The Structural Determinants of Carbon Prices in the European Union Emissions Trading Scheme

Anouk Faure

Doctoral dissertation in Economics, Prepared under the supervision of Marc Baudry, at the University of Paris Nanterre (EconomiX) and the Climate Economics Chair

PhD defense - 01 Decembre 2020

• Market-based emissions trading programs have become inevitable in industrial environmental regulation and climate change mitigation.

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• EU-ETS: covers 50% of EU's GHG emissions

Motivation	Crises and reforms	Static structure	Dynamic structure	Carbon price floor	Conclusion	Back-up
○●	OO	0000	0000	0000	00	000000000000000000000000000000000000
Rese	arch Que	estion				

- In the EU-ETS, price trajectory departs from the Hotelling rule
- Little attention given to price drivers related to the internal structure of the carbon market
- What are they, how do they affect price formation and the design of supply-adjusting policies ?

Thesis Structure

- History of crises and reforms
- **Static permit trading** : transaction costs
- **Oynamic dimension**: technological progress
- 2021+ EU-ETS design : carbon price floor

• EU-ETS born in 2005 with the Kyoto protocol taken over by Paris Agreement

Source: Vivid Economics

• Permit price : main performance indicator, despite compliance with the emission cap

イロト 不得 トイヨト イヨト

ъ

- 2009 price drop largely attributed to supply imbalance due to external factors
- Phase 3 reforms: supply-adjusting measures (backloading, MSR)
- Partially worked: prices roses but volatility remains

Takeaways

- Price/quantity relationship questionable
- Suggests greater level of complexity in the behavior of market actors

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Motivation oo Crises and reforms oo Chapter 2 - Emissions trading with transaction costs

Article with M.Baudry and S.Quemin, R&R in JEEM

・ロト ・ 戸 ト ・ ヨ ト ・

• Founding assumption of static permit trading: equi-marginal value principle

Note: Source: European Union Transaction Log.

Research question : impact of trading costs on firms' trading decisions, market price and policy design ?

- Static, competitive carbon market with a market entry cost F and a proportional trading cost T (mark-up on permit price)
- Firms' characteristics: initial permit deficit β_i = u_i q_i (> 0 or < 0); exogenous marginal cost of abatement α_i

ション ふゆ アメビアメロア ほうろくの

- Calibration to EU-ETS Phase II (2008-12): what values of trading costs best replicate observed firms' market participation and trading decisions ?
 - Calibrated F and T vary between 5-18 k€, and 0.55-1.40 €/tCO₂
- Extra compliance costs : 7%
- In the context of a supply-tightening:
 - Trading costs amplify the price reaction
 - All the more (less) when permits are withdrawn from under-allocated firms (proportionally to their allocation)

ション ふゆ アメビアメロア ほうろくの

Chapter 2 - Takeaways

Results

- Firms take little advantage of static flexibility offered by the EU-ETS : missed gains from trades
- Compliance costs highly depend on the size of the permit endowment and the allocation method : important source of heterogeneity between economic sectors

Policy implications

- Mitigate trading costs: monetary help, more transparency & support, e.g. initial training
- ❷ Harmonize allocation method → full auctioning : improve effort sharing

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Article with M. Baudry accepted in FAERE WP

ション ふゆ アメビアメロア ほうろくの

- Chapter 2: permit deficits are important determinants of price formation
 - Baseline emissions unlikely to be constant yet

How does technological progress affect carbon price formation through plants' marginal abatement cost curves ?

- No assumption about the nature of technological progress ex-ante : improvement of total factor productivity
- Characterizing criterion : strongly directed, weakly directed, non-directed

Figure 2: Plant and industry technological frontiers

Note: Representation at t and t + 1 of the production sets P(x) of two producing plants producing one desirable good and one pollutant, y and b, and using x inputs.

- Empirical application : manufacturing/power sector from 2013-17
- Calibration approach : directional distance functions
- Numerical industry m.a.c.c. curves: revenue maximization under pollution constraint

Motivation	Crises and reforms	Static structure	Dynamic structure	Carbon price floor	Conclusion	Back-up
00	OO	0000	00●0	0000	00	000000000000000000000000000000000000
Chap	ter 3 - F	Results				

- Efficiency analysis : high-carbon intensity plants experience more productivity gains than low-carbon intensity ones
- Technological progress :
 - Baseline-increasing technological progress more frequent, whether directed or non-directed
 - Directed technological progress more often strongly directed in highly carbon intensive industries

- M.a.c.c. curves influenced by baseline variations
- Market equilibrium :
 - Technological progress inflates equilibrium prices in our samples
 - Transfers from low to high carbon intensity plants

Motivation	Crises and reforms	Static structure	Dynamic structure	Carbon price floor	Conclusion	Back-up
00	00	0000	0000	0000	00	000000000000000000000000000000000000000
~						

Chapter 3 - Takeaways

Results

- Environmental regulations do not necessarily lead to 'low-carbon' technological progress
- EU-ETS often perceived as a relative rather than absolute cap on emissions
- Technological progress alters the effective emissions ceiling over-time

Policy implications

- Limits of benchmarking : gives the perception of a carbon intensity target; little dynamic flexibility
- Full auctioning circumvents these limits
- d.d.f. : methodological alternative to benchmarking procedure ?

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Article with M.Pahle and S.Okullo under review in JEEM

ション ふゆ アメリア メリア しょうくしゃ

- Which design for the EU-ETS ?
- In this context, MSR may not be an adequate instrument to uphold prices and reduce their volatility
- Carbon price floor: in policy debates for a while, on the table again at the eve of 2021 MSR review
- Hybrid schemes proven beneficial

Can a carbon price floor support and stabilize prices in the EU-ETS, and what are design options $? \end{tabular}$

- Numerical inter-temporal optimization model calibrated on the EU-ETS power sector & current MSR rules (Mauer&Okullo 2019)
- Electricity producer maximizes sales revenue over $T \in (2019:2027)$
 - Electricity can be produced from fossil or renewable generation source
 - Producer can buy allowances to cover emissions from carbon input
 - She can invest in both generation capacities
- Exogenous energy demand with linear growth (1% or 0-2% in stochastic simulations)
- Status quo vs. policy scenarios : secure minimum price of $30 \in /tCO_2$
 - Auction reserve price (implemented as a buyback mechanism)

ション ふゆ アメリア メリア しょうくしゃ

- Flat tax on emissions
- Carbon Price Support (CPS) : top-up levy

 Supply-adjusting policies (MSR, Auction Reserve): higher market prices, less price volatility

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• Consequences on green investment and cumulative emissions

Chan	+ ~ ~ 1 7					
00	00	0000	0000	0000	00	000000000000000000000000000000000000000
Motivation	Crises and reforms	Static structure	Dynamic structure	Carbon price floor	Conclusion	Back-up

Chapter 4 - Takeaways

Results

- Initial size of surplus matters for the choice of an instrument
- Supply-adjusting policies outperform extra taxes to uphold and stabilize EUA prices in the power sector...
- ...and to steer investment in renewable capacity, and accelerate fossil decommissioning

Policy implications

- Extra taxes could be counterproductive in the long run
- Orastic permit cancellations put pollution costs at risk of rising uncontrollably

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

MSR 2021 review: 'Price stability reserve' ?

Motivation	Crises and reforms			Carbon price floor	Conclusion	
00	00	0000	0000	0000	•0	000000000000000000000000000000000000000
Conc	lusion					

Policy implications

- Much greater level of complexity than the "simple" model of inter-temporal permit trading
- ② Limited participation on the part of polluters & ambiguous incentives
- Oalls for a massive simplification of the system
 - Restrict carbon market to polluters/ financial actors acting on their behalf
 - Same allocation rule for everyone: auctioning
 - Leave aids to the discretion of member states/ solidarity funds financed by auction revenues

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- MSR 2021 review: transparency & consistency seem fundamental
 - Difficult compromise between certainty on prices or on quantities

Motivation	Crises and reforms		Carbon price floor	Conclusion	
				00	
Conc	lusion				

Thank you for your attention !

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

Motivation Crises and reforms Static structure Dynamic structure Carbon price floor Conclusion Back-up 00 000 0000 0000 0000 000 0000 0000

Chapter 2 - Calibration details

1 Infer firms' m.a.c. slopes $\alpha_{i,t}$ and net deficits $\beta_{i,t}$

- $\alpha_{i,t} = EMVP$ corrected with T
- $u_{i,t}$ = rolling average of t-3 emissions
- q_{i,t} corrected with bank increments
- **2** Find \hat{p}_t for a range of F, T pairs
- Yearly fixed effect η_t neutralises $p_t^r \hat{p}_t$: in firm-level permit deficits $\beta = u_{i,t} + \eta_t / \alpha_{i,t} - q$
- Choice criterion for F, T: minimize discrepancies between modeled and observed trading decisions. Weighted Shannon's entropy: (H/log(6)) × (1 − ∑_{i=1}⁶ |E_i|/N) ∈ [0; 1]

		Observations				
		Autarkic	Buyer	Seller		
е	Autarkic		\mathcal{E}_1	\mathcal{E}_2		
00	Buyer	\mathcal{E}_3		\mathcal{E}_5		
Σ	Seller	\mathcal{E}_4	\mathcal{E}_6			

Table 2: Annual calibration results (2008-2012)

	p_t^r	η_t	F	T	T/p_t^r	$\mathcal{H}/\log(6)$	$1 - \sum_{i=1}^{6} \mathcal{E}_{i} / N$
2008	19.6	4.1	10	0.55	2.8%	0.74	0.90
2009	13.3	-0.3	18	1.40	10.5%	0.66	0.85
2010	14.3	8.1	5	0.55	3.8%	0.76	0.89
2011	13.1	0.3	16	1.30	9.9%	0.66	0.87
2012	7.4	0.3	8	0.60	8.1%	0.67	0.90

Note: p_t^r , η_t and T given in \in /tCO₂. F given in k \in .

- η_t large in 2010: baseline need to be shifted up (increased permit deficit) to replicate observed price
- Product of right columns = final index, maximum when equal to 1

Figure: Selection criteria as functions of F and T (2009 sample)

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへで

Figure: Selection criteria as functions of F and T (2009 sample)

<ロト < 部 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Table 3: Price responses to a $\frac{1}{6}$ supply tightening with different incidence scenarios

		Inc	cidence	e scena	rio
		(1)	(2)	(3)	(4)
2009 (p^r =13.3)	$\begin{array}{c} (p^{\star}-p^{r})/p^{r} \\ (\hat{p}-p^{r})/p^{r} \\ (\hat{p}-p^{r})/(p^{\star}-p^{r}) \end{array}$	$ \begin{array}{c} 0.70 \\ 1.11 \\ 1.59 \end{array} $	0.70 1.29 1.84	$0.70 \\ 1.19 \\ 1.70$	$0.70 \\ 1.59 \\ 2.27$
2012 (p ^r =7.4)	$(p^{\star} - p^{r})/p^{r}$ $(\hat{p} - p^{r})/p^{r}$ $(\hat{p} - p^{r})/(p^{\star} - p^{r})$	1.04 2.14 2.06	$1.04 \\ 2.47 \\ 2.38$	$1.04 \\ 2.27 \\ 2.18$	$1.04 \\ 2.79 \\ 2.68$

Note: p^r is the pre-tightening reference price in \textcircled{C}/tCO_2 , p^* (resp. \hat{p}) is the post-tightening price without (resp. with calibrated) trading costs. Incidence scenario: permits are withdrawn (1) proportionally to firms' allocations, uniformly across all (2), overallocated (3) or underallocated (4) firms in the annual samples.

\bullet Lower price to begin with \longrightarrow more sellers in the market \longrightarrow greater price increase

Note: Based on the 2009 select sample of firms. Incidence scenario: permits are withdrawn (1) proportionally to firms' allocations, (2) uniformly across all, (3) overallocated or (4) underallocated firms.

イロト 不同下 イヨト イヨト

э

Motivation	Crises and reforms			Carbon price floor	Conclusion	Back-up
00	00	0000	0000	0000	00	000000000000000000000000000000000000000
Com	parative	statics				

• Change in the trading cost

$$\frac{\mathrm{d}\hat{\rho}}{\mathrm{d}K} = -\frac{\partial V(\hat{\rho}, F, T)/\partial K}{\partial V(\hat{\rho}, F, T)/\partial p} \gtrless 0, \tag{1}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where

$$\frac{\partial V(\hat{\rho}, F, T)}{\partial K} = \frac{\partial S(\hat{\rho}, F, T)}{\partial K} - \frac{\partial D(\hat{\rho}, F, T)}{\partial K}$$

• Impact of a supply cutback

$$\frac{\mathrm{d}\hat{\rho}/\mathrm{d}\mathcal{Q}}{\mathrm{d}\rho^{\star}/\mathrm{d}\mathcal{Q}} = \underbrace{\left(|\mathcal{S}(\hat{\rho}, F, T)| + |\mathcal{D}(\hat{\rho}, F, T)|\right)}_{\text{distribution effect } \leq 1} \underbrace{\frac{\partial V(\rho^{\star}, 0, 0)/\partial \rho}{\partial V(\hat{\rho}, F, T)/\partial \rho}}_{\text{price effect } \gtrless 1} \gtrless 1.$$
(2)

 $\partial V(\hat{p}, F, T)/\partial p = \partial V(p^*, 0, 0)/\partial p - \nearrow$ in net supply of autarkic firms+ \nearrow in net supply due to new entries and exits (3)

• Last term disappears if F = 0

Chapter 2 - Numerical examples I

Figure: Ratios \hat{p}_0/p_0^*

• (a): $\hat{
ho} > p^{\star}$ always; (b) $\hat{
ho} > p^{\star}$; (c) $\hat{
ho} \gtrless p^{\star}$

• \hat{p} increases less in (b) and (c) due to demand being relatively more constricted

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

Chapter 2 - Numerical examples II

Figure: Ratios $\frac{\hat{p}_t - \hat{p}_0}{\hat{p}_0} / \frac{p_t^* - p_0^*}{p_0^*}$

- (a): $\nearrow \hat{p} < \nearrow p^*$ always; (b) $\nearrow \hat{p} < \nearrow p^*$ always ; (c) $\nearrow \hat{p} \ge \nearrow p^*$
- (a) and (b): increase in net supply due to new entries & exists (extensive margin) > loss in net supply due to autarkic firms (intensive margin) \rightarrow price effect < 1
- (c): net supply less reactive with TC \longrightarrow price effect > 1

Figure: Nature of technological progress

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Chan	ter 3 - F)ata				
Motivation	Crises and reforms	Static structure	Dynamic structure	Carbon price floor	Conclusion	

- Data collection : inputs (labor, capital and energy in €), good output (production in €) and bad output (CO₂) emissions at the plant level, binned by NACE rev.2 4-digit code
- Orbis (Amadeus) and EUTL

Industry	NACE rev. 2	Activity description
Baked clay	23.32	Manufacture of bricks, tiles and construction products, in baked clay
Cement	23.51	Manufacture of clinkers and hydraulic cements, including Portland, aluminous cement, slag cement and superphosphate cements
Chemicals	20.1(2-3-4)	Manufacture of organic and inorganic basic chemicals, dyes and pig- ments
Electricity	35.11	Production of electricity, including operation of generation facilities that produce electric energy
Metallurgy	24.1	Manufacture of basic iron and steel and of ferro-alloys
Paper	17.12	Manufacture of paper and paperboard
Plaster	23.52	Manufacture of plasters of calcined gypsum or calcined sulphate, and manufacture of quicklime, slacked lime and hydraulic lime

Directional distance function:

$$ec{D_i}(x,y,b;g_y,-g_b) = \sup\{eta: (y+eta g_y,b-eta g_b)\in P(x)\}$$

Iranslation property

$$ec{D_i}(x,y,b;g_y,-g_b) = ec{D_i}(x,y+s imes g_y,b-s imes g_b;g_y,-g_b) + s$$

 $ig 0 \longrightarrow$ Parametric, quadratic technological frontier, g=(1;-1)

$$D_{i,t}(x_{i,k,t}, y_{i,t}, b_{i,t}) = \alpha_0 + \sum_{k=1}^3 \alpha_k x_{k,i,t} + \beta_1(y_{i,t} + b_{i,t}) + \frac{1}{2} \sum_{k=1}^3 \sum_{k'=1}^3 \alpha_{kk'} x_{k,i,t} x_{k',i,t} + \frac{1}{2} \beta_2(y_{i,t} + b_{i,t})^2 + \sum_{k=1}^3 \delta_k x_{k,i,t}(y_{i,t} + b_{i,t}) + b_{i,t}$$
(4)

with parameter restrictions: (i) $\gamma_1 = \beta_1 + 1$, (ii) $\beta_2 = \gamma_2 = \mu_2$, (iii) $\delta_n = \eta_n$ and (iv) $\alpha_{nn'} = \alpha_{n'n}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目▶ ● ①

• Linear minimization program.

$$\begin{array}{ll} \text{Min} \left[\vec{D}_{i,t}(x_{i,k,t}, y_{i,t}, b_{i,t}; g) \right] & \text{such that} \\ \text{(a)} & \vec{D}_{i,t}(x_{i,k,t}, y_{i,t}, b_{i,t}; g) \geq 0 \\ \text{(b)} & \partial \vec{D}_{i,t} / \partial y_{i,t} \leq 0 \\ \text{(c)} & \partial \vec{D}_{i,t} / \partial b_{i,t} \geq 0 \\ \text{(d)} & \partial \vec{D}_{i,t} / \partial x_{i,t} \geq 0 \\ \text{(e)} & \vec{D}_{i,t}(x_{i,k,t}, 0, 0; g) < 0 \end{array}$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

• Sequential production possibility set approach

Motivation Crises and reforms Static structure Dynamic structure Carbon price floor OCO Back-up OCO Conclusion Conclusion OCO Conclusion Conclu

• Industry m.a.c. curves generated with fixed inputs (2013)

Figure 5: Marginal abatement cost curves, baked clay (23.32)

Note: The y-axis reports the marginal cost of abatement in E/tCO_2 and the x-axis reports abatement levels.

Motivation 00	Crises and reforms	Static structure 0000	Dynamic structure 0000	Carbon price floor 0000	Conclusion 00	Back-up 000000000000000000000000000000000000
Chap	ter 3 - F	Results				

Table: Summary of abatement dynamics

Industry	Carbon in- tensity	Nature of T.P.	Ave. abatement, EUA prices	Ave. abatement, $100/tCO_2$	$\%\Delta$ in abatement, $100/tCO_2$	
Baked clay	ed clay 0.4 weak 3.6 strong		0.5% 4.2%	8.1% 48.8%	+10.4% -10.9%	
Cement	5.1	non-directed	5.8%	55.7%	+57.1%	
Chemicals	0.3	strongly directed	1.1%	13.4%	-11.3%	
Electricity	1.1	weakly directed	1.3%	19%	+7.2%	
Metallurgy	0.1 0.5	non-directed non-directed	0.1% 0.6%	2.2% 10.2%	+16.7% +30.4%	
Paper	0.1 0.5 1.1	weakly directed strongly directed strongly directed	0.1% 0.5% 1.2%	2.6% 8.1% 18.7%	+3.9% -13.3% -28.4	
Plaster	2.8	non-directed	3.2%	39.4%	+17%	

Motivation	Crises and reforms		Dynamic structure	Carbon price floor	Conclusion	Back-up
00	00	0000	0000	0000	00	000000000000000000000000000000000000000

Chapter 3 - Market equilibrium

Industry	Emissions share	Carbon	Net dem	Net demand (mtCO ₂)				
		intensity	2013	2014	2015	2016	2017	
Baked Clay (23.32)	14.2%	0.4	0.388	0.507	0.499	0.415	0.504	
Builda eldy (20.02)	1.12/0	3.6	0.676	0.698	0.619	0.437	0.438	
Cement (23.51)	14.1%	5.1	11.318	12.159	11.596	11.819	13.561	
Chemicals (20.1)	4.8%	0.3	6.779	5.579	6.132	6.154	6.225	
Electricity (35.11)	1,2%	1.1	32.733	33.752	33.203	31.894	31.745	
Motallurgy (24.1)	3.1%	0.1	1.934	1.988	2.358	2.582	2.642	
Wetanurgy (24.1)		0.5	2.483	2.900	3.557	4.144	3.533	
	13.9%	0.1	0.389	0.647	0.643	0.640	0.515	
Paper (17.12)		0.5	0.988	0.897	0.952	0.976	0.886	
		0.9	5.221	3.452	2.916	4.224	3.071	
Plaster (23.52)	12.4%	2.8	3.301	3.643	3.739	2.927	3.085	
Clearing price $(/tCO_2)$			4	7	19.9	44.2	45.1	
Price gap (/tCO ₂)	/	+3	+12.9	+24.3	+0.9			

- (Baseline(t) Allocation(t)) + AutonomousDemand(2013) = Abatement(t,p)

Chan	$+ \alpha r 3$ (ountorf	factual	0000	00	
Motivation	Crises and reforms	Static structure	Dynamic structure	Carbon price floor	Conclusion	Back-up

• 2013 inputs & allocation, current technology

	2013	2014	2015	2016	2017
Net demand (mtCO2)	67 997 322	67 503 431	72 278 371	85 825 780	85 642 341
Baseline emissions (mtCO2)	103 684 731	103 190 840	107 965 780	121 513 189	121 329 750
Agg. Allocation (mtCO2)	35 687 409	33 898 256	32 819 540	33 272 244	32 033 849
Clearing price (€/tCO2)	650	641	645	667	634

・ロト ・ 一 ・ エ ト ・ エ ト ・ 日 ・ うへつ

Fixed inputs (2013), fixed allocation (2013), current technology

- Baseline \nearrow due to weakly directed/non-directed technological progress
- Market permit deficit increases (nuanced by industry)

Chan	ter 3 - F	Porter H	vnothesi	s		
00	00	0000	0000	0000	00	000000000000000000000000000000000000000
Motivation	Crises and reforms		Dynamic structure	Carbon price floor	Conclusion	Back-up

- "Weak" version: properly designed environmental regulation may spur innovation (R&D expenditure or patents) of Calel and Dechezleprêtre (2014)
 - Our approach: no causality, reverse argument effect of TP on price formation?
- "Strong" version: impact of environmental regulation on the business performance
 - Our approach: pollution constraint implies a revenue sacrifice which can be mitigated by directed TP (more revenue for same level of pollution)...
 - ...but one has to account the indirect effect of TFP improvement on market prices
 - Only strongly directed TP mitigates "compliance costs" on the carbon market
- Productivity analysis: no clear link between productivity gains & nature of TP

Chapter 4 - Modeling approach I

- Typical model : min $\sum_{t=0}^{T} \beta^t [C(u_t e_t) + p_t Z_t] \longrightarrow C'(u_t e_t) = p_t$ (1) Z_t is a transfer within the secondary market
- Us : min $\sum_{t=0}^{T} \beta^t [-ElecSupply \times P_{elec} + CarbonInput + InvCost + p_t Z_t]$ FOC : -Marg. revenue product from fossil-based elec. = $p_t \longrightarrow$ similar to (1) Z_t is a transfer from the primary to secondary market
- Market clearing

Chapter 4 - Market outcomes

イロト イポト イヨト イヨト

э

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ○豆 ○の≪で

• Marginal investment cost :

Financing of initial capacity (\in) + inv. cost (\in /MW) × new inv. (MW)

- Calibrated to match observed investment expenditures levels in 2018
- Electricity demand :
 - Linear specification : $p = \text{choke price} \text{elasticity} \times \text{demand}$
 - Autonomous demand grows (upward shift) at 1%
 - Shocks on demand : 0 or 2% growth rate with equal chances
- Discount rate : 10% upper range
- Depreciation rate : 2,5% inverse of ave. lifetime of power plant
- Initial quantities (MSR, ceiling, trigger threshold, bank) adjusted with 0.73 factor

ション ふゆ アメリア メリア しょうくしゃ