridge. This relates back to the importance of the network approach discussed pre-

viously, and in particular, the value of policy intermediaries encouraging interaction

within a system (IPCC, 2019). The visualization of the network based on the between-

ness indicator (Fig.4)11 highlights the importance of several hubs in the environmental

policy diffusion network. For example, Minnesota, California, Florida, Utah, Hawaii

and Missouri are among the top (opposite to South Carolina and Alaska). With re-

spect to eigenvector centrality - builds upon degree centrality, also taking into account

the quality of the connections, i.e. how connected a state is to hubs in the environmen-

tal policy network - Minnesota, Idaho, Hawaii, Missouri and Louisiana are the most

important states in the network. It should be noted that some of these are also hubs
10Although not being a state, the District of Columbia is also among the less integrated nodes in

the network.
11See Appendix, Section 5.
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themselves, while states such as Missouri and Idaho do not overlap with other mea-

sures. Hence, the comparison between centrality measures reinforces the conclusion

of the previous section : there is only partial overlap between the different centrality

measures and the distribution of centrality among top nodes and less integrated nodes

is relatively uniform. In this sense, the network is multipolar with at least three hubs :

Minnesota (Midwest), California (West), Florida (South) and no single node appears

as an evident center. Although not being as predominant, New Jersey appears as the

main hub in the Northeast region, being top-ranked for several centrality measures. As

a result, it is not straightforward to put forward a single node, nor a region, as the

optimal target for the inception and the diffusion of new environmental and climate

policies. However, our analysis suggests that a group of states are prominent spreaders

in the process.

4.3.1 Overtime Network Formation

In complex economic systems, a relevant topic to address is the origin of the current

structure (Desmarais et al., 2015; Halleck Vega and Mandel, 2018). Our methodol-

ogy can be used to simulate the network formation process by running the network

inference algorithm for sub-periods of increasing lengths. The results of this analysis

are presented in Section 6 of the Appendix. We expose maps for periods from 1974

to 2018, cross-cutting historical federal government political terms (Republican vs.

Democratic).

A first key observation is that the growth of the network has been remarkable,

expanding considerably both in terms of size and of connectivity. Compared to Fig.1,

the landscape for the earliest sub-period is much less dense (11 nodes in total), made

up of a few major states such as Nebraska, Missouri, and Oregon. In the following

sub-period 1972-2000, the density of the network has increased and new leading states

have emerged (namely Nevada, New Jersey, Connecticut and New Hampshire). The

global picture suggests that much fewer states remain outside the network (eg. North
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Dakota, Tennessee, North Carolina). From this observation, we can argue that large-

scale diffusion picks up in the late of the 90s and the beginning of the 2000s. The

sub-period 1972-2008 reinforces this assumption. Overall, several changes come into

view: First, all the nodes are connected to the network (ie. at least four degrees

per node). Second, new hubs appear with the presence of California, Nebraska and

Colorado, although they are not reproducing any specific regional setting. For 1972-

2016, the network increases in density, and importantly Minnesota and California

starts playing key roles in the diffusion. Though this sub-period is similar to Fig.1, in

general, there have been small changes in terms of general statistics of the network

(diameter, average degree) - converging to the characteristics of the 1992-2018 inferred

network.

This historical analysis sheds light on critical tipping points in terms of network

formation in the late 90s and the 2000s, embodying a major jump with respect to

network density and connectivity. This observation (ie. the increase in states environ-

mental policies adoption) has been studied by scholars in Law and Political Science

(Andrews, 2018). Research findings suggest this take-off to stem from new approaches

of environmental issues. Among them, after the "environmental decade" that has wit-

nessed the launch of the National Environmental Policy Act and the Environmental

Policy Agency (Kepner, 2017), the U.S. reached a turning point in national environ-

mental policy calling for readjustments in terms of federal government’s action and

states’ roles. Indeed, the success of national laws aimed at controlling major sources

of pollution and encouraging conservation (eg. federal land) came together with a

new public attention focusing on problems that were harder to solve with a federal

action. For instance, tackling widely scattered sources of pollution as well as spe-

cific conservation opportunities affecting farms and housing developments (Graham,

1998). As a result, state-based environmental laws progressively started to soar in the

90’s. Therefrom, states started to influence each other, generating an unprecedented

take-off in states’ environmental policy adoption (eg. California). The historic network
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formation also highlights the late appearance of California and Minnesota as key states

for the diffusion. We argue that the amount of environmental policy diffusion during

previous periods was too low to observe the emergence of current key states - especially

those at the forefront of clean policies in many sectors. Finally, our results indicate an

unstable centrality leadership in the network over time, suggesting possible evolution

to come with respect to diffusion patterns observed.

4.3.2 Regional vs Network Communities Approaches

To further investigate the local structure of the network, we implement a regional-level

analysis (geographical) as well as a network communities evaluation. By doing so, we

provide complementary perspectives on local characteristics in terms of geographic

patterns and nodes’ proximity in the network.

We base our regional setting on the U.S. Census Bureau, a federal institution

which has classified American regional divisions for more than 100 years. Four regions

are then delimited : Northeast, Midwest, West and South.12 It is apparent from both

Table 3 and the diagonal elements of the matrix in Table 4 that Northeast has by

far the lowest amount of connections (ie. in/out-degree, total degree), especially when

considering target region figures (ie. targeted by 13% of links). Among those, nearly

40% are intraregional connections, indicating that activity is concentrated and that

Northeast is not highly subject to external diffusion influence.

South also has the largest off-diagonal elements, reflecting it is the most con-

nected region in the diffusion network. A large majority of its out-connections is ho-

mogeneously targeted toward Midwest, West, and intraregional states, leaving only

10% of remaining out-degrees to the Northeast region. Overall, nearly a 32% of out-

degrees and in-degrees are associated with the South region (ie. 32% of total network

connections). As a comparison, Northeast connections represent respectively 20%, 13%

and 17% (ie. out-degree, in-degree, total).
12See Appendix, Section 3 for full description.
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Table 3. Regional-level statistics.

Region No. of

states

Out-degree In-degree Source

region

(%)

Target

region

(%)

Total

degree

Northeast 9 89 59 20.23 13.41 148

Midwest 12 98 109 22.27 24.77 207

West 13 113 130 25.68 29.54 243

South 17 140 142 31.82 32.27 282

Although South region has the most states coverage, it is the most targeted

region as well as the largest source area. The most interregional flows are between

South and West, followed by South and Midwest.

Table 4. Matrix of intra-interregional connections.

Region Northeast Midwest West South

Northeast 23 14 24 28

Midwest 10 30 29 29

West 11 29 34 39

South 15 36 43 46

From a complex networks perspective, it is interesting to compare previous results

with a community-based approach. The notion of “community” corresponds to a subset

of nodes that are more densely connected among themselves than with the nodes

outside the subset. Several definitions and methods to detect communities have been

proposed in the literature (see Fortunato (2010) for a review). Most algorithms can be

distinguished in divisive, agglomerative and optimization-based (Abraham, 2012). In

the latter case, the goodness of the partitions is commonly assessed in terms of the

so-called “modularity” (Lambiotte, 2009). The modularity takes values between -1
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and 1 and compares the density of the links within the communities with those across

communities. It is positive if the number of edges within groups exceeds the number

expected on the basis of chance. Then, for a given division of the network’s vertices into

some partitions, modularity reflects the concentration of edges within groups compared

with random distribution of links between all nodes regardless of modules. In our

case, modularity takes the value 0.425, confirming the sophisticated properties of the

network13 (Becatti et al., 2019). We map in Fig.2 a graph perspective of communities

of the inferred network.

Fig.2. Reconstructed network using Force Atlas layout. The node size in proportional

to betweenness centrality, a centrality measure capturing the notion of hubs

facilitating policy flows. Position of nodes depends on associated connections in the

network.

Overall, communities analysis points out the presence of cross regional states
13Compared to random graphs.
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belonging to same clusters.14 The latter suggests the existence of multiple inter-states

dynamics of diffusion across the country - providing different insights with respect to

the regional perspective. As an example, the smallest community gathers four states

(Arizona, California, Indiana and South Dakota) while the largest represents 19 states

(Alaska, Colorado, Illinois, Kansas, Kentucky, Louisiana, Michigan, Mississippi, North

Dakota, New Mexico, Nevada, Ohio, Oklahoma, Texas, Virginia, Washington, Wiscon-

sin and Wyoming). Interestingly, all states belonging to the Northeast region - except

Pennsylvania - take part in the same community (ie. red) while other regional settings

become weak nor nonexistent. These results confirm the highly concentrated intra-

states diffusion activity in the Northeast part of the U.S. and the existence of groups

of states narrowly intertwined across the country (ie. clusters). The latter explains the

macroscopic level of clustering observed previously (ie. 0.211).

The network of U.S. environmental policy diffusion we have observed is ineffi-

cient. Our analysis shows that network’s structure hints at the existence of lags in

policy transmission (eg. network diameter) while the ability of states to spread a pol-

icy is highly unequal. The network also exhibits characteristics matching geographic

patterns. That is, in the Northeast region of the U.S., the activity of policy trans-

mission is highly concentrated between states. To enhance our understanding of the

current diffusion structure, the next part evaluates the impact of several attributes on

the formation process. By doing so, we add up to the literature on policy diffusion by

focusing on the determinants of environmental policy transmission across American

states. In addition, policy makers might be interested in modifying the network to

reach higher levels of diffusion. In the context of climate change, this part brings them

new insights to foster the implementation of pro-environmental policy.
14See Appendix, Section 4 for full description.
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5 Estimating the Determinants of the Diffusion Net-

work

5.1 Modelling strategy and data

In this section, we base our econometric approach on the recent works of Wu et al.

(2013) and Halleck Vega et al. (2018). We only expose the general framework and we

refer to the aforementioned authors’ researches for the econometric approach.

We now consider diffusion rates αj,i previously exposed, as the probability for

a policy to diffuse from state j to state i. We argue that this probability depends

on a range of characteristics about the source state, the target state and their rela-

tionship. For example, it might depend on the level of GDP of the source state, the

expected climate change economic cost (% GDP) by the end of the century in the

target state, on geographic proximity between the two states (eg. contiguity).

Then, in all generality, one can consider three main types of variables : a first set

of variables xi := (x1
i ,· · · , xn1

i ) ∈ Rn1 characterizing the source state, a second set of

variables yj := (y1
j ,· · · , yn1

j ) ∈ Rn2 characterizing the target state, and a third set of

dyadic variables z(i,j) := (z1
(i,j),· · · , z

n1
(i,j)) ∈ Rn3 characterizing the relationship between

the two state (z(i,j) shall in general be a multi-dimensional variable accounting for the

range of bilateral features). A natural approach would then be to try to estimate the

diffusion probability between states i and j using a logistic model of the form:

αi,j = Pα,β,γ(xi, yj, zi,j) := 1
1+e−(αxi+βyj+γzi,j)

where α ∈ Rn1 , β ∈ Rn2 and γ ∈ Rn3 are the vector of coefficients associated respec-

tively to the characteristics of the source state, the target state, and their relation-

ship. Based on Halleck Vega, Mandel and Millock (2018), we then infer the determi-

nants of network formation as above using the independent cascade assumption and

maximum likelihood estimation. Precisely, we seek to find (α, β, γ) that maximize the
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likelihood of diffusion observed. This yields the following equation for the likelihood

of the set of observed cascades S = (Sv)v∈V corresponding to V different policies :

Lα,β,γ(S) = ∏
v∈V P

v
(α,β,γ)(X, Y, Z)

Therefrom, we apply this methodology to evaluate the determinants of the formation

of the environmental policy diffusion network from 1974 to 2018.

In order to proceed, we enrich our policy dataset with characteristics that can be

associated to a state as a source (of the type xi) and as a target (of the type yj) of policy

diffusion, as well as characteristics of the relationship between pairs of states (of the

type zi,j). By construction, the model accounts for the fact that the identity of previous

adopters matters because they are the only potential sources of diffusion. This applies

in particular to the initial adoption state. With respect to policy drivers, key variables

are included to capture the impacts of states’ economic and political characteristics,

as well as environmental features on policy diffusion.15 As regards the former, we

include commonly examined variables such as GDP per capita, population density,

citizen ideology as well as partisan control of state government (Berry et al., 1998;

Klarner, 2003; Desmarais et al., 2015). We add a variable dealing with the political

party in charge of the federal government overtime (eg. Republican/ Democratic). By

doing so, we complement the literature by investigating if the federal government party

in office has an impact on the network formation process. In addition, we take into

account contiguity of states as results presented in the literature are not clear-cut. Since

this variable is dyadic by nature, it is included as a zi,j feature, with the expectation

that the impact will be positive and significant, as contiguity should facilitate diffusion

flows of environmental policies (Bromley-Trujillo et al., 2016).

For environmental variables, we focus on different types of indicators ranging

from policy directed at tackling climate change to the expected economic risks due to
15For full variables description, see Appendix, Section 8.
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global warming. Controlling for these variables allows us to estimate whether diffusion

is more likely to occur from/toward states coping with climate change in different

ways (ie. policy, risks). We control for the level of state coal mining production as well

as the green performance of its economy. To do so, we include the Genuine Progress

Indicator (GPI) of American States constructed by Fox and Erickson (2018) for the

year 2011. This indicator, largely commented in the literature on economic welfare as-

sessment (Kubiszewski, 2013), "provides citizens and policymakers fruitful insight by

recognizing economic activity that diminishes both natural and social capital. Further,

the GPI is designed to measure sustainable economic welfare rather than economic ac-

tivity alone" (cf. Maryland Department of Natural Resources). Therefrom, we can

assess if diffusion from sustainable states (ie. greener economic system) is more likely

to occur or not. Finally, we introduce a new variable referring to the expected eco-

nomic cost of climate change for US states. Based on the analysis of Hsiang et al.

(2017), a county scale expected economic impacts (ie. GDP losses; 8.5 RCP scenario)

of global warming at 2080-2099 horizon, we constructed an index to classify American

states with respect to their vulnerability.16 Overall, combining these indicators aims

at covering a large scope of possible environmental determinants of the network and

evaluate if states environmental attributes (eg. policies, risks toward climate change)

increase the likelihood of states-pair diffusion.

5.2 Empirical results

From a policy point of view, the results presented in Table 5 provide interesting insights

on accelerating the diffusion of environmental policy in the U.S., which forms a key

component in the energy transition as highlighted in the introduction.

First, in our models, contiguity has a strong impact on policy spreading. This cor-

roborates previous studies (e.g. Berry and Berry, 1990, 1992; Mooney and Lee, 1995;
16We sum state’s counties median expected economic losses (% of GDP) and take the average with

respect to GDP weights.
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Wong and Shen, 2002; Bromley-Trujillo et al., 2016), that neighbor states tend to

mimic each other with respect to policy implementation. This result was expected

as our regional-level analysis pointed out the following pattern : Midwest, West and

South regions have more in-degree than out-degree. Consequently, the latter increases

the probability of neighbor states to target each other. As can be noticed, from a

source state perspective, GDP per capita is significant for each model specification. In

particular, ceteris paribus, an additional unit in the level of GDP increases the odds ra-

tio of transmission by 1.03-fold (model B). The latter suggests that wealthier states are

more likely to transmit a policy. This finding matches past researches suggesting that

environmental policies are considered by wealthy countries/states (Ringquist, 1994;

Matisoff and Edwards, 2014).

Population density is associated with a decreasing likelihood of transmission for source

states. Though contradicting the literature (Volden, 2006), this result looks intuitive as

a large number of highly densely populated states are located in the Northeast region

where we have observed the fewest amount of diffusion links in total (ie. out-degree,

in-degree). Although this geographic part of the U.S. exhibits a concentrated trans-

mission activity, this finding suggests that diffusion rates of states belonging to this

region are not larger compared to other states in the country (ie. source perspective).

Moving to political consideration, it is expected that state partisanship control

positively influence the acceleration of environmental policy diffusion. However, an

unexpected result is found as the coefficients are negative (cf. models C, D). Although

reaching relatively low levels, this contradicts with the literature (ie. identical political

party fosters diffusion (Huang et al., 2007)). Having in mind that variables cover a

period from 1974 to 2018, we assume that successive political switches in different

states over that time frame scrambled states-pair partisanship proximity impacts on

transmission. It turns out, however, that the party of the federal government ruling

the country is significant in one configuration (model A). Although it should not be

over-interpreted, this outcome is of great interest as moving from a Republican lead-
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ership to a Democrat leadership increases the odds of transmission (exp(0.03) = 1.03,

model A). This stems from two possible factors : as climate change has historically

been more politically considered by democrats (Leiserowitz, 2018), states’ governors

tend to implement pro-environmental policies as their awareness to climate change

increased. Moreover, pro-environmental federal ambitions can foster the willingness

of states to act against global warming with clean policies and divest from a dirty

economic system (eg. Obama Administration climate policy).

With respect to climate change economic impacts, we have estimated the im-

pact of economic damages with treatment coding (with the reference group being

less than 5% GDP climate change median expected economic losses =0; median eco-

nomic losses greater than 5% GDP = 1). Results are shown in the second and fourth

columns. Overall, the impact is highly significant. With respect to targeted states fac-

ing a high expected climate economic cost, the odds ratio of transmission are 50% lower

compared to the reference category (ie. model B). Being aware that Southern states are

among the most vulnerable to climate change, our centrality analysis indicated that

they are often less integrated in the diffusion network (cf. Appendix, Section 4). These

states are also dependent on fossil energies (EIA, State profile, 2017) which implies a

low tendency to adopt and transmit green policies (Matisoff and Edwards, 2014). To

further investigate this issue, we included the source states perspective in the same

model. As expected, the odds of transmission are also lower compared to the reference

category. Here again, we argue that non-environmental-friendly states, accounting for

a large part of the considered scope, are reluctant to adopt environmental policies and

to transmit such actions. The same argument holds for the coal mining state variable

we have included (top coal producers tend to not transmit the policy).

On the opposite, both from source and target perspectives, Genuine Progress Indica-

tor has a significant positive impact, the greatest with contiguity. This suggests that

diffusion flows are more likely to come from sustainable states toward other greener

states (ie. economic system). Here again, this matches the literature suggesting that
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wealthier states are more likely to implement environmental policies and spread them

(Volden, 2006). In addition, a majority of states belonging to the Northeast region

together with identified central states in the network (ie. facilitators) display a high

Genuine Progress Indicator. From this view, GPI’s effect on policy transmission is

consistent.

Table 5. Estimation results of diffusion network approach.
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Overall, results demonstrate that contiguity and GDP are key determinants in

the network formation process while environmental characteristics such as sustainable

economic systems and expected climate change economic losses are relevant indicators

to understand environmental policy flows.

6 Conclusions

In this paper, we have developed a methodology to estimate the network of environ-

mental policy diffusion across American states and evaluate the determinants from

adoption data. By doing so, we enhance the understanding of environmental policies

diffusion and give policy makers insights to maximize the spreading of green policies

in the U.S.. We have first inferred environmental policy diffusion patterns from a con-

structed dataset covering 74 green policies (eg. energy, climate, waste recycling) from

1974 to 2018. We have then constructed a database of economic, political as well as

environmental features for each considered state. Finally, we have combined both of

them in order to estimate the determinants of environmental policy diffusion.

Precisely, we estimate, via maximum likelihood, the parameters that best ex-

plain the observed patterns of environmental policies diffusion at the U.S. scale. This

approach allows to overcome the issue that bilateral diffusion events are generically

not observed. We have applied this methodology to environmental policies that were

enacted across American states but not at the federal scale. Our approach treats each

type of policy enacted by member states as a different policy, but does not use infor-

mation about the strength of the policy. In this sense, our focus is much more on the

extensive than on the intensive margin of environmental policy diffusion. We apply an

epidemic-like model of network diffusion and we then assume that bilateral diffusion

can be explained by a logit model taking into account the characteristics of source and

target states as well as that of their bilateral relationship.

Our results emphasize the central role of Minnesota, California and Florida in
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the diffusion process while Alaska, South Carolina and South Dakota are among the

less integrated states. Aforementioned central states are among the most ambitious to

tackle climate change as reported in recent studies (eg. Statista, 2019). Our findings

also suggest a disconnected dynamics of policy transmission between states belong-

ing to the Northeast region and the rest of the country. Mainly, Eastern states tend

to influence each other and are not sensitive to legislative actions occurring outside

their region. Therefrom, we evaluated the determinants of the network structure. We

find that contiguity, economic and political aspects as measured by GDP per capita,

Genuine Progress Indicator are key drivers of environmental policy diffusion. It is also

found that the level of expected cost of climate change has a negative impact on the

diffusion likelihood among considered states. Nevertheless, other specific characteris-

tics are less relevant for the diffusion per se, although they might play a crucial role in

the forthcoming years (i.e. in the large scale implementation of policies to limit climate

change). As a result, this paper offers an in-depth analysis of the environmental policy

diffusion network in the U.S., calling for regular updates to capture new emerging

dynamics.
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Appendix

1. Description of Policies Database

Adaptation to climate change: Climate Adaptation Plan, Fire prevention policies,

General Hazard Plan, Water Plan, Droughts Plan, Droughts Laws (NCLS), Flood

Programs, Adaptation plan, Harvesting Water Program;

Renewables support: Wind Energy Support, Interconnection Standards, Electricity

Portfolio Standards, Standards for Electricity Power plants, Solar rebate, Water rebate

program (solar heating), Energy Efficiency Loan, Solar/Wind access Policy, Public

Funds for RES, Performance Based Incentives, Training Program, Sales Tax Incen-

tives, Loan Program, Personal Tax Credit, Property Tax Exemptions, Pace Program,

Grant Program, Green Purchasing Power, Hydrogen, Biogas, Solar/Wind Permitting

Standards, Mandatory Net Metering, Renewables Portfolio Standard, Corporate Tax

Credit;

Circular economy: Water Efficiency, Composting, Beverage Program Nuclear Waste,

Stewardship Recycling, Plastic Bag Recycling Policies, Electronic Recycling Program;

Climate Policies: Carbon pricing, GHGs Regulation, Carbon Capture and Storage,

GHGs Emissions Targets, US Climate Action Plan;

Energy Efficiency: Smart Meter Policies, Energy Audits Refrigerator/Cooling, Air

Conditioner Policies, Energy Efficiency - Analysis/services, Rebate Program, Energy

Efficiency standards and targets, Building Energy Code, Energy Standards for Public

Buildings;

Environmental Concerns: GMO Laws, Wildlife Conservation, Bees Keeping Policies,
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Land conservation, Fracking/Shale gas restrictions, Pollinator Laws, Farmers Markets,

Drinking Water Conservation, Forests Management, Environmental Cleanup, Pesti-

cides, Indoor Air Quality;

Transportation : Biofuel Policies, LEV Californian standards, Motor Fuel gas Tax

Increase (2013 and so forth), Hydrogen Vehicle, Natural Gas Vehicle, Electric Vehicle

Policies, Alternative Fuel Policies, Plug in electric vehicle Policies.

2. US Congress Platform : Keywords List

Circular economy: Water Efficiency, Compost, Nuclear Waste, Recycling, Plastic Re-

cycling, Electronic Recycling;

Environmental Concerns: GMO, Wildlife, Bees, Land conservation, Shale gas, Pes-

ticides, Farmers Markets, Water Conservation, Forests, Environment Cleanup, Air

Quality;

Transportation : Biofuel, LEV California, Motor gas Tax, Hydrogen Vehicle, Nat-

ural Gas Vehicle, EV, Alternative Fuel, PEV.
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3. Description of U.S. Census Bureau - Regions

Northeast Midwest South West

Connecticut Indiana Delaware Arizona

Maine Illinois District of Columbia Colorado

Massachusetts Michigan Florida Idaho

New Hampshire Ohio Georgia New Mexico

Rhode-Island Wisconsin Maryland Montana

Vermont Iowa North Carolina Utah

New Jersey Kansas South Carolina Nevada

New York Minnesota Virginia Wyoming

Pennsylvania Missouri West Virginia Alaska

North Dakota Alabama California

South Dakota Kentucky Hawaii

Nebraska Mississippi Oregon

Tennessee Washington

Arkansas

Louisiana

Oklahoma

Texas

45



4. Communities description

1 - Blue 2 - Red 3 - Yellow 4 - Green

Wyoming Alabama Arizona Arkansas

Alaska Connecticut Florida California

Colorado District of Columbia Indiana Idaho

Georgia Delaware Iowa South Dakota

Illinois Massachusetts Idaho

Kansas Maryland Minnesota

Kentucky Maine North Carolina

Louisiana Missouri Oregon

Michigan Montana Pennsylvania

Mississippi Nebraska South Carolina

North Dakota New Hampshire Utah

Nevada New Jersey

Ohio New York

Oklahoma Rhodes Island

Texas Tennessee

Virginia Vermont

Washington West Virginia

Wisconsin

New Mexico
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5. Centrality Analysis

Description of centrality measures.

• The degree centrality of node i, which is simply given by its degree.

• The closeness of node i, 1/∑
jd(j,i), is based on the average distance of i and

hence measures how fast a policy adopted in one state would, on average, reach

another state in the network.

• The betweenness centrality of node i measures the share of shortest paths in the

network on which node i lies. Hence, in our context, it measures to which extent

a state can serve as a hub in the diffusion process.

• The eigenvector centrality is a recursive measure that assigns a high value to

nodes which are connected to other important nodes. In this context, it can be

seen as a measure of the total diffusion range (direct and indirect) of a policy, as

a function of the initial adopting state.
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Table 5.a. Centrality Measures (1/2).

Id Label Name In-degree Out-degree Total

degree

Closeness Betweenness Eigenvector

2 AK Alaska 5 4 9 0.403226 9.964373 0.266815

3 AL Alabama 6 8 14 0.46729 32.094172 0.33571

4 AR Arkansas 15 4 19 0.416667 41.055787 0.602801

6 AZ Arizona 10 11 21 0.505051 48.239245 0.523698

7 CA California 16 14 30 0.561798 141.143666 0.551276

8 CO Colorado 2 10 12 0.505051 14.114863 0.087953

9 CT Connecticut 6 9 15 0.490196 27.686538 0.28126

10 DC Disctrict of

Columbia

4 3 7 0.423729 5.891048 0.201624

11 DE Delaware 10 6 16 0.442478 38.776702 0.361921

12 FL Florida 13 15 28 0.561798 113.570467 0.547631

14 GA Georgia 7 7 14 0.47619 26.518929 0.307814

16 HI Hawaii 14 8 22 0.505051 115.124238 0.783867

17 IA Iowa 5 9 14 0.471698 20.424889 0.229987

18 ID Idaho 19 6 25 0.431034 60.88448 0.849111

19 IL Illinois 6 7 13 0.5 29.107493 0.27493

20 IN Indiana 6 7 13 0.462963 28.459926 0.263861

21 KS Kansas 10 7 17 0.471698 52.518223 0.491029

22 KY Kentucky 9 7 16 0.47619 49.7837 0.350142

23 LA Louisiana 19 6 25 0.42735 67.385037 0.736789

24 MA Massachusetts 4 13 17 0.555556 46.955657 0.234508

25 MD Maryland 6 17 23 0.595238 78.798627 0.19677

26 ME Maine 11 9 20 0.515464 91.453098 0.479913

27 MI Michigan 5 9 14 0.49505 34.83789 0.142184

28 MN Minnesota 23 16 39 0.568182 284.536563 1

29 MO Missouri 11 10 21 0.510204 114.052441 0.680193

31 MS Mississippi 13 8 21 0.47619 59.65885 0.580629

32 MT Montana 10 10 20 0.49505 54.12704 0.3719

33 NC North Car-

olina

9 7 16 0.47619 65.095336 0.334858

34 ND North

Dakota

7 5 12 0.423729 19.040408 0.288743

35 NE Nebraska 13 6 19 0.471698 51.14652 0.655084

36 NH New

Hamp-

shire

8 9 17 0.505051 52.300423 0.332812
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Table 5.b. Centrality Measures (2/2).

Id Label Name In-degree Out-degree Total

degree

Closeness Betweenness Eigenvector

37 NJ New Jersey 12 10 22 0.515464 94.389463 0.493553

38 NM New Mex-

ico

5 10 15 0.531915 22.768328 0.106734

39 NV Nevada 10 8 18 0.47619 51.162607 0.376089

40 NY New York 3 12 15 0.537634 34.535164 0.14357

41 OH Ohio 6 7 13 0.438596 36.367952 0.244487

42 OK Oklahoma 5 8 13 0.446429 30.605094 0.153615

43 OR Oregon 6 10 16 0.505051 55.651683 0.332255

44 PA Pennsylvania 5 10 15 0.537634 23.343624 0.211064

46 RI Rhode

Island

2 10 12 0.520833 12.871703 0.066546

47 SC South Car-

olina

1 7 8 0.47619 7.576828 0.06823

48 SD South

Dakota

8 4 12 0.381679 17.641288 0.429481

49 TN Tennessee 4 8 12 0.49505 26.905995 0.175553

50 TX Texas 8 11 19 0.505051 58.7092 0.444035

51 UT Utah 14 8 22 0.480769 118.636159 0.601942

52 VA Virginia 7 13 20 0.520833 50.923421 0.285089

54 VT Vermont 8 7 15 0.47619 46.132237 0.30207

55 WA Washington 5 9 14 0.515464 15.410143 0.2304

56 WI Wisconsin 9 11 20 0.520833 87.318358 0.420461

57 WV West Vir-

ginia

6 5 11 0.423729 23.606168 0.148295

1 WY Wyoming 14 5 19 0.413223 50.697955 0.552087
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Table 5.c. Top rankings according to centrality indicators (1/6).

Table 5.c. Top rankings according to centrality indicators (2/6).
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Table 5.c. Top rankings according to centrality indicators (3/6).

Table 5.c. Top rankings according to centrality indicators (4/6).

51



Table 5.c. Top rankings according to centrality indicators (5/6).

Table 5.c. Top rankings according to centrality indicators (6/6).
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Table 5.d. Ranked last according to centrality indicators (1/6).

Table 5.d. Ranked last according to centrality indicators (2/6).
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Table 5.d. Ranked last according to centrality indicators (3/6).

Table 5.d. Ranked last according to centrality indicators (4/6).
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Table 5.d. Ranked last according to centrality indicators (5/6).

Table 5.d. Ranked last according to centrality indicators (6/6).
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6. Figures A - Networks

Fig.4. Reconstructed network using Force Atlas layout. The node size in proportional

to betweenness centrality, a centrality measure capturing the notion of hubs

facilitating policy flows.
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Fig.5. Reconstructed network using geographical layout. The node size in proportional

to the degree centrality.

Fig.6. Reconstructed network using geographical layout. The node size in proportional

to the betweenness centrality.
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Fig.7. Reconstructed network using geographical layout. The node size in proportional

to the weighted out-degree ranking.

Fig.8. Reconstructed network using geographical layout. The node size in proportional

to the weighted in-degree ranking.
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7. Figures B - Evolution of network

a)1974-1992

b)1974-2000
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c)1974-2008

d)1974-2016
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e)1974-2018

8. Determinants of Network Formation

Description of variables collected - 1974/2018

Contiguity : Depending on the geography, 0 = not neighbors, 1 = neighbors.

GDP per capita : Overtime.

Population Density : Overtime, 0 = from 13th to 51st rank , 1 = from 1st to 12th

most densely populated states.

States Governors Colors : Depending on the party, 0 = Republican, 1 = Split, 2

= Democratic.

Federal Government Party : Depending on the party, 0 = Republican, 1 = Demo-

cratic.

Citizen Ideology : Overtime.

Climate Change Economic Impacts : We create 4 categories : 0 = -5% of

GDP losses, 1 = +5% GDP losses. Initial Dataset from Hsiang et al. (2017) :
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http://www.globalpolicy.science/econ-damage-climate-change-usa.

Genuine Progress Indicator : Based on Fox and Erickson (2018), depending on

the level, low = 0, high = 1.

Coal Mining State : Based on the EIA coal data production, we select the top States

appearing in blue color in the coal data browser map (https://www.eia.gov/coal/data).

9. Additional Networks

a) Energy Network inferred using Force Atlas Layout. Communities are colored and

the node size is proportional to the betweenness centrality indicator.
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b) Environmental and Climate Network inferred using Force Atlas Layout. Com-

munities are colored and the node size is proportional to the betweenness centrality

indicator.

63



 

– Chaire Économie du Climat • Palais Brongniart, 4
ème

 étage • 28 place de la Bourse • 75002 PARIS – 
www.chaireeconomieduclimat.org 

 
 

N°2020 - 10 • NOVEMBER 2020 

WORKING PAPER 
 ...................................................................................................  

PREVIOUS ISSUES 
 .............................................................................................  

 
 
 

Network structures, environmental technology and contagion 
Côme BILLARD 

N°2020-09 

 

Provision of Demand Response from the prosumers in multiple markets 
Cédric CLASTRES, Patrick JOCHEM, Olivier REBENAQUE 

N°2020-08 

 

Emissions trading with transaction costs 
Marc BAUDRY, Anouk FAURE, Simon QUEMIN 

N°2020-07 

 

Pay-as-you-go contracts for electricity access: bridging the “last mile” 
gap? A case study in Benin 
Mamadou Saliou BARRY, Anna CRETI 

N°2020-06 

 

The influence of a carbon tax on cost competitiveness 
Bastien DUFAU 

N°2020-05 

 

What can be learned from the free destination option in the LNG 
imbroglio? 
Amina BABA, Anna CRETI, Olivier MASSOL  

N°2020-04 

 

Recycling under environmental, climate and resource constraints 

Gilles LAFFORGUE, Etienne LORANG  

N°2020-03 

 

Using Supply-Side Policies to Raise Ambition: The Case of the 
EU ETS and the 2021 Review 
Simon QUEMIN 
 

N°2020-02 

 

 

 

 

Working Paper Publication Director : Philippe Delacote  

  
The views expressed in these documents by named authors are solely the responsibility of 

those authors. They assume full responsibility for any errors or omissions. 

 

The Climate Economics Chair is a joint initiative by Paris-Dauphine University, CDC, TOTAL 

and EDF, under the aegis of the European Institute of Finance. 


	Introduction
	Related Literature : Policy adoption, Diffusion and Network perspectives
	Methodology : Inferring the network
	The U.S. Environmental Policy Network
	General Context and Data
	Statistical Analysis of the Network
	Generalities

	Centrality Analysis : Looking for Facilitators 
	Overtime Network Formation
	Regional vs Network Communities Approaches


	Estimating the Determinants of the Diffusion Network
	Modelling strategy and data
	Empirical results

	Conclusions

