An assessment of the European regulation on battery recycling for electric vehicles

Quentin HOARAU 1*, Etienne LORANG 2,3*

As electric mobility is deemed necessary to cut CO2 emissions in the transport sector, the industrial and environmental consequences of lithium-ion battery manufacturing are much debated. In the European context, battery recycling has been argued to be a real option to develop a local industry with low environmental impacts. A recent regulation proposal from the European Commission has introduced minimum thresholds of recycled materials in new batteries by the year 2030. This paper discusses the conditions under which such thresholds may physically be reached. It develops a material flow model that projects battery wastes and their recycling potential. We find that the feasibility of thresholds proposed by the Commission is very sensitive to battery lifetimes. In comparison, change of material intensities through battery technology shift, recycling efficiencies and the faster uptake of demand have a more limited impact. Our results indicate that such policy instruments could conflict with other sustainability objectives, such as the development of second-life of batteries.

JEL CODES : Q31; Q38; Q48

1* Université Paris-Saclay, CentraleSupélec, Laboratoire Génie Industriel, 3 rue Joliot-Curie 91190 Gif-sur-Yvette, France
2* Université de Lorraine, Université de Strasbourg, Agro Paris Tech, CNRS, INRAE, BETA, 54000, Nancy, France
3* Climate Economics Chair 75002 Paris, France

Corresponding author email address: hoarauquentin@gmail.com

Acknowledgements: This paper has been significantly improved by the comments of Olivier Massol, Yannick Perez, Felipe Gonzalez Venegas, Maxime Ollier, Adam Albin and Diego Cebreros. All errors remain the responsibility of the authors.
1. Introduction

In a recent proposal for a regulation, the European Commission (EC) has introduced recycling as a key element for the development of an industry for electric vehicle (EV) and especially the battery industry (European Union: European Commission, 2020). It is supposed to be a central part of the European Union (EU) industrial strategy covering economic, social and environmental goals. It establishes a legislative framework for a more sustainable life-cycle of lithium-ion (Li-ion) batteries. One of its main initiative is the introduction of minimum thresholds for recycled material sourcing in new batteries.

This paper aims to assess the conditions under which these thresholds may physically be reached. Our analysis of these conditions follows two steps. First, we set up a framework to qualitatively discuss the main characteristic trends of the battery sector and how these should affect sourcing from recycled materials. It allows us to separate the different mechanisms driving the amount of recycled material that can be incorporated in new batteries. Such amounts will be reduced by higher demand growth of electromobility, lower recycling efficiencies, longer lifetimes of batteries and technological changes that increase material use. Second, we estimate the sensitivity of recycling potentials to these mechanisms through a quantitative model. We set up a dynamic material flow analysis, calibrated using data from different reports from the International Energy Agency (IEA) and from the academic literature. For all materials, we find that battery lifespan is the most sensitive parameter driving the thresholds proposed by the EC. On the contrary, the growth rate of demand in batteries appears to bring little sensitivity. Regarding battery technological change, we find that only the recycling potential of cobalt is likely to be significantly impacted. Furthermore, the improvement of recycling processes is crucial to guarantee the sourcing in recycled lithium. Overall, our results indicate that the thresholds of recycled materials proposed by the EC may be difficult to comply with. At the light of this result, we discuss the eventual conflict in environmental goals that these minimum thresholds could cause. For instance, we highlight a trade-off between this instrument and the development of a second life for batteries.

More generally, the proposal of regulation from the EC is motivated by the ongoing transformation of the automobile industry. Indeed, the penetration of EVs has grown steadily for a few years, with EU market shares increased from 0.4% in 2014 up to 4.6% in 2020. EVs have been advocated as one of the main technological option to decarbonize the transport sector and to decrease urban air pollution. This led government to provide a large policy support for electromobility. In parallel, Li-ion batteries - the central components of EVs - have been subject to remarkable technological progress. As a result, their costs have fallen from USD 1 100 per kilowatt-hour (kWh) in 2010 to USD 156/kWh in 2020 (Nykvist et al., 2019; IEA, 2020). Nevertheless, the growing importance of the Li-ion batteries also brings sustainability and strategic concerns. These include the carbon footprint of the life-cycle, the availability of raw material, waste management, social impacts of the metal extraction as well as supply chain risk management (Dai et al., 2019; IEA, 2021b). To address these issues, the EU has developed
several initiatives, such as the European Battery Alliance.\footnote{The European Battery Alliance is a consortium of industrial actors that aims at developing a European battery industry (https://www.eba250.com/).} The proposal of the EC intends to bring a legislative framework to these initiatives.

Beyond the discussion of the regulation proposal of the European Commission, we contribute to two main strands of literature. First, we relate to the literature exploring the material usage for the development of electromobility. Ballinger et al. (2019) explore the risks for the EV sector related to material supply, in particular for graphite, lithium and cobalt used in batteries. Xu et al. (2020) and Sato and Nakata (2019) propose a long term analysis of the material demand for batteries. While the former show that the role of recycling remains minor while the market is in expansion, the latter find between 30 and 50\% of mineral being supplied by recovery in 2035 in Japan. From the grey literature, reports from the IEA (IEA, 2020, 2021a) present the global trends of EV markets. Besides, they also tackle issues of metal scarcity in the energy transition, highlighting the important role that could be played by recycling in the following years in order to ensure the sustainability of material supply chains IEA (2021b). We contribute to this literature by disentangling the key-mechanisms of recycling potentials and by estimating the relative magnitude of those effects. We also focus on the European context. Second, we relate to the literature on the aspects of the end of life of EV batteries. A review from Lv et al. (2018) lists the different recycling technologies for lithium, and discusses technological, environmental and economic perspectives for pyro-metallurgical and hydro-metallurgical processes. Other authors have investigated on the possibility of extending battery lifetimes through the re-utilization of used batteries. Such second life of batteries could indeed provide stationary storage for the power grid and thus reducing their costs (Few et al., 2018; Gur et al., 2018; Martinez-Laserna et al., 2018; Wu et al., 2020). We contribute to this literature by showing potential incompatibilities when considering at the same time recycled sourcing of materials and other sustainability objectives such as the reuse of EV batteries.

The rest of this paper is organized as follows. Section 2 presents the proposal of the EC and its context. Section 3 gives qualitative insights on the drivers of the level of recycled materials content from used batteries. Section 4 and 5 respectively present the methods and the results of the quantitative analysis. Sections 6 concludes.

2. Proposal of the European Commission

The current EU regulatory framework on batteries is established by a directive from the European Commission in 2006 (Council of European Union, 2006).\footnote{The 2006 directive is not limited to Li-ion batteries, but the whole battery sector.} This directive aims at providing common rules across the EU market that would limit environmental impacts of battery wastes.\footnote{Targeted sources of pollution involved cadmium, mercury and lead} It distinguishes three kinds of battery types to be regulated: portable (electronic equipment), automotive (for starting, lighting...
and ignition) and industrial (traction for vehicles and other industrial applications). The directive applies from manufacturing to end of life. It enforces the extended producer responsibility principle. More precisely, it defines targets for the collection of portable battery wastes, and maximum contents of cadmium and mercury in new batteries.

In the late 2020, the EC has proposed a new regulation for the regulation of batteries that would replace the 2006 directive (European Union: European Commission, 2020). Indeed, the disruption of Li-ion batteries fueled by the development of electromobility has outdated made the former directive. Within the context of EU’s Green New Deal, this proposal joins other measures pursuing the development of the sector in Europe, such as the initiative of the European Battery Alliance. It aims at providing a legislative framework that would gather industrial, strategical and environmental objectives. The proposal of the EC defines several environmental objectives that spread on the period 2025-2035. These objectives comprise the development of recycling, the limitation of the carbon footprint and the transparency of the supply chain.

<table>
<thead>
<tr>
<th></th>
<th>Cobalt</th>
<th>Copper</th>
<th>Lead</th>
<th>Lithium</th>
<th>Nickel</th>
</tr>
</thead>
<tbody>
<tr>
<td>2030</td>
<td>12%</td>
<td>NA</td>
<td>85%</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>2035</td>
<td>20%</td>
<td>NA</td>
<td>85%</td>
<td>10%</td>
<td>12%</td>
</tr>
</tbody>
</table>

Table 1: Targets on battery recycling of the 2020 EC proposal

This paper focuses on the objectives regarding recycling. The main elements from the proposal establish minimum recycled contents for several materials in new batteries. These constraints only apply to cobalt, lithium and nickel for the Li-ion technology, and lead for other battery technologies. Minimum thresholds are defined in 2030 and 2035. Table 1 displays them. The proposal also defines mandatory target levels of recovered materials from scrapped batteries for cobalt, copper, lead, lithium and nickel, as displayed in Table 1. It is expressed in shares of these minerals as well as on total weight of the batteries.

To the best of our knowledge, most of the proposal and in particular the minimum thresholds on recycling come from a feasibility study ordered by the EC (European Union: European Commission et al., 2021a,b). They present a number of measures to improve the 2006 directive. They are based on a modelling assessment complemented with interviews with stakeholders. To compute the thresholds, authors set up a material flow model to assess the availability of minerals to be recycled in the upcoming years. By doing so, the proposed thresholds later used by the EC are set to match available materials for recycling. It appears that the proposed minimum thresholds of recycled contents match high estimates

425% by 2012, 45% by 2016
5Unlike directives, regulations are automatically applied in EU members, without any transposition into national law. It results in a uniform effect for all the Union, in line with the objective of creating a coherent industrial sector at EU scale. See https://europa.eu/european-union/law/legal-acts_en for more details.
6After 2025, 75% of lead batteries, 65% of Li-ion batteries and 50% of other battery waste.
considering the availability of recycled material. Besides, the impact of different parameters stemming from the technological and economical context given by IEA reports are not quantitatively discussed in the report (IEA, 2020, 2021a,b). In this paper, we propose to fill this gap by investigating in particular the impact of demand growth, lifespan of batteries, recycling efficiency and technological changes.

3. Qualitative Insights

Having clarified the European context, we now provide the intuitions that will serve the reasoning presented in the quantitative sections which follow. Assessing the minimum thresholds of incorporated recycled materials given by the EC proposal can be done by computing the maximum ratio of recycled waste material over demand (RMD ratio hereafter). As in the impact studies that inspired the EC proposal, such ratios can be estimated with complex dynamic material flow analysis, which requires a large number of hypothesis and data. We argue that a simplified version of such models is useful to draw the essential drivers of this dynamics.

We compute the RMD ratio in a two-period model \((t = 0, 1)\). Each period, a quantity \(Q_t\) of batteries for electric vehicles are produced (in kWh), given a technology mix that requires an average intensity \(w_{k,t}\) for each material \(k\) (in kg/kWh). At period 1, a quantity \(P_{0,1}Q_0\) of battery is scrapped. These wastes are recovered and recycled with an overall efficiency \(\epsilon_{k,1}\). For each material \(k\), we define \(RMD_{k,1}\) as the ratio of recycled material from battery wastes over demand at period 1. Such ratio can be decomposed as follows:

\[
RMD_{k,1} = \frac{P_{0,1}}{Q_1} \frac{Q_0}{w_{k,0}} \frac{w_{k,1}}{Q_1} \frac{\epsilon_{k,1}}{\text{Recycling efficiency}}
\]

Such decomposition, shown in equation (1) involves four terms, two of which being material-specific, while the other two are material-neutral.

- \(P_{0,1}\) is the fraction of battery turned into waste and scrapped between the two periods. It is mainly linked to the average lifetime of batteries through the stochastic process of battery degradation. In particular, this fraction is reduced with higher average lifetimes, which can be caused by technological improvements or by the re-utilisation of used battery for other purpose.

- ratio \(Q_0/Q_1\) of battery demand at period 0 over period 1 relates to the evolution of demand for batteries. The larger is the development of electromobility, the lower this ratio is. This ratio is

7Such ratio corresponds to the maximum amount of material that can be recycled from yearly scrapped batteries and incorporated in new manufactured batteries.
8Such development includes both number of vehicles and battery size.
Supposed to be large during the uptake of electromobility, and converge to one as fossil fuel cars are phased out.

- ratio \(w_{k,0}/w_{k,1} \) in material intensities \(k \) in period 0 over period 1 relates to the technological change of batteries. Such ratio decreases as battery technology requires lesser quantities of material \(k \). Material footprint may decrease as a whole and there may be material substitutions, as displayed later when discussing our data (see Figure 2).

- \(\epsilon_{k,1} \) is the fraction of recovered material from battery wastes. It encompasses both the collection of battery wastes and the efficiency of recycling processes. Contrary to the other components, this parameter may be the most crucial in economic terms as collecting a high share of disposed batteries or recycling at higher rates can involve very large marginal costs on recycling. Also, it has been indicated that it can be difficult to reach high recycling efficiencies for some material, such as lithium, with the same recycling process. One recycling process can foster the recovery of a material at the expense of another (Xu et al., 2020).

This decomposition can be illustrated with a numerical example. Let’s consider a 10 years time lapse. During this period, consider that demand quintuples \((Q_0/Q_1 \approx 0.2)\), material intensities remain steady \(w_{k,0}/w_{k,1} \approx 1 \), recycling is almost perfect \((\epsilon_k \approx 1)\), and 40% of batteries produced in year 0 are scrapped in year 10 \((P_{0,1} \approx 0.4)\). In this case, the ratio \(RMD_{k,1} \approx 0.08 \). Such ratio is in the range of the minimum thresholds given by the EC proposal.

4. Quantitative Analysis: Methods

4.1. Model

The previous section exhibited the main drivers for the ratios of recycled material over demand. This following section aims at quantitatively estimating these levels and confronting them to the EC targets. We model the material flow of Li-ion batteries in the EU at both extremities of the lifecycle with yearly periods corresponding to 2020-2035: the demand of batteries (by extension related to the market for EVs) and the waste aggregation following the end-of-life. Note that this model can be seen as a sophisticated extension of the decomposition previously discussed. The underlying variable for the flow of batteries is the aggregate flow \(F_{k,t} \) (in kg) for a specific material \(k \) at year \(t \):

\[
F_{k,t} = \sum_i \sum_j Q_{i,t} m_{j,t} w_{j,k}
\]

(2)

This flow is summed for all types of EVs \(i \) and all technologies of Li-ion batteries \(j \). \(Q_{i,t} \) is the aggregated capacity (in kWh) from EVs of type \(i \) sold each year, and is computed as the product of the number of vehicle of type \(i \) with their related average battery size. \(m_{j,t} \) is the market share of a battery technology
and \(w_{j,k} \) is the material \(k \) intensity of a specific technology \(j \) (kg/kWh). The definition of indexes \(\{i,j,k,t\} \) is summed up in Table 2. Differences between Li-ion battery technologies mainly stem from the conception of the cathode.

<table>
<thead>
<tr>
<th>Index</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>EV types</td>
<td>cars BEV, cars PHEV, vans BEV, vans PHEV(^a)</td>
</tr>
<tr>
<td>(j)</td>
<td>Li-ion battery technology</td>
<td>ASSB, LMO, LFP, NMC333, NMC532, NMC622, NMC811, NCA, NCA+(^b)</td>
</tr>
<tr>
<td>(k)</td>
<td>material</td>
<td>copper, lithium, nickel, manganese, cobalt, graphite</td>
</tr>
<tr>
<td>(t)</td>
<td>time</td>
<td>2020 to 2035</td>
</tr>
</tbody>
</table>

Table 2: Indexes of the model

\(^a\) BEV: battery electric vehicle; PHEV: plug-in hybrid electric vehicle

\(^b\) ASSB: solid-state; LMO: Lithium-Manganese-Oxyde; LFP: Lithium-Iron-Phosphate; NMC: Nickel-Manganese-Cobalt; NCA: Nickel-Cobalt-Aluminium

Each battery \((i,j)\) in use has a probability \(P_{i,j,\tau,t} \) to be scrapped, where \(\tau \) is the year of production of the battery, hence \(t - \tau \) is the age of the battery. This allows us to compute for each year \(t \) the flow of waste from production year \(\tau \) for material \(k \) when no decay or recycling takes place:

\[
B_{k,\tau,t} = \sum_i \sum_j V_{i,\tau} b_{i,\tau} m_{j,t} w_{j,k} P_{i,j,\tau,t} \quad (3)
\]

The probability \(P_{i,j,\tau,t} \) follows a Weibull distribution calibrated with minimum, maximum and most likely lifespans of Li-ion batteries. We use a Weibull distribution as the literature shows that it fits well the lifecycle of durable goods (Xu et al., 2020; Elshkaki, 2005; Melo, 1999; Spatari et al., 2005).\(^9\)

Finally, we can compute for each year \(t \) the aggregated waste flow of material \(k \):

\[
W_{k,t} = \sum_{\tau=0}^{t-1} (B_{k,\tau,t} - B_{k,\tau,t-1}) \quad (4)
\]

Finally, the ratio of recycled material over demand (RMD ratio) for each material \(k \) can be computed as follows:

\[
RMD_{k,t} = \frac{\epsilon_{k,t} W_{k,t}}{F_{k,t}} \quad (5)
\]

with \(\epsilon_{k,t} \) the efficiency of the material recovery process. It includes physical collection of used batteries from used cars as well as the efficiency of recycling processes.

Following the decomposition from the qualitative analysis, we elaborate several scenarii that aim at

\(^9\)We also computed our model with a gamma function, with very little difference in the results that do not alter the policy implications.
investigating the influence of demand evolution, battery lifespans, technological change and recycling efficiencies.

4.2. Data

The main source of data for the calibration of the model comes from recent IEA reports (IEA, 2020, 2021a). Projections of the EV market in 2025 and 2030 comes from (IEA, 2020). We use a quadratic interpolation to get the evolution of the total EV battery demand (in kWh) for the range 2020-2035, with the two different scenarii studied in IEA reports. Battery sizes are also calibrated using these reports. The Stated Policies Scenario (STEPS) relies on already existing and announced policies and their expected consequences on the development of electromobility. On the other hand, the Sustainable Development Scenario (SDS) is more ambitious and built in order to meet the Paris Agreement objectives. The extension of the demand curve up to 2035 is made with the hypothesis that the EV fleet does not yet reach its final deployment. Figure 1 shows the projections for battery demand. Note that a growing divergence between scenarii occurs after 2025, resulting for the SDS scenario in a twice larger demand in 2030 than for STEPS, and even more for 2035. Comparing these two scenarii allows to assess the effect of demand dynamics, which was the first component of the decomposition of the qualitative analysis.

Material intensities of each battery cell technology \(w_{j,k} \) are taken from IEA reports and (Xu et al., 2020) and shown on Figure 2. We linearly interpolate projected market shares \(m_{j,t} \) of battery technologies from the IEA (2021b) as shown in Figure 2, given for up to 2040, consisting in the main technological scenario.

The projections of the IEA show a technological change that shifts from cobalt/manganese-based toward nickel-based batteries. This is caused by the phase-out of NMC333 batteries in favor of NMC811 with higher nickel incorporation rates. Another key feature of this technological change is the rise of solid-state batteries (ASSB), with an important reduction in material use among which cobalt and nickel.

In order to assess the impact of the evolution of material intensities, due to technological change, alternative scenarii are developed and summarized in Table 3, all considering a demand from the STEPS
First, in scenario status-quo, market shares are maintained at their 2020 levels. Within it, battery manufacturing remains intensive in cobalt. Second, the scenario ASSB+ simulates a large penetration of ASSB batteries. It leads to an important decrease in material use, especially nickel, manganese and cobalt, due to the technological breakthrough. Third, the scenario LFP+ is built to show an important market share of LFP batteries. It shows lower needs for nickel, manganese and cobalt. For the last two scenarios, proportions for other market shares are kept the same.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>main</td>
<td>Main scenario given used in IEA reports</td>
</tr>
<tr>
<td>status-quo</td>
<td>Market shares stay at the 2020 level</td>
</tr>
<tr>
<td>ASSB+</td>
<td>Strong breakthrough of solid-state batteries (doubled market share)</td>
</tr>
<tr>
<td>LFP+</td>
<td>Strong breakthrough of LFP batteries in 2030-2035 (four fold increase)</td>
</tr>
</tbody>
</table>

Table 3: Technological scenarios

The Weibull distribution function is calibrated with the most likely lifetime for the battery, and minimum/maximum set at 99,7% of the distribution. There is a lack of knowledge regarding the lifespan of EV batteries, as the market is still at its early stage of development. For the specific case of electric vehicle, we find shorter lifespans in the literature, with 8 to 10 years (Casals et al., 2017, 2019). Lifespans of batteries are often high estimates in studies, with the example of Xu et al. (2020) who take an average of 15 years based on generic studies on automobiles. Our main scenario follows a most likely lifetime of 10 years. For sensitivity purposes, we also test scenarios with shorter lifespans, as described in Table 4, as well as longer as some emerging uses of batteries such as second life could postpone the year of recycled material availability (Martinez-Laserna et al., 2018). We use demand from the STEPS scenario for these ones.

Recycling efficiencies $\epsilon_{k,t}$ are set with the targets of the proposal of the EC (Table 1), and linearly interpolated between 2020 and 2026, and between 2026 and 2030, and are constant after 2030. Note
that the EC aims at a recovery rate for lithium going from 35% in 2026 to 70% in 2030, while it is around 10% in 2020 (European Union: European Commission et al., 2021b), hence an optimistic seven-fold increase in a decade. We also test a scenario low efficiency, with demand from STEPS, where we maintain recycling efficiencies at their current 2020 levels, with 80% efficiency for both cobalt and nickel, and 10% for lithium.10

5. Quantitative Analysis: Results

This section presents the results of the quantitative analysis. It focuses on the computation of the ratios of recycled materials over demand in new batteries (RMD ratios) up to 2035. First, it presents the evolution of these shares for each material for the two IEA scenarii STEPS and SDS. Then, it successively shows the impacts of battery lifespans, battery technological change and recycling efficiencies on RMD ratios.

5.1. Evolution of RMD Ratios and Effect of Demand Growth

Evolution of RMD ratios are displayed for lithium, nickel and cobalt on Figure 3. For both demand scenarii, all RMD ratios are increasing. It indicates that the amount of available waste that can get recycled grows faster than the demand in new batteries. Indeed, demand grows at a fairly constant rate, while available wastes grow faster due to the specificity of the degradation process, where the probability of becoming wastes grows up to the most likely lifetime, around ten years here, then decreases.

10As indicated as the 2020 baseline for material recovery rate in European Union: European Commission et al. (2021b).
Figure 3 also displays EC minimum thresholds for 2030 and 2035. These targets are only partially met. Regarding lithium, targets are only reached in 2030 under the STEPS scenario. It results from a combination of low recycling efficiency compared to other materials (70% after 2030) and the use of lithium intensive technologies. In the case of nickel, targets are met under STEPS scenario for both 2030 and 2035 targets, while under SDS they are barely met in 2030 and below the objective in 2035. Cobalt targets, which are much higher than for nickel and lithium, are in both cases not reached in 2030 and 2035, despite the early shift from cobalt/manganese to nickel. This transition makes relatively high amounts of cobalt available later in 2035 thanks to a decreasing demand, which explains that targets are almost reached for the STEPS scenario.

The comparison of STEPS and SDS scenarii highlights a conflict between a faster growth of electromobility and material sourcing from recycling. Faster demand growth in minerals makes it harder to achieve relatively high amounts of recycled inputs in new batteries. This indicates that while demand grows much faster in the SDS scenario than in STEPS, the difference between waste production growth is less significant.

5.2. Effect of the Battery Lifespan

<table>
<thead>
<tr>
<th>Lifetime</th>
<th>Lithium 2030</th>
<th>Lithium 2035</th>
<th>Nickel 2030</th>
<th>Nickel 2035</th>
<th>Cobalt 2030</th>
<th>Cobalt 2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 years</td>
<td>0.10</td>
<td>0.14</td>
<td>0.12</td>
<td>0.24</td>
<td>0.16</td>
<td>0.29</td>
</tr>
<tr>
<td>10 years</td>
<td>0.05</td>
<td>0.09</td>
<td>0.06</td>
<td>0.16</td>
<td>0.08</td>
<td>0.20</td>
</tr>
<tr>
<td>12 years</td>
<td>0.02</td>
<td>0.06</td>
<td>0.03</td>
<td>0.09</td>
<td>0.04</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Table 5: Ratios of recycled materials over demand (RMD ratios) for alternative battery lifetimes with the STEPS demand scenario. Values of RMD ratios above the respective EC minimum threshold are written in bold.

We perform a sensitivity analysis on the most likely lifespan of batteries, according to Table 4. Results are shown in Tables 5 for the STEPS demand scenario. RMD ratios are very sensitive to average lifetime changes. For a lifespan up to 12 years, available metals for recycling barely reach 4% in 2030 for all metal inputs. Indeed, longer lifetimes imply lower waste rates on the short run, as secondary materials are later available for recycling.

Oppositely, with shorter lifespans (8 years), meaning that batteries are more often replaced, EC targets can more easily be met.\(^{11}\) Hence, the impact of battery lifespans seems much larger than the effect of demand growth, while differences between STEPS and SDS scenarii were up to a factor two impact on the demand. In the case of lifespans, a 20% increase or decrease (from 12 to 8 years) leads to much larger differences in RMD ratios.

This result has implications regarding the development of second life of batteries. In this scenario, EV batteries are being refurbished when they do not meet EV power standards and are used for stationary

\(^{11}\)Here we examine this effect *ceteris paribus*, meaning we do not consider an impact of lifespans on demand growth of batteries.
storage, which could increase the economic value of batteries (IEA, 2020; Martinez-Laserna et al., 2018). A well developed second-life sector significantly extends battery lifetimes, and therefore limits the availability of recycled materials for reaching their sustainability objectives. Besides, lifespans of batteries could be increased a lot more than 12 years according to Martinez-Laserna et al. (2018), with technical requirements and economic profitability being the main drivers of life durations. However, this demand for second-life should be nuanced as stationary energy storage is expected to be a minor share of the overall EU demand in capacity in the following years (Martinez-Laserna et al., 2018).

5.3. Effect of Technological Change

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Lithium</th>
<th>Nickel</th>
<th>Cobalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>status-quo</td>
<td>0.04 0.10 0.06 0.13</td>
<td>0.06 0.13</td>
<td></td>
</tr>
<tr>
<td>main</td>
<td>0.05 0.09 0.06 0.16</td>
<td>0.08 0.20</td>
<td></td>
</tr>
<tr>
<td>ASSB+</td>
<td>0.05 0.09 0.06 0.19</td>
<td>0.08 0.24</td>
<td></td>
</tr>
<tr>
<td>LFP+</td>
<td>0.05 0.10 0.08 0.18</td>
<td>0.11 0.25</td>
<td></td>
</tr>
</tbody>
</table>

Table 6: Ratios of recycled materials over demand (RMD ratios) for alternative technological scenarii with the STEPS demand scenario. Values of RMD ratios above the respective EC minimum threshold are written in bold.

After having discussed the influence of demand evolution and battery lifespans on the different RMD ratios, this section discusses alternative technological scenarii. Detailed in Table 3, each alternative scenario represents a characteristic trend, with demand following the STEPS scenario. Results show little differences in RMD ratios across scenarii as soon as batteries become less cobalt-intensive. This contrasts with the large sensitivity shown by battery lifespans.

As stated in the qualitative section, the effect of technological change is heterogeneous between materials. Indeed, all RMD ratios for lithium (resp. nickel) are in the range 0.04-0.05 (resp. 0.06-0.08) in 2030 and 0.09-0.10 (resp. 0.13-0.19) in 2035. In particular, despite the lithium intensity of ASSB batteries, similar RMD ratios are reached in 2035 for ASSB+ and main, explainable by the early use of NMC333/532 with high lithium contents. The only deviation happens for the RMD ratio of cobalt under the status-quo scenario. In 2035, the RMD ratio is 0.13 compared to 0.20-0.25 for the other scenarii. Indeed, the main scenario as well as the ASSB+ and LFP+ scenarii show a significant decrease in cobalt intensity, especially after 2030. As this transition reduces its demand, RMD ratios for cobalt increase.

5.4. Effect of Recycling Efficiencies

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Lithium</th>
<th>Nickel</th>
<th>Cobalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>low efficiency</td>
<td>0.01 0.01 0.05 0.13</td>
<td>0.07 0.17</td>
<td></td>
</tr>
<tr>
<td>main</td>
<td>0.05 0.09 0.06 0.16</td>
<td>0.08 0.20</td>
<td></td>
</tr>
</tbody>
</table>

Table 7: Ratios of recycled materials over demand (RMD ratios) for an alternative recycling efficiency scenarii with the STEPS demand scenario. Values of RMD ratios above the respective EC minimum threshold are written in bold.
Finally, we also estimate the influence of recycling efficiencies in our results. As explained above, our main scenario is based on the EC targets for recovery rates in 2026 and 2030, with STEPS demand. They can include a very high increase, in particular for lithium (from 10% efficiency in 2020 to 70% in 2030). It implies key developments in terms of technology and cost reductions. With scenario low efficiency (with STEPS demand too), we compute RMD ratios when recycling efficiencies do not change after 2020 (10% for lithium and 80% for both nickel and cobalt), thus remaining especially low for lithium. As expected, given the linearity of the recycling efficiency in the model (in equation (5)) important change occurs for lithium, with RMD ratios dropping to 0.01 (Table 7). To a lesser extent, RMD ratios for nickel and cobalt also drop, though recycling efficiencies were not expected to increase with the same magnitude.

6. Conclusion and Policy Implications

With its regulation proposal, the EC tries to cope with the fast-paced evolution of innovation and market development of Li-ion batteries. Its ambition includes environmental as well as industrial and strategic objectives. This paper discusses one of the main feature of the proposal, which aims to enforce the incorporation of minimum shares of recycled material in new batteries from 2030. Our approach is to disentangle the different key-assumptions for the calculations of such targets. We find that the targets given by the proposal are only physically attainable with very specific assumptions on characteristics on battery technologies, recycling processes and the evolution of demand. In particular, targets of the EC are generally not met for average battery lifetimes beyond 10 years, which may be unrealistic given technical progress of batteries. Beyond this effect, we note that meeting this target is even more difficult when the demand grow rate is high, and recycling efficiencies are low. Heterogeneity between material is also observed due to battery technological change and specific recycling efficiencies.

Finally, our opinion is that only setting numbered - and probably too high - targets on recycling, could jeopardize the overall sustainable goal of the proposal. Setting targets for the use of recycled content cannot be considered as the only mean to ensure the sustainability the sector. For instance, other circular economy initiatives can be included such as reducing material use or the promotion of reusing and re-manufacturing. Extending the lifetime of batteries, through ecodesign, could also be targeted with mandatory objectives in the new regulation. As of now, durability characteristics of batteries are expected to be constrained at a later stage of the regulation enforcement. This paper has indicated that such an objective could come in contradiction with the recycling targets from the current proposal. Hence, we believe that this policy trade-off should be carefully addressed in the new regulation.

Further research could complete our analysis in three ways. First, an analysis that incorporates strategies from the supply side to comply with the regulation can be made. For instance, battery wastes or recycled materials could be accumulated years before the start of the regulation and be incorporated
in new batteries only once the regulation applies. There could be also strategies to meet recycling targets by extending the recovered material to other industries or geographical areas. However, this reasoning bears several limits: a significant part of total production of lithium and cobalt are already used for the battery industry, leaving relatively small amounts for recycling from other industries, especially with an exponentially growing sector; it is not in the spirit of the EC proposal which aims at regulating a specific sector, in this case the battery sector; it suggests coordination between different industries and the possibility of incompatible usage of materials; environmentally it would only result in a displacement of the material sourcing problem. Second, our sensitivity analysis could be enriched by accounting for the different links between main parameters. For instance, larger battery lifetimes should also decrease battery renewal, hence new battery demand. Battery lifetimes should also differ between technologies. Third, the analysis could be improved by a resource economics approach, in order to assess how imposing recycling contents forces a demand for recycled material and how it affects prices on markets for primary and secondary material.

Acknowledgements

This paper has been significantly improved by the comments of Olivier Massol, Yannick Perez, Felipe Gonzalez Venegas, Maxime Ollier, Adam Albin and Diego Cebreros. All errors remain the responsibility of the authors. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
References

Technological progress and carbon price formation: an analysis of EU-ETS plants
Marc BAUDRY, Anouk FAURE

Implementing a CO₂ price floor in the electricity sector: analysis of two interconnected markets
Corinne CHATON, Anna CRETI

Sectoral, resource and carbon impacts of increased paper and cardboard recycling
Philippe DELACOTE, Antonello LOBIANCO, Etienne LORANG

Assessing the regional redistributive effect of renewable power production through a spot market algorithm simulator: the case of Italy
Silvia CONCETTINI, Anna CRETI, Stanislaw GUALDI

Are mini-grid projects in Tanzania financially sustainable?
Mamadou BARRY, Anna CRETI, Elias ZIGAH

Better safe than sorry: macroprudential policy, Covid 19 and climate change
Gaëtan LE QUANG, Laurence SCIALOM

How environmental policies spread? A network approach to diffusion in the U.S.
Côme BILLARD, Anna CRETI, Antoine MANDEL

Network structures, environmental technology and contagion
Côme BILLARD

The views expressed in these documents by named authors are solely the responsibility of those authors. They assume full responsibility for any errors or omissions.

The Climate Economics Chair is a joint initiative by Paris-Dauphine University, CDC, TOTAL and EDF, under the aegis of the European Institute of Finance.