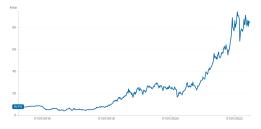
Firms in the EU ETS: a categorisation based on transaction behaviour

Raude Marie

EconomiX, Paris Nanterre Unitversity & Climate Economics Chair (CEC)

October 13, 2022



Context

The European Union Emission Trading Scheme (EU ETS):

- Regulates the emissions of actors from the industrial, manufacturing and energy sectors. Also covers domestic aviation.
 - \sim 13000 regulated sites,
 - \sim 40% of the EU's GHG emissions
- Cap and trade system

EU ETS allowance price evolution

Context

Investment funds' net position (2018-2021)¹

Potential detrimental role played by purely financial actors

→ Report on the derivatives market activity (ESMA, 2022), proposals to limit access to financial actors

What are the different categories of actors in the EU ETS?

- Summarise transaction behaviour based on network analysis
- Rely on clustering to deduct a categorisation of actors according to their transaction behaviour

Literature

Empirical analysis exploiting transaction data

Descriptive analysis	Trotignon and Delbosc, 2008, Martino and Trotignon, 2013,					
Descriptive analysis	Ellerman and Trotignon, 2009, Lausen et al., 2022					
Participation drivers	Zaklan, 2013, Jaraitė et al., 2013, Baudry et al., 2021					
Farticipation univers	Hintermann and Ludwig, 2019, Abrell et al., 2021					
Actor types	Betz and Schmidt, 2016, Balietti, 2016,					
Actor types	Cludius and Betz, 2020					
Market structure and properties	Borghesi and Flori, 2018, Flori et al., 2022,					
Market structure and properties	Karpf et al., 2018, Wang et al., 2020					

Contribution:

- mapping of the transaction network at the national firm level
- 2 categorisation of firms based on their network properties

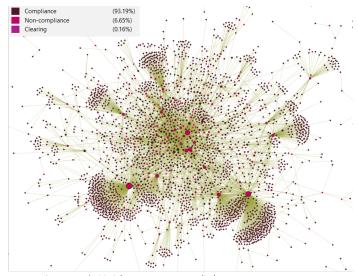
Data used

*Data*Transaction data

Transaction data
Firm level ETS data
Firm data

Information (Source)

Account level data (EÚTL database, Abrell, 2022)


Match between the account holders and the companies (JRC, 2022)

Ownership structure, NACE code (Bureau van Dijk ORBIS database)

Data transformation: administrative transfers removal, inter-firm and intra-firm transfer identification, auctions (Appendix).

The ETS network

Transaction network, 2018 (Betweenness centrality) (Appendix: visualisation with other indicators, Auction network)

Methodology

Introduction

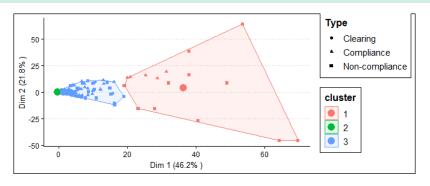
K-means clustering (Hartigan-Wong algorithm, 1979)

$$Min \sum_{k=1}^{k} W(C_k) = \sum_{k=1}^{k} \sum_{x_i \in C_k} (x_i - \mu_k)^2$$

W, the within cluster variation

 C_k , cluster k

x, a data point belonging to cluster k

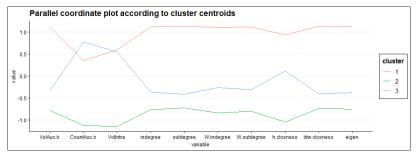

 $\mu_{\it k}$, mean value of the points assigned to the cluster k

Cluster variables:

- In/Out Degree*
- Weighted In/Out Strength*
- Centrality measures (Betweenness, Eigenvector, PageRank)

^{*}both for transactions in auctions and in the secondary market (Appendix)

Firm clustering



- 3 clusters of sizes 16, 3095 and 404
- Some financial and energy firms appear together in an "outlier" cluster
- An important share of the regulated firms fall in cluster 2

Firm clustering

Cluster center characteristics:

- Cluster 1 stands out: upper tail of the distribution for all indicators
- Cluster 2 and 3 differences mainly lie in the harmonic closeness centrality, volume of intra-firm transaction and participation frequency in auctions.

(Appendix) 9 / 25

Conclusion

Mapping of the EU ETS firm transaction network

 \rightarrow revealed a polarised network, and the intermediary role played by a handful of firms

Clustering based on network measures

- ightarrow Some financial actors appear to behave differently than others
- \rightarrow Some energy companies have also been identified in this outlier category

Next steps:

- Further characterisation of the clusters
- Explain the determinants of a firm belonging to a specific cluster (multivariate logistic regression)
- Look at the evolution over time

Thank you for your time and attention ! marie.raude@chaireeconomieduclimat.org

References I

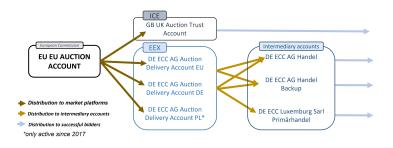
- Abrell, J., Cludius, J., Lehmann, S., Schleich, J., & Betz, R. (2021). Corporate emissions-trading behaviour during the first decade of the eu ets. *Environmental and Resource Economics*, 1–37.
- Balietti, A. C. (2016). Trader types and volatility of emission allowance prices. evidence from eu ets phase i. *Energy Policy*, *98*, 607–620.
- Baudry, M., Faure, A., & Quemin, S. (2021). Emissions trading with transaction costs. *Journal of Environmental Economics and Management*, 108, 102468.
 - Betz, R. A., & Schmidt, T. S. (2016). Transfer patterns in phase i of the eu emissions trading system: A first reality check based on cluster analysis. *Climate Policy*, *16*(4), 474–495.

References II

- Borghesi, S., & Flori, A. (2018). Eu ets facets in the net: Structure and evolution of the eu ets network. *Energy economics*, 75, 602–635.
- Cludius, J., & Betz, R. (2020). The role of banks in eu emissions trading. *The Energy Journal*, 41(2).
- Ellerman, A. D., & Trotignon, R. (2009). Cross border trading and borrowing in the eu ets. *The Energy Journal*, 30(Special Issue# 2).
 - Flori, A., Borghesi, S., & Marin, G. (2022). Network centrality and the environmental-financial performance nexus of eu ets firms. *Working Paper*.

References III

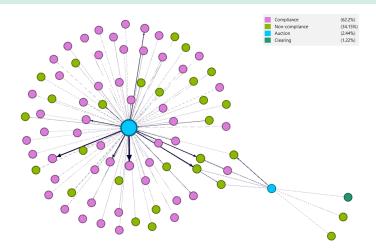
- Hintermann, B., & Ludwig, M. (2019). Home country bias in international emissions trading: Evidence from the eu ets.


 Unpublished manuscript]. Available at: https://www.tsefr.
 eu/sites/default/files/TSE/documents/conf/2019/Energy_Climate pdf.
- Jaraitė, J., Jong, T., Kažukauskas, A., Zaklan, A., & Zeitlberger, A. (2013). Matching eu ets accounts to historical parent companies a technical note. European University Institute, Florence. Retrieved June, 18, 2014.
- Karpf, A., Mandel, A., & Battiston, S. (2018). Price and network dynamics in the european carbon market. *Journal of Economic Behavior & Organization*, 153, 103–122.
- Lausen, J., Glock, D., Geres, R., Lischker, S., Ferdinant, M., & Mihai, A. (2022). Trading activities and strateges in the european carbon market. *Umwelt Bundesamt*.

References IV

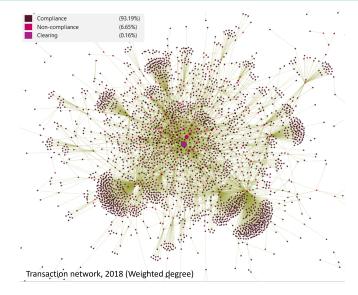
- Martino, V., & Trotignon, R. (2013). Back to the future: A comprehensive analysis of carbon transactions in phase 1 of the eu ets.
- Trotignon, R., & Delbosc, A. (2008). Allowance trading patterns during the eu ets trial period: What does the citl reveal.

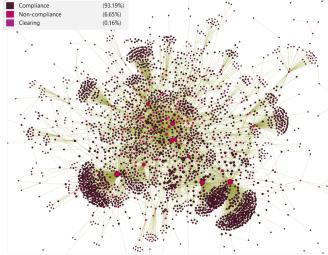
 Climate report, 13, 1–36.
- Wang, J., Liu, Y., Fan, Y., & Guo, J. (2020). The impact of industry on european union emissions trading market—from network perspective. *Energies*, 13(21), 5642.
 - Zaklan, A. (2013). Why do emitters trade carbon permits? firm-level evidence from the european emission trading scheme.


Appendix I

Auctioned allowances distribution

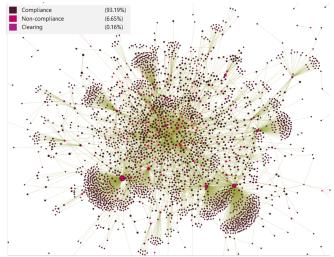
The details of the methodology can be found in the Climat & Débat, 2022 (p.13-14).


Appendix II


EU ETS firm auction transactions

The network is mapped by applying the Yifan Hu Proportional algorithm on Gephi.

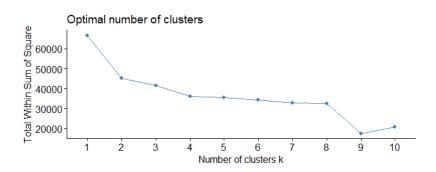
Appendix II: weighted degree



Appendix II: eigenvector centrality

Transaction network, 2018 (Eigenvector centrality)

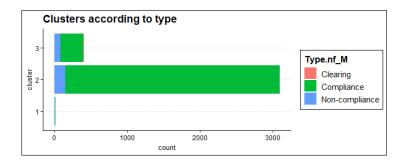
Appendix II: pageRank



Transaction network, 2018 (PageRank)

Network centrality measures

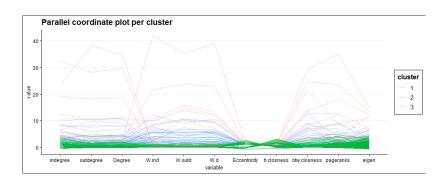
Indicator	Definition
	Local centrality measure indicating the connectedness of the firm.
In/Out Degree centrality	It counts the number of other firms that are directly connected to a firm,
	over the maximum degree that the firm can have: $C_{deg}(u) = \frac{d_u}{n-1}$,
III/Out Degree Centrality	where d_u is the number of nodes that are connected to the node u and n
	is the total number of vertices in the network. As the transaction network is directed,
	In (purchase) and Out (sales) degree is distinguished.
	This indicator computes the weighted degree of a node.
Weighted In/Out Strength	$s_i^{in} = \sum_{j=1}^N w_{ji}$ and $s_i^{out} = \sum_{j=1}^N w_{ij}$
	Measures the centrality of a firm by looking at its role as an intermediator.
	The betweenness centrality of a node u is thus the number of shortest paths between
	a pair of nodes s and t on which one can find node u relative to the number
Betweenness centrality (Freeman 1979.)	of all shortest paths between s and t summed over all pairs of vertices.
, (If $\sigma_{s,t}$ is the total number of paths between nodes s and t and
	$\sigma_{s,t}(u)$ is the number of paths between these two vertices passing
	through u , betweenness centrality is defined as: $C_{btw}(u) = \sum_{s,t \in V} \frac{\sigma_{s,t}(u)}{\sigma_{s,t}}$
	On top of considering the number of links a firm has, this indicator also considers
	the centrality of the firm's neighbour. If A is the adjacency matrix of the network
	N where its elements $a_{i,j} \in 0, 1$ indicate the presence of a link
F:	(0 no link; 1 link) between two nodes i and j , and $M(i)$ is the set of neighbors
Eigenvector centrality (Bonacich 1987)	of nodes i, the eigenvector centrality of a node is the sum of the centralities of its
	neighbors multiplied by a constant $\frac{1}{\lambda}$: $C_{eig}(j) = \frac{1}{\lambda} \sum_{i} a_{i,i} C_{eig}(j)$.
	Rearranged in matrix form one gets the eigenvector equation
	$Ax = \lambda x$ which is eponymous for this centrality measure.
	It can be interpreted as measuring the role of a firm in the network.
	The algorithm is similar to eigen vector centrality, but it only ranks nodes according
	to the structure of the incoming edges. The value of the PageRank can be defined
	recursively according to the formula: $PR(i) = \frac{1-d}{N} + d \sum_{j \mapsto i} \frac{PR(j)}{L(i)}$,
Pagerank (Page et al 1999)	where $PR(i)$ is the PageRank of a node i , N is the number of nodes,
	L(j) is the total amount of links originating from j and
	the sum is taken over all nodes <i>i</i> having a link to node <i>i</i> .
	The quantity d ranges between 0 and 1 and represents the impact of a dumping factor,
	which is the probability that a given link can arise anywhere. As in the default case,
	here d is set to 0,85.


Appendix III

cluster	secamount.b	seccount.b	secamount.s	seccount.s	aamount.b		aamount.s		intraamount	indegree		Degree	w.indegree	w.outdegree	W.Degree	h.closness		pageranks	e.centrality
1	9.47	9.37	7.82	9.75	6.74	4.29	8.42	6.60	6.37	9.67	9.38	9.64	8.83	10.26	9.64	0.73	10.55	8.98	7.13
2	-0.07	-0.09	-0.06	-0.10	-0.04	-0.09	-0.06	-0.14	-0.08	-0.11	-0.09	-0.10	-0.08	-0.08	-0.08	-0.30	-0.09	-0.10	-0.06
3	0.14	0.31	0.17	0.39	0.02	0.49	0.14	0.83	0.36	0.44	0.32	0.36	0.26	0.23	0.25	2.24	0.30	0.43	0.21

Average of the cluster variables according to cluster

Appendix IV


	PC1	PC2	PC3	PC4	PC5
Standard deviation	2.96	2.04	1.27	1.01	0.97
Proportion of Variance	0.46	0.22	0.08	0.05	0.05
Cumulative Proportion	0.46	0.68	0.76	0.82	0.87

Appendix V

	PC1	PC2
betweeness centrality	0.31	-0.14
in degree	0.30	-0.21
secondary count.s	0.30	-0.21
Degree	0.29	-0.24
pageranks	0.28	-0.24
out degree	0.28	-0.25
secondary count.b	0.28	-0.25
weighted.out degree	0.24	0.34
Weighted.Degree	0.23	0.35
secondary amount.b	0.22	0.33
weighted in degree	0.22	0.35
eigen centrality	0.22	-0.08
secondary amount.s	0.20	0.34
auction count.s	0.20	0.07
auction amount.s	0.18	0.15
auction count.b	0.15	0.03
intra amount	0.14	0.15
auction amount.b	0.12	0.09
harmonic closness centrality	0.04	-0.01

Rotation in the PCA

Appendix VI

