Efficiency and Equity Impacts of Urban Transportation Policies with Equilibrium Sorting

Shanjun Li	Panle Jia Barwick	Andrew Waxman	Jing Wu	Tianli Xia
Cornell & NBER	Cornell & NBER	UT -Austin	Tsinghua	Cornell

International Webconference Program on Mobility Challenges December 2020

▲□▶▲□▶▲≡▶▲≡▶ Ξ|= めぬ⊙

• Transportation essential in spatial organization of economic activity in cities

- Choice of transportation policies should be informed by their impacts on urban structure and feedback effects
 - Policy effectiveness; distributional consequences
- Understanding the interactions could be important for policy design to address urban challenges

- Transportation essential in spatial organization of economic activity in cities
- Choice of transportation policies should be informed by their impacts on urban structure and feedback effects
 - Policy effectiveness; distributional consequences
- Understanding the interactions could be important for policy design to address urban challenges

- Transportation essential in spatial organization of economic activity in cities
- Choice of transportation policies should be informed by their impacts on urban structure and feedback effects
 - Policy effectiveness; distributional consequences
- Understanding the interactions could be important for policy design to address urban challenges

- What are the impacts of congestion-reduction policies on residential sorting?
 - Driving restriction, congestion pricing, subway expansion, and combinations
 - Spatial pattern of residential locations; access to jobs and pubic transit
- How does residential sorting in turn alter policy effectiveness?
 - Travel distance and mode; equilibrium congestion
- What are the efficiency and equity impacts of different policies?
 - Channels: housing and travel choices
- Estimate an equilibrium sorting model with endogenous congestion

- What are the impacts of congestion-reduction policies on residential sorting?
 - Driving restriction, congestion pricing, subway expansion, and combinations
 - Spatial pattern of residential locations; access to jobs and pubic transit
- How does residential sorting in turn alter policy effectiveness?
 - Travel distance and mode; equilibrium congestion
- What are the efficiency and equity impacts of different policies?
 - Channels: housing and travel choices
- Estimate an equilibrium sorting model with endogenous congestion

- What are the impacts of congestion-reduction policies on residential sorting?
 - Driving restriction, congestion pricing, subway expansion, and combinations
 - Spatial pattern of residential locations; access to jobs and pubic transit
- How does residential sorting in turn alter policy effectiveness?
 - Travel distance and mode; equilibrium congestion
- What are the efficiency and equity impacts of different policies?
 - Channels: housing and travel choices
- Estimate an equilibrium sorting model with endogenous congestion

- What are the impacts of congestion-reduction policies on residential sorting?
 - Driving restriction, congestion pricing, subway expansion, and combinations
 - Spatial pattern of residential locations; access to jobs and pubic transit
- How does residential sorting in turn alter policy effectiveness?
 - Travel distance and mode; equilibrium congestion
- What are the efficiency and equity impacts of different policies?
 - Channels: housing and travel choices
- Estimate an equilibrium sorting model with endogenous congestion

City growth in Beijing from 2001 to 2018

- 55% increase in pop, 500% increase in income and vehicle stock
- One of the most congested and polluted cities in the world
- Average commute: 110 min (80 in NYC, 150 min in Mexico City)

Efforts to combat congestion: driving restriction

• Driving restriction: from July 2008. Vehicles are restricted 1 day per week, depending on the license plate

• 2 lines (41 stations, 54km) in 2001; 23 lines (370 stations, 699km) in 2019

Congestion pricing

- $\bullet\,$ Root cause of congestion: mispricing of road capacity $\rightarrow\,$ excess demand
- Vickrey (1963):... in no other areas are pricing practices so irrational, so out of date, and so conducive to waste as in urban transportation
- Congestion Pricing in Practice: technical and political challenges (equity concerns and public acceptance)
 - Singapore (1975), London (2003), Stockholm (2006), Milan (2008), Gothenburg (2013). Slated to start in Manhattan by 2022
 - Dec. 2015, Beijing Municipal Commission of Transport announced plans to introduce congestion charges

- Sorting Model and Estimation
- 4 Counterfactual Simulations

2010&2014 Beijing Household Travel Survey

- Representative survey. 24-hour travel dairy by each individual
- 2010: 46,900 hhs and 253,648 trips. 2014: 40,005 hhs and 205,148 trips

Sum Stat

Sample Routes

Mode Shares and Trip Attributes

▶ Recall Bias

Housing data

- Transaction data from government mortgage program 2006-2014
- Household demographics, house attributes, and location of home and work

Housing Price and Size by TAZ

(c) Price (per m^2)

(d) Size

Note: Quintiles based on averages over 2006-2014. Warm colors indicates a higher value.

Work Distance and Monthly Income by TAZ

(e) Work Distance

Note: Quintiles based on averages over 2006-2014. Warm colors indicates a higher value.

Sorting Model and Estimation

Counterfactual Simulations

- Two-stage nested model on housing and travel choices:
 - Outer nest (housing): conditional on job location, choose housing based on preference for attributes, amenities, commuting convenience to work
 - Inner nest (travel mode): conditional on job and housing locations, choose travel mode based on modes available and traffic congestion
 - ▶ Innovations: endogenous congestion; work-commute as housing attribute
- Model scope: (a) work commute, (b) housing supply calibrated, (c) job locations fixed
 Job Turnover

- Two-stage nested model on housing and travel choices:
 - Outer nest (housing): conditional on job location, choose housing based on preference for attributes, amenities, commuting convenience to work
 - Inner nest (travel mode): conditional on job and housing locations, choose travel mode based on modes available and traffic congestion
 - Innovations: endogenous congestion; work-commute as housing attribute
- Model scope: (a) work commute, (b) housing supply calibrated, (c) job locations fixed
 Job Turnover

- Two-stage nested model on housing and travel choices:
 - Outer nest (housing): conditional on job location, choose housing based on preference for attributes, amenities, commuting convenience to work
 - Inner nest (travel mode): conditional on job and housing locations, choose travel mode based on modes available and traffic congestion
 - Innovations: endogenous congestion; work-commute as housing attribute
- Model scope: (a) work commute, (b) housing supply calibrated, (c) job locations fixed
 Job Turnover

- Two-stage nested model on housing and travel choices:
 - Outer nest (housing): conditional on job location, choose housing based on preference for attributes, amenities, commuting convenience to work
 - Inner nest (travel mode): conditional on job and housing locations, choose travel mode based on modes available and traffic congestion
 - Innovations: endogenous congestion; work-commute as housing attribute
- Model scope: (a) work commute, (b) housing supply calibrated, (c) job locations fixed
 Job Turnover

- Two-stage nested model on housing and travel choices:
 - Outer nest (housing): conditional on job location, choose housing based on preference for attributes, amenities, commuting convenience to work
 - Inner nest (travel mode): conditional on job and housing locations, choose travel mode based on modes available and traffic congestion
 - Innovations: endogenous congestion; work-commute as housing attribute
- Model scope: (a) work commute, (b) housing supply calibrated, (c) job locations fixed
 Job Turnover

Housing choice

$$\max_{\{j \in J_i\}} U_{ij} = \alpha_i p_j + \mathbf{x}_j \beta_i + \gamma_i E V_{ij} + \xi_j + \epsilon_{ij},$$

- *i*: household, *j*: housing choice
- p_j is the price of housing j
- x_j is a vector of housing attributes
- EV_{ij} is expected utility from the best commuting mode
- ξ_j is a vector of unobserved attributes
- ϵ_{ij} is Type I Extreme Value error

$$\alpha_i = \bar{\alpha} + \mathbf{z}_i \alpha$$

$$\beta_{ik} = \bar{\beta}_k + \mathbf{z}_i \beta_k$$

• z_i household demographics (observed and unobserved)

Travel mode choice

 $\max_{m \in M_i} u_{ijm} = \theta_{im} + \gamma_1 time_{ijm} + \gamma_2 cost_{ijm}/y_i + \mathbf{z}_i \eta_m + \varepsilon_{ijm},$

- i: household; j: housing choice; m: travel mode
- θ_{im} : random coefficients on modes
- *time_{ijm}* is commute time of mode *m*
- $\bullet \ cost_{ijm}$ is out-of-pocket cost of mode m
- y_i is the income of household i
- The value of time is given by: $\frac{\gamma_1}{\gamma_2} \cdot y_i$

$$EV_{ij} = \log\left(\sum_{m \in M_i} \exp\left[\theta_{im} + \gamma_1 time_{ijm} + \gamma_2 cost_{ijm}/y_i + \mathbf{z}_i \eta_m\right]\right)$$

Sorting Equilibrium

- A sorting equilibrium is defined as a set of housing choice probabilities $\{P_{ij}^*\}$, the vector of housing prices \mathbf{p}^* , a set of travel choice probabilities $\{R_{ijm}^*\}$, and traffic speed v^* such that:
 - The housing market clears and;
 - Traffic speed $v^* = C(\text{car density})$ is consistent with individual travel choices Speed function
- A sorting equilibrium exists and is unique under reasonable assumptions on model premises (such as continuous distribution of the error terms)
 - The negative spillover due to traffic congestion leads to uniqueness

Introduction

Sorting Model and Estimation

4 Counterfactual Simulations

5 Conclusion

Counterfactual Simulations

- Consider six scenarios:
 - 2008 subway network
 - 2008 subway network + driving restriction
 - 3 2008 subway network + congestion pricing
 - 2014 subway network
 - **1** 2014 subway network + driving restriction
 - 2014 subway network + congestion pricing
- Simulation Approach: fixed point iteration
 - Inner Loop: Conditional on congestion level, choose travel modes in response to policy. Construct convenience measure and solve for housing prices that clear housing market.
 - * Solve for housing equilibrium.
 - Outer Loop: Given new housing and driving choices, update congestion level
 - ★ Solve for congestion equilibrium
 - Iterate over two loops until fixed points of housing prices & congestion level are found

Changes in housing price relative to baseline (2008 subway)

Changes in housing price relative to baseline (2008 subway)

(i) Subway Expansion

Simulations: 2008 Network with Sorting

	(1)		(2)		(3)	
	No Policy		Driving restriction		Congestion pricing	
	Baseline levels		Δ s from (1)		Δs from (1)	
Income group	High	Low	High	Low	High	Low
Travel mode shares (%)						
Drive	44.98	25.57	-7.79	-3.51	-3.92	-5.17
Subway	7.61	9.49	1.35	0.42	0.37	0.70
Bus	5.06	9.83	0.43	-0.05	0.53	0.96
Bike	22.50	34.02	0.80	0.80	0.59	1.18
Taxi	3.23	1.78	2.82	1.49	1.25	1.13
Walk	16.63	19.33	2.39	0.84	1.18	1.20
Driving speed (km/h)	23.37		4.17		4.17	

- Simulated travel model shares (%) by high- and low- income groups
- Driving restriction: disproportionately more to taxi, not bike and walk
- \bullet Congestion pricing (¥1.43/km) set to achieve same reduction as DR
- Congestion pricing: poor reduce driving disproportionately more

Simulations: 2008 Network with Sorting

	(1)		(2)		(3)	
	No Policy		Driving restriction		Congestion pricing	
	Baseline level <mark>s</mark>		Δs from (1)		Δs from (1)	
Income group	High	Low	High	Low	High	Low
Travel mode shares (%)						
Drive	44.98	25.57	-7.79	-3.51	-3.92	-5.17
Subway	7.61	9.49	1.35	0.42	0.37	0.70
Bus	5.06	9.83	0.43	-0.05	0.53	0.96
Bike	22.50	34.02	0.80	0.80	0.59	1.18
Taxi	3.23	1.78	2.82	1.49	1.25	1.13
Walk	16.63	19.3 <mark>3</mark>	2.39	0.84	1.18	1.20
Driving speed (km/h)	23.37		4.17		4.17	

- Simulated travel model shares (%) by high- and low- income groups
- Driving restriction: disproportionately more to taxi, not bike and walk
- Congestion pricing (¥1.43/km) set to achieve same reduction as DR
- Congestion pricing: poor reduce driving disproportionately more
| | (1) | | (2) | | (3) | |
|----------------------|---------|----------|--------------|-------------|--------------------|---------|
| | No F | olicy | Driving | restriction | Congestion pricing | |
| | Baselin | e levels | $\Delta s f$ | rom (1) | $\Delta s f$ | rom (1) |
| Income group | High | Low | High | Low | High | Low |
| Travel mode shares (| %) | | | | | |
| Drive | 44.98 | 25.57 | -7.79 | -3.51 | -3.92 | -5.17 |
| Subway | 7.61 | 9.49 | 1.35 | 0.42 | 0.37 | 0.70 |
| Bus | 5.06 | 9.83 | 0.43 | -0.05 | 0.53 | 0.96 |
| Bike | 22.50 | 34.02 | 0.80 | 0.80 | 0.59 | 1.18 |
| Taxi | 3.23 | 1.78 | 2.82 | 1.49 | 1.25 | 1.13 |
| Walk | 16.63 | 19.33 | 2.39 | 0.84 | 1.18 | 1.20 |
| Driving speed (km/h) | 23. | 37 | 4 | 1.17 | 4 | .17 |

- Simulated travel model shares (%) by high- and low- income groups
- Driving restriction: disproportionately more to taxi, not bike and walk
- Congestion pricing (¥1.43/km) set to achieve same reduction as DR
- Congestion pricing: poor reduce driving disproportionately more

	(1)		(2)		(3)	
	No F	Policy	Driving r	estriction	Congesti	on pricing
	Baselin	e levels	Δs from	om (1)	$\Delta s fr$	om (1)
Income groups	High	Low	High	Low	High	Low
Housing market outco	mes					
Distance to work (km)	19.45	18.88	-0.04	0.03	-0.56	-0.28
Welfare per household	۱ (1000 ۲	∉)				
Consumer surplus			-181.0	-47.4	-152.1	-148.9
Toll revenue					214.5	214.5
Net welfare			-181.0	-47.4	62.4	65.6

• DR: income-stratified structure. CP: reduce wasteful commuting for all

• DR progressive while CP regressive

• CP improves welfare but revenue recycle needed address equity

	(1)		(2)		(3)	
	No F	Policy	Driving re	estriction	Congesti	on pricing
	Baselin	e levels	$\Delta {\sf s}$ fro	om (1)	Δs from	om (1)
Income groups	High	Low	High	Low	High	Low
Housing market outco	mes					
Distance to work (km)	19.45	18.88	-0.04	0.03	-0.56	-0.28
Welfare per household	ו (1000 א	≨)			150.1	
Consumer surplus				-47.4	-152.1	-148.9
Toll revenue					214.5	214.5
Net welfare			-181.0	-47.4	62.4	65.6

• DR: income-stratified structure. CP: reduce wasteful commuting for all

• DR progressive while CP regressive

• CP improves welfare but revenue recycle needed address equity

	(1)		(2)		(3)	
	No F	Policy	Driving r	estriction	Congestion pricing	
	Baselin	e levels	$\Delta s frc$	om (1)	Δs from	om (1)
Income groups	High	Low	High	Low	High	Low
Housing market outco	mes					
Distance to work (km)	19.45	18.88	-0.04	0.03	-0.56	-0.28
Welfare per household	۱ (1000 ۱	≨)				
Consumer surplus			-181.0	-47.4	-152.1	-148.9
Toll revenue					214.5	214.5
Net welfare			-181.0	-47.4	62.4	65.6

- DR: income-stratified structure. CP: reduce wasteful commuting for all
- DR progressive while CP regressive
- CP improves welfare but revenue recycle needed address equity

	Subway	Expansion	Expansion	Expansion + Restriction		Expansion + Pricing	
	Δs from	n baseline	Δs from	Δ s from baseline		Δs from baseline	
Income groups	High	Low	High	Low	High	Low	
Travel mode shares (%	6)						
Drive	-1.17	-1.36	-8.80	-4.67	-5.21	-6.39	
Subway	3.02	4.30	4.81	4.87	3.62	5.48	
Driving speed (km/h)	0	.95	4	.89	5.07		
Housing market outco	mes						
Distance to work (km)	0.31	0.32	0.37	0.30	-0.35	0.10	
Welfare per household	(1000 ¥)					
Consumer surplus	100.9	99.4	-77.3	52.6	-56.8	-41.6	
Subway cost	95.3	95.3	95.3	95.3	95.3	95.3	
Toll revenue					201.4	201.4	
Net welfare	5.6	4.1	172.6	-42.7	49.3	64.5	

	Subway Expansion		Expansion	Expansion + Restriction		Expansion + Pricing	
	$\Delta {\sf s}$ from	baseline	Δs from	m baseline	Δs fro	m baseline	
Income groups	High	Low	High	Low	High	Low	
Travel mode shares (%	6)						
Drive	-1.17	-1.36	-8.80	-4.67	-5.21	-6.39	
Subway	3.02	4.30	4.81	4.87	3.62	5.48	
Driving speed (km/h)	0.	95 🧲	2	1.89	Ę	5.07	
Housing market outco	mes						
Distance to work (km)	0.31	0.32	0.37	0.30	-0.35	0.10	
Welfare per household	I (1000 ¥)						
Consumer surplus	100.9	99.4	-77.3	52.6	-56.8	-41.6	
Subway cost	95.3	95.3	95.3	95.3	95.3	95.3	
Toll revenue					201.4	201.4	
Net welfare	5.6	4.1	-172.6	-42.7	49.3	64.5	

	Subway Expansion		Expansion + Restriction		Expansion + Pricing	
	Δ s from	1 baseline	Δ s froi	m baseline	Δs fro	m baseline
Income groups	High	Low	High	Low	High	Low
Travel mode shares (%	6)					
Drive	-1.17	-1.36	-8.80	-4.67	-5.21	-6.39
Subway	3.02	4.30	4.81	4.87	3.62	5.48
Driving speed (km/h)	0.	95	4	4.89	5	5.07
Housing market outco	mes					
Distance to work (km)	0.31	0.32	0.37	0.30	-0.35	0.10
Welfare per household	l (1000 ¥))				
Consumer surplus	100.9	99.4	-77.3	52.6	-56.8	-41.6
Subway cost	95.3	95.3	95.3	95.3	95.3	95.3
Toll revenue					201.4	201.4
Net welfare	5.6	4.1	-172.6	-42.7	49.3	64.5

	Subway	Expansion	Expansion + Restriction		Expansion + Pricing	
	Δs from	i baseline	Δs troi	m baseline	Δs fro	m baseline
Income groups	High	Low	High	Low	High	Low
Travel mode shares (%	6)					
Drive	-1.17	-1.36	-8.80	-4.67	-5.21	-6.39
Subway	3.02	4.30	4.81	4.87	3.62	5.48
Driving speed (km/h)	0.	95	4	4.89	5	5.07
Housing market outco	mes					
Distance to work (km)	0.31	0.32	0.37	0.30	-0.35	0.10
Welfare per household	(1000 ¥)					
Consumer surplus	100.9	99.4	-77.3	52.6	-56.8	-41.6
Subway cost	95.3	95.3	95.3	95.3	95.3	95.3
Toll revenue					201.4	201.4
Net welfare	5.6	4.1	-172.6	-42.7	49.3	64.5

	Subway Expansion		Expansion	Expansion + Restriction		Expansion + Pricing	
	$\Delta {\sf s}$ from	n baseline	Δs fro	m baseline	Δ s from baseline		
Income groups	High	Low	High	Low	High	Low	
Travel mode shares (%	6)						
Drive	-1.17	-1.36	-8.80	-4.67	-5.21	-6.39	
Subway	3.02	4.30	4.81	4.87	3.62	5.48	
Driving speed (km/h)	0	.95	4.89		5.07		
Housing market outco	mes						
Distance to work (km)	0.31	0.32	0.37	0.30	-0.35	0.10	
Welfare per household	(1000 ¥)					
Consumer surplus	100.9	99.4	-77.3	52.6	-56.8	-41.6	
Subway cost	95.3	95.3	95.3	95.3	95.3	95.3	
Toll revenue					201.4	201.4	
Net welfare	5.6	4.1	-172.6	-42.7	49.3	64.5	

	Subway Expansion		Expansion + Restriction Δs from baseline		Expansion $+$ Pricing Δ s from baseline	
Income groups	High	Low	High	Low	High	Low
Travel mode shares (%	6)					
Drive	-1.17	-1.36	-8.80	-4.67	-5.21	-6.39
Subway	3.02	4.30	4.81	4.87	3.62	5.48
Driving speed (km/h)	0	.95	4	4.89	5	5.07
Housing market outco	mes					
Distance to work (km)	0.31	0.32	0.37	0.30	-0.35	0.10
Welfare per household	(1000 ¥)				
Consumer surplus	100.9	99.4	-77.3	52.6	-56.8	-41.6
Subway cost	95.3	95.3	95.3	95.3	95.3	95.3
Toll revenue					201.4	201.4
Net welfare	5.6	4.1	-172.6	-42.7	49.3	64.5

The Role of Sorting

	Congestion pricing	Subway Expansion
Δ in Speed (km/h) from baseline	e	
Without sorting	3.98	1.23
With sorting	4.17	0.95
With sorting & supply adjustment	4.38	0.64
Welfare per household (1000 ¥)		
Without sorting	58.2	6.2
With sorting	64.0	4.9
With sorting & Supply adjustment	69.3	3.5

• Strengthens congestion pricing but weakens subway expansion, in terms of both congestion reduction and welfare

The Role of Sorting

	Congestion pricing	Subway Expansion
Δ in Speed (km/h) from baseline	9	
Without sorting	3.98	1.23
With sorting	4.17	0.95
With sorting & supply adjustment	4.38	0.64
Welfare per household (1000 ¥)		
Without sorting	58.2	6.2
With sorting	64.0	4.9
With sorting & Supply adjustment	69.3	3.5

• Strengthens congestion pricing but weakens subway expansion, in terms of both congestion reduction and welfare

Optimal Congestion Pricing

• Sorting increases welfare by 20% with optimal congestion pricing

Conclusion

- Developed a unified sorting framework with endogenous congestion to compare polices in congestion relief, residential location, and welfare
- Policy impact on residential sorting:
 - Driving restriction intensifies income-stratified urban structure where high-income households live closer to subway and jobs
 - Congestion pricing leads both income groups move closer to jobs, and hence shorter commuter. Subway expansion does the opposite

• Welfare Comparison:

- Driving restriction reduces welfare but hurt poor less. Congestion pricing improves welfare but revenue recycle needed to address distributional concerns
- Congestion pricing + subway expansion exhibit complementarity, achieving the largest congestion reduction and welfare gain, and self-financing

Conclusion

- Developed a unified sorting framework with endogenous congestion to compare polices in congestion relief, residential location, and welfare
- Policy impact on residential sorting:
 - Driving restriction intensifies income-stratified urban structure where high-income households live closer to subway and jobs
 - Congestion pricing leads both income groups move closer to jobs, and hence shorter commuter. Subway expansion does the opposite

• Welfare Comparison:

- Driving restriction reduces welfare but hurt poor less. Congestion pricing improves welfare but revenue recycle needed to address distributional concerns
- Congestion pricing + subway expansion exhibit complementarity, achieving the largest congestion reduction and welfare gain, and self-financing

Conclusion

- Developed a unified sorting framework with endogenous congestion to compare polices in congestion relief, residential location, and welfare
- Policy impact on residential sorting:
 - Driving restriction intensifies income-stratified urban structure where high-income households live closer to subway and jobs
 - Congestion pricing leads both income groups move closer to jobs, and hence shorter commuter. Subway expansion does the opposite
- Welfare Comparison:
 - Driving restriction reduces welfare but hurt poor less. Congestion pricing improves welfare but revenue recycle needed to address distributional concerns
 - Congestion pricing + subway expansion exhibit complementarity, achieving the largest congestion reduction and welfare gain, and self-financing

THANKS!

SL2448@cornell.edu

Spatial Equilibrium

• Endogenous congestion and driving commute cost:

$$\begin{split} w_{d,C}(x) &= \int_0^x t_{d,C}(s) ds \\ t_{d,C}(x) &= \nu_d * \mathcal{C} \left(n_C(x) \right) \\ n_C(x) &= \sum_d \int_x^{\bar{x}} \mathbf{1}\{m = C\}_d(x) ds \end{split}$$

• A spatial equilibrium is characterized by a bid rent curve p(x): the WTP (per ft²) while maintaining utility \bar{u} .

$$p_{d,m}^*(x) = \max_{\{c_{d,m}, q_{d,m}\}} \bigg\{ \frac{y_d - c_{d,m} - \theta_m - w_{d,m}(x)}{q_{d,m}(x)} | u_{d,m} = \bar{u}_d \bigg\}.$$

- All households are housed within the city,
- **②** At the urban boundary, $\bar{x},$ rent equates agricultural rent $p^{*}\left(\bar{x}\right)=p_{a}$,
- Given identical preferences, all households with same income attain same utility

Summary statistics (2010 Household Travel Survey)

Variable	N	Mean	SD	Min	Max
Household size	46900	2.47	0.98	1.00	5.00
Income (RMB '000)	46886	64.81	33.03	50.00	400.00
# of workers	46900	1.18	0.92	0.00	4.00
House size (m^2)	46868	75.35	43.27	5.00	500.00
House owner $(=1)$	46900	0.69	0.46	0.00	1.00
Having a car $(=1)$	46900	0.29	0.45	0.00	1.00
# of cars	46900	0.31	0.51	0.00	4.00
# of bikes	46871	0.96	0.93	0.00	5.00
# of ebikes	46789	0.15	0.40	0.00	4.00
# of motorcycles	46748	0.03	0.18	0.00	3.00
Housing type	46900	1.79	3.23	1.00	96.00
Nature of housing	46900	2.26	1.15	1.00	4.00

Summary statistics (2014 Household Travel Survey)

Variable	N	Mean	SD	Min	Max
Household size	40005	2.53	1.01	1.00	5.00
Income (RMB '000)	40005	85.39	49.68	50.00	400.00
# of workers	40005	1.18	0.93	0.00	4.00
House size (m^2)	40005	91.08	66.82	5.00	948.00
House owner $(=1)$	40005	0.61	0.49	0.00	1.00
Having a car $(=1)$	40005	0.42	0.49	0.00	1.00
# of cars	40005	0.49	0.62	0.00	4.00
# of bikes	40005	0.88	0.86	0.00	5.00
# of ebikes	40005	0.31	0.56	0.00	5.00
# of motorcycles	40005	0.03	0.18	0.00	5.00

Mode-specific Travel Time

Back

Note: car, bus and taxi trips are based on the real starting time and the day of the week. Travel time adjusted based on contemporary driving speed in 2010 and 2014.

- Driving: 0.64 yuan/km for 2010 and 0.71 yuan/km for 2014
 - **Subway**: for each trip, 2 yuan for taking subway (and based on card type)

Back

- Bus: for each transfer, 0.2 yuan for students, 0 for elderly people, 0.4 yuan for people with public transportation cards, and 1 yuan for people without public transportation cards.
- Walking: zero cost
- **Biking**: zero cost for own bike and rental bike is free for the first hour and then 1 yuan per hour. Max 10 Yuan for 24 hours.
- Taxi: In 2010, 10 Yuans for the first 3km and then 2 Yuans per km and 1 Yuan gas fee. In 2014, 13 Yuans for the first 3km and then 2.3 Yuans per km plus 1Yuan as gasoline fee.

Potential Recall Bias: Subway Trips

Back

Mode Share & Trip Attributes (2010 & 2014)

Note: Time and cost estimated based on geocoding

▶ Peak vs. off-peak

Mode Share and Trip Attributes (Off-peak vs Peak)

Note: Peak hours: 7-10am, 5-7pm.Time and cost estimated based on geocoding

Sample Representativeness: New

Sample Representativeness: Resales

Job Tenure Back

Event Study of Price Gradient Estimates • Table • Back

Falsification Test on Price Gradient

Effect of Driving Restriction on Price Gradient • Back

	(1)	(2)	(3)	(4)
In(Subway Distance)	-0.111**	** -0.005	-0.004	0.003
, <u>,</u> ,	(0.015)	(0.016)	(0.015)	(0.018)
$\ln(Subway Distance) \times CDR$	-0.002	-0.018*	_0 010**	-0 033**
	(0.013)	(0.009)	(0.009)	(0.016)
Year-month FE	Y	Y	Y	Y
Neigborhood FE	Ν	Y	Y	Y
Complex-level Controls	Ν	N	Y	Y
Weighted	Ν	Ν	Ν	Y
Observations Adjusted R^2	9640 0.236	9634 0.522	9634 0.534	9634 0.621

Note: Sample spans 24 months before and after CDR. The dep. var. is log(price/m²). * p < 0.10, **p < 0.05, *** p < 0.01

	In(Distance to Subway)	In(Distance to Jobs) (2)
Ln(HH Income)	0.026 (0.020)	0.227*** (0.048)
Ln(HH Income) \times CDR	-0.041* (0.023)	-0.109** (0.042)
Year-month FE	Y	Y
Neighborhood FE	Y	Y
Complex-level Controls	Y	Y
Household Demographics	Y	Y
Adjusted R^2	0.837	0.254

→ Back

Note: Sample spans 24 months before and after CDR, 9634 observations. * p < 0.10, ** p < 0.05, *** p < 0.01

	In(Distance to Subway) (1)	In(Distance to Jobs)
Ln(HH Income)	0.026	0.227***
	(0.020)	(0.048)
${\sf Ln}({\sf HH\ {\sf Income}})\times{\sf CDR}$	-0.041* (0.023)	-0.109** (0.042)
Year-month FE	Y	Y
Neighborhood FE	Y	Y
Complex-level Controls	Y	Y
Household Demographics	Y	Y
Adjusted R^2	0.837	0.254

Note: Sample spans 24 months before and after CDR, 9634 observations. * p < 0.10, ** p < 0.05, *** p < 0.01

	In(Distance to Subway) (1)	In(Distance to Jobs) (2)
Ln(HH Income)	0.026 (0.020)	0.227*** (0.048)
Ln(HH Income)× CDR	-0.041* (0.023)	-0.109** (0.042)
Year-month FE	Y	Y
Neighborhood FE	Y	Y
Complex-level Controls	Y	Y
Household Demographics	Y	Y
Adjusted R^2	0.837	0.254

Note: Sample spans 24 months before and after CDR, 9634 observations. * p < 0.10, ** p < 0.05, *** p < 0.01

Model Fit: Travel Modes

	(1)	(2)	(3)	(4)	(5)	(6)
In(Density)	0.032 (0.026)	-0.173*** (0.037)	-0.683*** (0.076)	-1.018*** (0.066)	-1.099*** (0.089)	-0.620*** (0.030)
Density Quintile	1	2	3	4	5	All
Density (cars/lane-km)	< 8	≥ 8 & < 14	$\geq 14 \ \& < 23$	≥ 23 & < 35	≥ 35	All
Average speed (km/h)	65.3	70.9	63.8	50.0	30.3	60.5
Observations	393,634	386,717	412,556	243,302	156,670	1,592,879

Note: Each column reports results from a 2SLS regression where the dependent variable is ln(speed in km/h) and the key explanatory variable is log(traffic density in the number of cars/lane-km). The unit of observation is road segment by hour during peak hours within 6th ring roads in 2014. The IVs are constructed based on the driving restriction policy which has a preset rotation schedule for restricting certain vehicles from driving one day per week based on the last digit of the license plate number.
Within Household: Distance to Work vs. Income

• Back

Note: Binned scatter plot showing that borrower's relative income share has weak relationship to borrower's share of distance to work.

Simulations: 2008 Network w/o Sorting

Back

Price Gradient under 2008 and 2014 Networks

Change in Price Gradient Relative to the Baseline

• Back

Change in Price Gradient Relative to the Baseline

• Back

