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Introduction
Motivation

• The last IPCC report highlights the necessity to examine equity considerations to
distribute mitigation and adaptation efforts (Grubb et al., 2022)
→ Within-country inequalities are almost not taken into account in the climate justice debate

(Islam and Winkel, 2017)

• Risk of a vicious circle of climate change exacerbating existent inequalities (Islam
and Winkel, 2017)
→ Social inequalities are linked to a fall in mitigation and adaptation efforts (Nyiwul, 2021)
→ Social inequalities are linked with higher CO2 emissions in low and middle-income

countries (Ehigiamusoe et al., 2022)

• How extreme weather conditions affect income inequalities in African countries?



Introduction
Contribution

• Droughts have multidimensional impacts (agriculture, forest, water quality, and
availability), which trickles to other socio-economic impacts (education, non-farm
income, nutrition, migration) (Gautier et al., 2016)

• To cope with shocks, households use a large range of strategies (Dercon, 2002) that
are easier to implement with asset endowment (Bailey et al., 2019; Paumgarten
et al., 2020)

• Most vulnerable households which have barriers to the detention of such capital
may not be able to cope with droughts

• Only two studies have explored heterogeneity in the impact of extreme weather
events in Africa
→ Arslan et al. (2016) compute the elasticity of income over income quantiles in Tanzania
→ Sesmero et al. (2018) compute elasticity of income over household assets in Malawi



Introduction
Contribution

• I isolate the direct causal impact of drought desegregated by household-income
level in Ethiopia and Malawi using two original methodologies in a common
framework
→ The quantile treatment effect designed by Callaway and Li (2019)
→ Inference on counterfactual distribution by distribution regression developed by

Chernozhukov et al. (2013)

• Impact of drought is directly measured on household real income: no bias of
auto-consumption and share of consumption in income

• I use the Standardized Soil Moisture Index (SSMI) integrating both temperature and
precipitation dimensions of drought

• I show the robust heterogeneous impact of drought: poorest households are more
impacted than richest households which could even benefit from droughts
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Data
LSMS-ISA data

• Three waves of nationally-representative and geo-referenced panel data survey
→ 2011/2013/2015 for Ethiopia
→ 2010/2013/2016 for Malawi

• Income from unsold agricultural production is estimated using De Magalhães and
Santaeulàlia-Llopis (2018) method and the World Bank protocol

• Real income data are used because the share of consumption in income is not
homogeneous across the income level of household



Data
Climate data

• I use the Standardized Soil Moisture Index (SSMI) to capture agricultural drought
event
→ Is directly linked with the defininition of agricultural drought
→ Allows having both precipitation and temperature dimensions of droughts (precipitation

and evaporation data)
→ Has been validated in both countries as a relevant indicator for drought monitoring

(Agutu et al., 2017; Agutu et al., 2020)



Data
Drought occurrence

(a) Ethiopia (b) Malawi

Figure: Number of households affected by drought and flood over time in Ethiopia and Malawi

• One major drought affecting a large proportion of the population occurred just
before the last year of the survey

• No major drought occurred between the first wave of the survey to the last wave of
the survey
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Empirical approach
Framework

• Exploit the time and spatial variability of droughts in Ethiopia and Malawi

• Framework of the Quantile Treatment Effect (QTT) of Callaway and Li (2019)

• Framework:
→ Three periods: t, t - 1 and t - 2
→ Individuals have potential outcomes in treated (D=1) and untreated (D=0) group: YDt

Quantile treatment effect

QTT (τ) = F−1
Y1t|D=1(τ)− F−1

Y0t|D=1(τ)



QTT under Copula Stability Assumption
Assumptions

Distributional difference-in-differences assumption

∆Y0t ⨿D

Generalize the common parallel trend assumption to the entire distribution

Copula stability assumption

C∆Y0t|D=1,∆Y0t−1|D=1(., .) = C∆Y0t−1|D=1,∆Y0t−2|D=1(., .)

Income mobility is constant over time

• Assumptions are tested in pre-treatment periods
→ Kolmogorov-Smirnov test for the Distributional Difference-in-Differences assumption
→ Evolution of the period-over-period income dependence (Spearman’s rho) for the Copula

Stability assumption



QTT under Copula Stability Assumption
Results

Estimation of counterfactual distribution

Main result of Callaway and Li (2019):

F̂Y0t|D=1(y) =∑
i∈D 1{F̂−1

∆Yt|D=0(F̂∆Yt−1|D=1(∆Yit−1)) ≤ y − F̂−1
Yt−1|D=1(F̂Yt−2|D=1(Yit−2))}

• The result can be extended considering a Conditional Difference-in-Differences
assumption
→ Estimation of the QTT relies on a first-step estimation of a propensity score
→ The Hilbert-Schmidt independence criterion cluster permutation conditional

independence test is used



Dynamic panel model on treated group
Motivation

The treatment might impact the control group

• Threshold definition problem

• Spillover effects impacting my control group
→ Local food markets (Brown and Kshirsagar, 2015)
→ Migration (Becerra-Valbuena, 2021)
→ Energy production (hydroelectricity) (Nhamo et al., 2018)

• Use of the method of Chernozhukov et al. (2013) to infer counterfactual distribution
with past observations of the treatment group



Dynamic panel model on treated group
Model description

• The counterfactual distribution is computed with a predictive model of distribution
regression built on period t− 1

• Covariables include human capital (education), natural capital (water proximity and
forest cover), social capital (female household head, nb of household members),
and physical capital (rural household, access to market)

• Placebo test is used on the pre-treatment period to test the predictive performance
of the model

Distribution regression model

For a range of possible income values w:

P (Y1t−1|D = 1 ≤ w) = β0 + αY1t−2 + γX1t−1 + ϵ1t−1
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Results
QTE on Copula stability assumption

(a) Ethiopia (b) Malawi

Figure: Quantile treatment effect of income per capita



Results
Distributional difference-in-differences assumption

(a) Ethiopia (b) Malawi

Figure: Distribution of change in the log of per-capita income for the treated and the control group
between t - 1 and t - 2



Results
Copula stability assumption

(a) Treatment group (b) Control group

Figure: Evolution of the year-over-year income dependence (Spearman’s rho) in Ethiopia and
Malawi for the control and treatment group in all panel waves



Results
QTE with counterfactual inference

(a) Ethiopia (b) Malawi

Figure: Counterfactual analysis to build quantile treatment effect of income per capita



Results
QTE with counterfactual inference

(a) Ethiopia (b) Malawi

Figure: Counterfactual analysis to build quantile treatment effect of income per capita of placebo
for period t - 1
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Conclusion
Discussion

• The quantile treatment effect, as defined, is not strictly causal. Causality comes
from the fact that income mobility is sufficiently weak and constant over time in
both groups

• Inequalities increase in the short term, but a similar analysis could be done in the
long term, and the effect on inequalities may be even stronger (Little et al., 2006)



Conclusion
Public policy recommendation

• Public policies implemented to reduce household vulnerabilities to shocks or help
them to recover from shocks must be primarily targeted at low-income households

• At the micro-level, low-income households which often are very low-carbon emitters,
are more impacted by climate change drawbacks (as droughts will be more frequent
and intense)

• It called for a more substantial revenue distribution into southern countries
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