Is the impact of transport modes on health an individual determinant of transport mode choice?

Hélène Bouscasse¹ Sandrine Mathy² Rim Rejeb² Carole Treibich²

Centre d'Economie et de Sociologie appliquées à l'Agriculture et aux Espaces Ruraux (CESAER)¹, Grenoble Applied Economics Lab (GAEL)²

International Conference on Mobility Challenges

December 14, 2020

Outline

Introduction

- Context
- Research question

Methods

- Survey and data
- Discrete choice modeling

3 Results

- Descriptive statistics
- Estimation results
- Economic outputs

Discussion

• Our choices of transport modes refer to both **individual and public health issues**.

- Our choices of transport modes refer to both **individual and public health issues**.
- Various choice determinants (DeWitte et al., 2013):
 - Objective determinants: cost, time, comfort, frequency, etc.
 - Psychological determinants: perceptions, attitudes, norms, etc.

- Our choices of transport modes refer to both **individual and public health issues**.
- Various choice determinants (DeWitte et al., 2013):
 - Objective determinants: cost, time, comfort, frequency, etc.
 - Psychological determinants: perceptions, attitudes, norms, etc.

 \Rightarrow A focus on **individual perception** of a given information (Health perceptions)

Contribution

- Health considerations are an element of choice (Shepherd et al., 2005; Paul & Rana, 2012)
- Sottile et al. (2015): the first to include information about the environmental (CO_2 emissions) and the sanitary impact (Stress level) of modal choice as attributes in a DCE.

But, no previous studies making a direct link between the reduction of health risk due to a specific behavior (diet, physical activity, smoking, etc.) and behavioral change.

Contribution

- Health considerations are an element of choice (Shepherd et al., 2005; Paul & Rana, 2012)
- Sottile et al. (2015): the first to include information about the environmental (CO_2 emissions) and the sanitary impact (Stress level) of modal choice as attributes in a DCE.

But, no previous studies making a direct link between the reduction of health risk due to a specific behavior (diet, physical activity, smoking, etc.) and behavioral change.

• <u>Research question</u>: How does information provided to individuals on the positive individual and public health impacts induced by active and less polluting modes of transport modify their modal choice?

Outline

Introduction

- Context
- Research question

2 Methods

- Survey and data
- Discrete choice modeling

Results

- Descriptive statistics
- Estimation results
- Economic outputs

Discussion

A Discrete choice experiment (DCE)

- An online Stated preferences survey (June to September 2019) with 1,000 participants from Grenoble metropolitan area
- 4 modes of transport to make a personalized trip (above or below 3km) done with a reference mode (i.e. status quo)
- Attributes for the first 2 choices : travel time, travel cost

*

Maintenant c'est à vous de choisir ! (choix 1/2)

Les choix qui s'offrent à vous sont présentés dans le tableau ci-dessous.

Nous vous demandons de bien vous baser sur les temps et coûts indiqués dans les questions et qui varient de questions en questions. Imaginez que vous vous déplaciez de GRENOBLE (domicile) à GRENOBLE (travail/étude)

Mode de transport	=	R	Ŕ	ీం
Temps de trajet	13 min	13 min	25 min	13 min
Coût par trajet	0,5€	1,5€	0€	0€
Quel est votre choix ?	0	0	0	0

Introduction of health related attributes for the 7 other choices

1. Impact of physical activity (walking or cycling instead of driving) on its own health (**individual health motivation**).

8/21

Introduction of health related attributes for the 7 other choices

2. Impact of the mode of transport on public health (**public health motivation**) with varying % of the population adopting active and less polluting transport modes

Table 1: Health attributes and levels

Attributes	Mode	Definition	Levels		
			<3km	>3km	
Pollution (Public health)	Car Public Transport Bicycle Walk	Average risk of developing a cardiovascular disease for a person in the Grenoble urban area considering that [50/75/90]% of the population adopt this mode of transport	30% [27/ 28 / 29]% [25/ 26 / 27]% [25/ 26 / 27]%		
Physical activity (Individual health)	Car Public Transport Bicycle Walk	Individual risk of developing a cardiovascular disease	30% [24/ 26/ 28]% [24/ 26/ 28]% [15/ 20/ 25]' [20/ 24/ 27]%		

Notes: In the level column, figures in bold refer to the "status quo" levels.

Mode de transport	R		Ŕ	65
Temps de trajet	10 min	9 min	17 min	9 min
Coût par trajet	1,5€	0,5€	O€	0€
Activité physique En utilisant ce mode de transport tous les jours, votre risque de développer une maladie cadio- vasculaire est de	24%	30%	24%	28%
Pollution atmosphérique Si 75% de la population adopte ce mode de transport. le risque moyen de développer une maladie cardiv-assculaire pour une personne de l'agglomération est de	28%	30%	26%	26%
Quel est votre choix ?	0	0	0	0

The model framework

- Use of the standard **Discrete Choice Modeling** formulation (McFadden, 1974)
- We model the utility U_j associated with each transport mode j.

 $j \in \mathbf{C} = \{1, 2, 3, 4\} = \{$ car, public transport PT, bicycle, walking $\}$

The utility function is $\forall j \in \{1, 2, 3, 4\}$

$$U_{j} = ASC_{j} + \beta_{T}j \times T_{j} + \beta_{C} \times C_{j} + \beta_{PHYS} \times PHYS_{j} + \beta_{POLL} \times POLL_{j} + \beta_{A} \times A_{j} + \beta_{POLL_{A}} \times A_{j} \times POLL_{j} + \gamma_{AGE} \times AGE + \gamma_{GENDER} \times GENDER + \gamma_{STATUS_{j}} \times STATUS$$
(1)

Outline

Introduction

- Context
- Research question

Methods

- Survey and data
- Discrete choice modeling

3 Results

- Descriptive statistics
- Estimation results
- Economic outputs

Discussion

Descriptive statistics

Table 2: Descriptive statistics

Label	Variable definition	Distance of reference trip		
		All distances	Below 3 km	Above 3km
		Mean S.D.	Mean S.D.	Mean S.D.
Individual variables		(n = 1,003)	(n = 211)	(n = 792)
Male	Gender (1 if male)	48.06	44.55	48.99
Age	Age (in years)	51.72 12.70	51.36 13.65	51.82 12.44
Commuting trip	% of reference trips which are commute to work			
	Ĥ	53.94	38.86	57.58
		23.93	16.11	26.01
	ର୍ଷତ	18.94	28.44	16.41
	<u>х</u>	3.49	16.59	-

Estimation results (1)

Table 3: Estimation results

Variable	Below 3km	Below 3km	Above 3km	Above 3km		
Variable	No Health Attributes With Health Attributes No Health Attributes With Health Attributes					
ASCBicycle	-3.11 (2.09)	-5.03 (1.02)***	-0.03 (0.90)	1.02 (0.58)*		
ASCPT	-4.28 (2.14)**	-6.24 (1)***	-0.134 (0.90)	1.14 (0.55)**		
ASC _{Walk}	-2.16 (2.09)	-3.87 (1.02)***				
ASC _{Car}						
Cost	-0.97 (0.28)***	-0.35 (0.16)**	-0.66 (0.10)***	-0.48 (0.056)***		
Time _{Bicycle}	-0.06 (0.05)	-0.02 (0.03)	-0.08 (0.01)***	-0.07 (0.003)***		
TimePublicTransport	-0.011 (0.02)	0.01 (0.01)	-0.06 (0.01)***	-0.07 (0.004)***		
Time _{Car}	-0.01 (0.06)	0.02 (0.04)	-0.04 (0.01)***	-0.05 (0.01)***		
Time _{Walk}	-0.14 (0.02)***	-0.11 (0.01)***				
CardioRisk _{Phys}		-0.03 (0.02)		-0.04 (0.01)***		
CardioRiskPoll		-0.21 (0.07)***		-0.05 (0.04)		
75% of pop		-2.2 (1.82)		1.61 (0.98)		
90% of pop		-3 (2.04)		2.06 (0.98)***		
CardioRisk _{Poll} * 75% of pop		0.13 (0.07)*		-0.05 (0.04)		
CardioRisk _{Poll} * 90% of pop		0.13 (0.08)*		-0.07 (0.04)***		
Male	0.34 (0.29)	0.37 (0.18)**	0.17 (0.12)	0.08 (0.07)		
Age	0.14 (0.08)*	0.16 (0.04)***	0.01 (0.03)	-0.04 (0.02)***		
Age ²	-0.002 (0.01)**	-0.002 (0.0003)***	-0.0002 (0.0003)	0.0003 (0.0002)		
Distance (=1 if distance<3km	n)					
STATUSCar						
STATUSPT	1.45 (0.46)***	1.3 (0.26)***	1.6 (0.18)***	1.93 (0.11)***		
STATUSBicycle	2.18 (0.49)***	3.65 (0.52)***	2.33 (0.26)***	2.74 (0.18)***		
STATUS _{Walk}	3.09 (1.05)***	3.6 (0.73)***				
$L(\hat{\beta})$ $\bar{\rho^2}$	-444.37	-1563.22	-1443.05	-4858.39		
$\overline{\rho}^2$	0.216	0.227	0.164	0.2		
Observations	422	1,477	1,584	5,544		

Notes: Standard errors in parentheses. *** p < 0.01; ** p < 0.05; * p < 0.1

Estimation results (2)

- 1. Distances below 3km:
- Information about the **positive impact of reduced air pollution** on public health **encourages** the use of car alternatives when smaller share of the population does it.
- 2. Distances above 3km:
- Information about **the positive impact of physical activity** on individual health **encourages** the use of car alternatives.
- Information about the **positive impact of reduced air pollution** on public health **discourages** the use of car alternatives when larger share of the population does it (Free-riding?).

Willingness To Pay (WTP): the variation of the cost attribute (β_C) that an individual would accept to maintain the same level of utility when there is a variation in another attribute (e.g. Time attribute in the case of calculating the value of time VoT). Table 4: Value of time (VOT) and Willingness to pay (WTP) for the attributes of the DCE

	Below 3km No Health Attributes	Below 3km With Health Attributes	Above 3km No Health Attributes	Above 3km With Health Attributes
VOT (€/hour)				
Car	-	-	3.8	5.96 (+57%)
Public Transport	-	-	5.8	8.54 (+47%)
Bicycle	-	-	6.82	9.08 (+33%)
Walk	8.85	18.8		
WTP _{PHYS} (€/10% lower risk)				
All modes		-		0.75
WTP _{POLL} (€/10% lower risk)				
All modes (50% of pop adopting the behavior)		6.04		-
All modes (75% of pop adopting the behavior)				-
All modes (90% of pop adopting the behavior)		-		2.6

Note: "-" = the economic measure cannot be calculated because of the presence of one (or more) non significant coefficient(s) (Hensher et al., 2005).

Outline

Introduction

- Context
- Research question

2 Methods

- Survey and data
- Discrete choice modeling

3 Results

- Descriptive statistics
- Estimation results
- Economic outputs

Conclusion

How does information provided to individuals on the positive individual and public health impacts induced by active and less polluting modes of transport modify their modal choice?

Conclusion

How does information provided to individuals on the positive individual and public health impacts induced by active and less polluting modes of transport modify their modal choice?

- Information about the impact of mode choice on public or individual health influences the choice of less polluting and more active modes
- Interesting results for policies implemented by environmental, urban and transport policy-makers
- Possible extension: Focus on the relation of these results with other psychological factors (eg. attitudes and norms) through a more complex model (eg. Hybrid choice models)

Thank you for your attention

Rim REJEB: rim.rejeb@univ-grenoble-alpes.fr