ADVANCES IN CLIMATE ECONOMICS

Climate Economics Chair Fall School

The benefits of building CO₂ pipelines ahead of demand: Evidence from a Minimax Regret approach

Adrien NICOLLE and Olivier MASSOL

Climate Economics Chair

WHAT'S CCS?

CCS: CARBON CAPTURE (TRANSPORT) AND STORAGE

• What's CCS ?

• A CO, abatement technology:

• IPCC, Mitigation of climate change, SPM (2022)

"C.4.6. Currently, global rates of CCS deployment are far below those in modelled pathways limiting global warming to 1.5°C or 2°C.

Enabling conditions such as **policy instruments**, greater public support and technological innovation could reduce these barriers. (high confidence)"

focus on the transportation

BACKGROUND CURRENT EUROPEAN CO₂ TRANSPORTATION PROJECTS

BACKGROUND: UNITED KINGDOM

East Coast Cluster:

- **Capture**: two industrial clusters (Teesside and Humber regions)
- Transportation:
 - 1. Feeder pipelines in each cluster
 - Trunk pipelines (145km and 85km) from each cluster to...
- the Storage site in Northern Sea

Two-steps deployment:

- Mid 2020s: ECC starts operation
- Mid 2030s: ECC ambitions to be the first net zero industrial cluster

(Source: Net Zero Teesside's website)

RESEARCH QUESTION

Observations

- Shared point-to-point trunkline system
- Issue of oversizing in the first stage
 - Uncertainty of future demand
 - Irreversible decisions at the construction stage

RESEARCH QUESTION

Observations

- Shared point-to-point trunkline system
- Issue of oversizing in the first stage
 - Uncertainty of future demand
 - Irreversible decisions at the construction stage

Research question

In a context of uncertainty, to which extent should the CO₂ pipeline system owner build ahead of demand?

Clarify the economics of oversizing the CO₂ trunk pipeline system

Two steps approach

CO₂ pipeline system cost function
 Cobb-Douglas production function

2. Infrastructure Planning

Two subperiods with a *possible* increase in demand in the second period
Minimax regret to determine the best decision

TECHNOLOGY OF A CO₂ PIPELINE SYSTEM

$\ensuremath{\text{CO}}_2$ pipeline cost function in the literature

(Too) Inspired by natural gas' cost functions (Knoope et al., 2013)

- CO₂ transportation is more expensive than natural gas...
 - Increased material costs (King and Kumar 2010; A. Cosham, Eiber, and Clark 2010; Andrew Cosham and Eiber, 2008)
 - Management of flows (Chandel, Pratson, and Williams, 2010)
- ... but the CO₂ cost function is **based on the natural gas' data**
 - Built upon FERC's natural gas data (Piessens et al. 2008; Dahowski et al. 2009; Heddle, Herzog, and Klett 2003; McCoy and Rubin, 2008; Chandel, Pratson, and Williams, 2010)
- **Pump station** often not included (Knoope et al., 2013)

System under consideration:

{Trunk pipeline + Pumping station}

- Point-to-point pipeline of length L and output Q
- Constant elevation, no bends
- CO₂ transported in a "dense phase" state

The CO_2 Cobb-Douglas production function

Low equation (pipeline)

$$D = \left(\frac{4^{\frac{10}{3}}n^2Q^2L\rho g}{\pi^2\rho^2\Delta P}\right)^{3/16}$$

g: gravity constant

n: Manning factor

 ΔP : pressure drop

Pumping power (pumping station)

$$W_p = \frac{Q \cdot \Delta P}{\rho \cdot \eta_p}$$

 η_p : efficiency of the pump

 $\rho {:} \operatorname{density} \operatorname{of} \operatorname{CO}_2$

$$Q = A^{1/3} W_p^{1/3} D^{16/9} \text{ where } A = \pi^2 \rho^2 \eta_p / (4^{\frac{10}{3}} g L n^2)$$
$$Q^{\beta} = K^{\alpha} E^{1-\alpha}$$

Where *K* is the capital, *E* the energy, $\beta = \frac{9}{11}$ and $\alpha = \frac{8}{11}$

igtarrow eta < 1: economies of scale, oversizing can be justified

(Chenery, 1952; Manne 1961)

INFRASTRUCTURE PLANNING MODEL

LITERATURE REVIEW OF CCS NETWORK DEPLOYMENT

Focus on transnational networks

- Static Models
 - the amount of CO₂ transported remains constant over time (Kuby et al., 2011; Massol et al., 2015; Middleton and Bielicki, 2009)
- Omniscient or Myopic pipeline operators
 - Omniscient D Oversizing (Middleton et al., 2012; Morbee et al., 2012)
 - Myopic Duplication (Mendelevitch et al., 2010; Oei et al., 2014)
- ≠ Project-specific study

Site-specific study

- Comparison of Duplication VS Oversizing (Wang et al., 2014)
 - Engineering analysis
 - Omniscient pipeline operator

TIME DISCRETE REPRESENTATION

TIME DISCRETE REPRESENTATION

LEAST-COST INFRASTRUCTURE PLANNING

Minimize costs over lifetime of the infrastructure

With r the cost of capital, s the cost of energy, a_A and a_B discounting factors

LEAST-COST INFRASTRUCTURE PLANNING

Minimize costs over lifetime of the infrastructure

With r the cost of capital, s the cost of energy, a_A and a_B discounting factors

Proposition 1: The overcapitalization ratio is:

where
$$g_0 = (a_A + a_B)$$
 and $g_1 = \left(a_A + a_B(1 + \delta)^{\frac{\beta}{1 - \alpha}}\right)$

MINIMAX REGRET : POSSIBLE OUTCOMES

What happens if the pipeline operator's anticipations are wrong?

The pipeline operator's decision

With $SRTC_K(Q) := rK + s (a_A + a_B)e_K(Q)$ with $e_K(Q) = K^{-\frac{\alpha}{1-\alpha}} \cdot Q_i^{\frac{\beta}{1-\alpha}}$

And $LRTC(Q) := \frac{s^{1-\alpha}r^{\alpha}g_0^{1-\alpha}}{(1-\alpha)^{1-\alpha}\alpha^{\alpha}}Q^{\beta}$

MINIMAX REGRET : REGRET TABLE

$$\min_{x \in D} \max_{i \in S} \left(C_i(x) - \inf_{z \in D} C_i(z) \right)$$

The pipeline operator's decision

Max normalized regret

MINIMAX REGRET : REGRET TABLE

The pipeline operator's decision

CASE STUDY: NET ZERO TEESSIDE

Overcapitalization ratio:

$$\frac{K^{**}}{K^*} = 1.83$$

(increase in diameter of 35%)

Myopic Optimistic Low scenario High scenario Max Regret High scenario

x3 more regret in the myopic situation

Establishment of a novel CO₂ cost function:

- Cobb-Douglas production function
- Pumping station included
- Engineering-based, specificity of CO₂

Site-specific infrastructure planning:

Quantify the overcapitalization ratio

Minimax Regret approach

Overcapitalization is *always* the regret-minimizing decision
Case study shows large advantages of oversizing

THANK YOU FOR YOUR ATTENTION ANY QUESTIONS?

References

25

King, G. G., and S. Kumar. 2010. "Designing CO2 Transmission Pipelines without Crack Arrestors.& (2010, January). In (Vol., Pp.)." International Pipeline Conference 44212 (January): 923–34. A. Cosham, Eiber, and Clark 2010

Cosham, A., R. J. Eiber, and E. B. Clark. 2010. "GASDECOM: Carbon Dioxide and Other Components ." International Pipeline Conference 44212 (January): 777–94.

Chandel, M. K., L. F Pratson, and E Williams. 2010. "Potential Potential Economies of Scale in CO2 Transport through Use of a Trunk Pipeline." Energy Conversion and Management 51 (12): 2825–34.

Piessens, K., B. Laenen, W. Nijs, and et al. 2008. "Policy Support System for Carbon Capture and Storage."

Dahowski, R. T., X. Li, C. L. Davidson, N. Wei, and J. J. Dooley. 2009. "Regional Opportunities for Carbon Dioxide Capture and Storage in China: A Comprehensive CO2 Storage Cost Curve and Analysis of the Potential for Large Scale Carbon Dioxide Capture and Storage in the People's Republic of China." Richland, WA (United States)

Heddle, G, H Herzog, and M Klett. 2003. "The Economics of CO2 Storage."

McCoy, S. T. (2008). The Economics of CO2 Transport by Pipeline and Storage in Saline Aquifers and Oil Reservoirs.

Knoope, M. M.J., A. Ramírez, and A. P.C. Faaij. 2013. "A State-of-the-Art Review of Techno-Economic Models Predicting the Costs of CO2 Pipeline Transport." International Journal of Greenhouse Gas Contropmics - CEC

References

Kuby, M.J., Bielicki, J.M., Middleton, R.S., 2011. Optimal spatial deployment of CO2 capture and storage given a price on carbon. International Regional Science Review 34, 285–305. https://doi.org/10.1177/0160017610397191

Middleton, R.S., Bielicki, J.M., 2009. A scalable infrastructure model for carbon capture and storage: SimCCS. Energy Policy 37, 1052–1060. https://doi.org/10.1016/j.enpol.2008.09.049

Middleton, R.S., Kuby, M.J., Wei, R., Keating, G.N., Pawar, R.J., 2012. A dynamic model for optimally phasing in CO2 capture and storage infrastructure. Environmental Modelling and Software 37, 193–205. https://doi.org/10.1016/j.envsoft.2012.04.003

Morbee, J., Serpa, J., Tzimas, E., 2012. Optimised deployment of a European CO2 transport network. International Journal of Greenhouse Gas Control 7, 48–61. https://doi.org/10.1016/j.ijggc.2011.11.011

Mendelevitch, R., Herold, J., Oei, P.-Y., Tissen, A., 2010. CO₂ highways for Europe: modelling a carbon capture, transport and storage infrastructure for Europe. Centre for European Policy Studies.

Oei, P. Y., Herold, J., & Mendelevitch, R. (2014). Modeling a Carbon Capture, Transport, and Storage Infrastructure for Europe. Environmental Modeling and Assessment, 19(6), 515–531. https://doi.org/10.1007/s10666-014-9409-3

References

Chenery, Hollis B. 1952. "Overcapacity and the Acceleration Principle." Econometrica 20: 1–28.

Manne, A. S. (1961). Capacity Expansion and Probabilistic Growth. In Econometrica (Vol. 29, Issue 4).

Massol, Olivier, Stéphane Tchung-Ming, and Albert Banal-Estañol. 2015. "Joining the CCS Club! The Economics of CO2 Pipeline Projects." European Journal of Operational Research 247 (1): 259–75. https://doi.org/10.1016/j.ejor.2015.05.034.

Wang, Z., Fimbres Weihs, G. A., Cardenas, G. I., & Wiley, D. E. (2014). Optimal pipeline design for CCS projects with anticipated increasing CO2 flow rates. International Journal of Greenhouse Gas Control, 31, 165–174. https://doi.org/10.1016/j.ijggc.2014.10.010

BACKGROUND: UNITED KINGDOM

(Source: East Coast cluster's website)

BACKGROUND: NORWAY

Northern Lights

– Industrial decarbonisation, $\rm CO_2$ storage for Europe

Source: Northern Lights' website

BACKGROUND: NORWAY

Two-stage transportation with ships:

- Capture: CO2 from emitters across Europe
- Transportation:
 - 1. Ship transport: Emitters send their emissions to an onshore receiving terminal
 - 2. Trunkline transportation to offshore storage

Two steps deployment:

Ship Transport	CO ₂ from other emitters	Offshore CO_Storage	
		2 600m	
		CO ₂ to storage	

"Our ambition is to **expand capacity** by an additional 3.5 million tonnes to a total of 5 million tonnes, **dependent on market demand**."

NORTHERN LIGHTS

"The offshore pipeline will be built **[in the first phase]** to accommodate the additional volumes **[of the second phase].**"

(Source: Northern Lights' website)

RESULT OF THE MINIMAX REGRET TABLE

Broposition 2: From a Minimax Regret perspective, "building ahead of demand" (overcapitalizing) is **always** a better alternative since:

$$\frac{SRTC_{K^*}(Q_C) - LRTC(Q_C)}{LRTC(Q_A)} > \frac{SRTC_{K^{**}}(Q_A) - LRTC(Q_A)}{LRTC(Q_A)}$$
for all value of $\delta > 0, d > 0, \beta < 1$ and $1 - \alpha < \beta$