Inequalities and carbon pricing

Marc Fleurbaey

A tension (the Green New Deal dilemma)

- Priority for the worse-off vs. caring for the environment
- The two principles clash when
 - the future is richer
 - environmental policy benefits the future
- Reducing the tension:
 - inequalities in the future
 - fair burden sharing now
 - co-benefits

Inequality, climate impacts on the future poor, and carbon prices

Francis Dennig^{a,1}, Mark B. Budolfson^a, Marc Fleurbaey^a, Asher Siebert^b, and Robert H. Socolow^c

^aWoodrow Wilson School of Public and International Affairs-University Center for Human Values, Princeton University, Princeton, NJ 08 Environmental Institute (PEI), Princeton University, Princeton, NJ 08544; and ^cMechanical and Aerospace Engineering-PEI, Princeton Uni NJ 08544

Edited by Kenneth J. Arrow, Stanford University, Stanford, CA, and approved November 04, 2015 (received for review July 19, 2015)

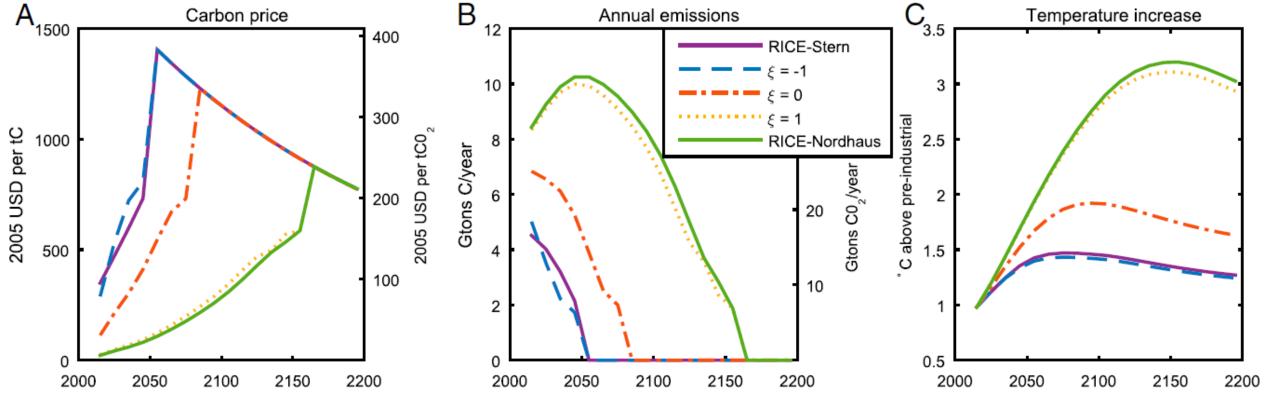
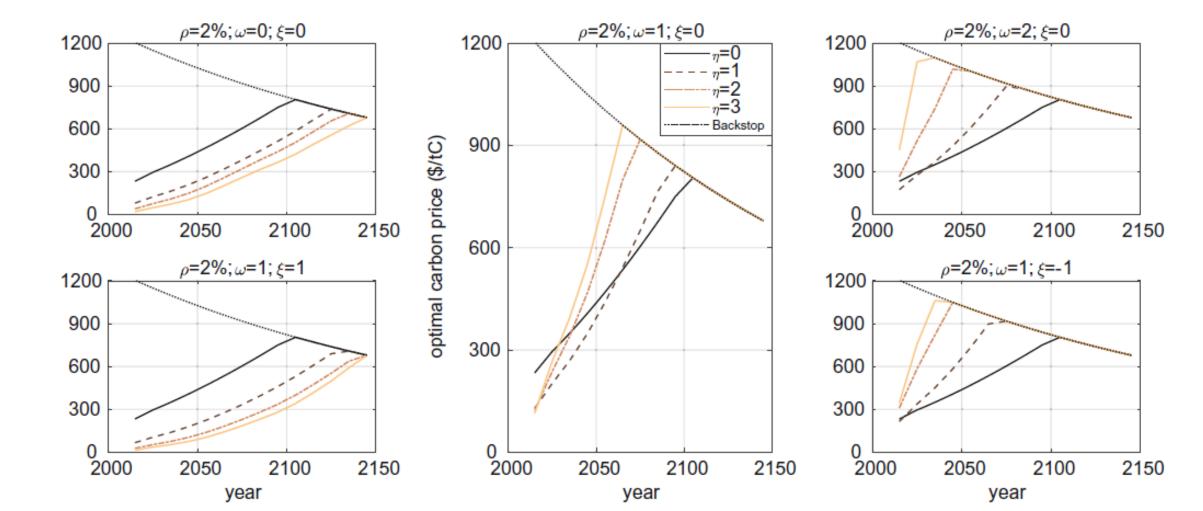
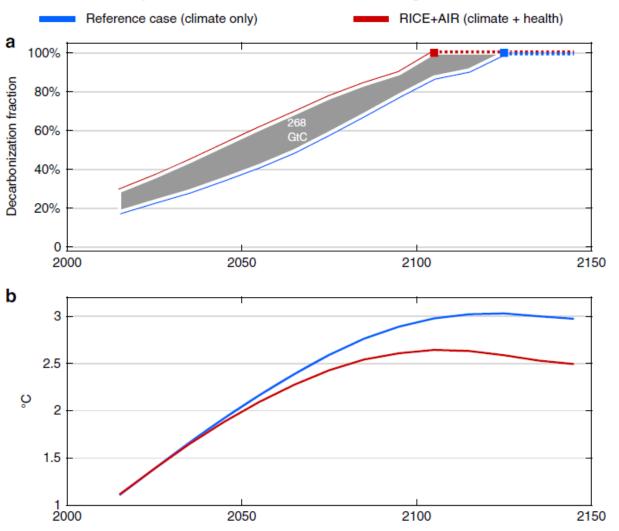
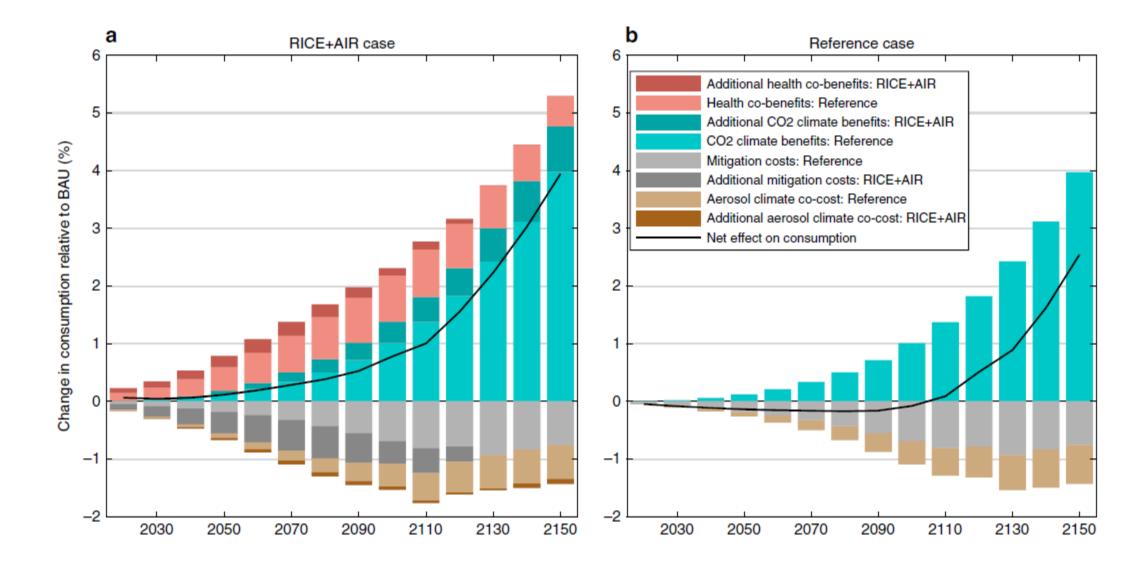



Fig. 1. The three panels plot model outcomes in NICE for different values of the income elasticity of damage: $\xi = 1, 0, \text{ and } - 1$. Also shown are the optimal policies in our implementation of RICE for the (different) specific assumptions about discounting endorsed by Nordhaus vs. Stern. RICE-Nordhaus and $\xi = 1$ are similar, as are RICE-Stern and $\xi = -1$. (A) Optimal policy (carbon price trajectories). The descending line eventually joined by all price trajectories is the assumed trajectory of the maximum of the regional backstop prices. (B) The total emission rates for these policies. (C) The corresponding atmospheric temperatures.

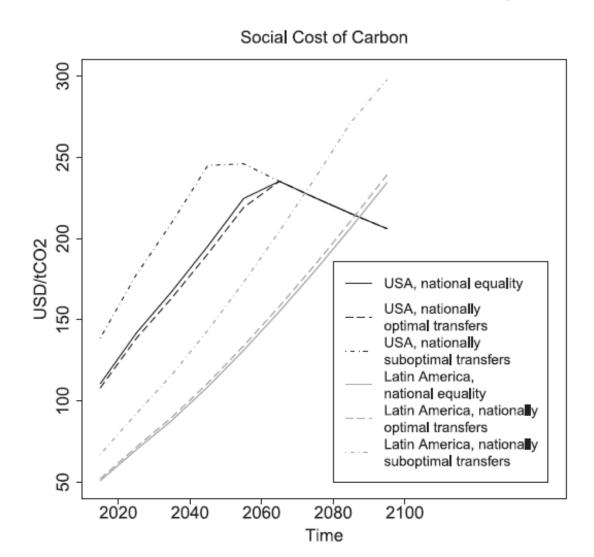
The comparative importance for optimal climate policy of discounting, inequalities and catastrophes


Mark Budolfson ¹ • Francis Dennig² • Marc Fleurbaey³ • Asher Siebert⁴ • Robert H. Socolow⁵



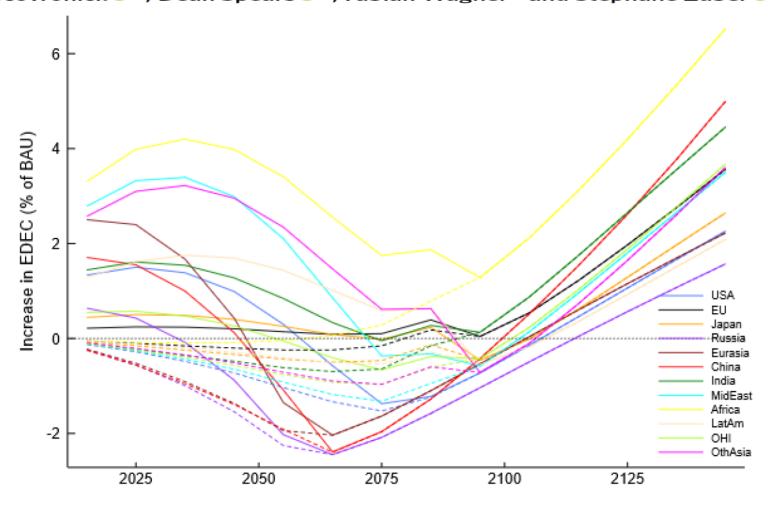
The impact of human health co-benefits on evaluations of global climate policy

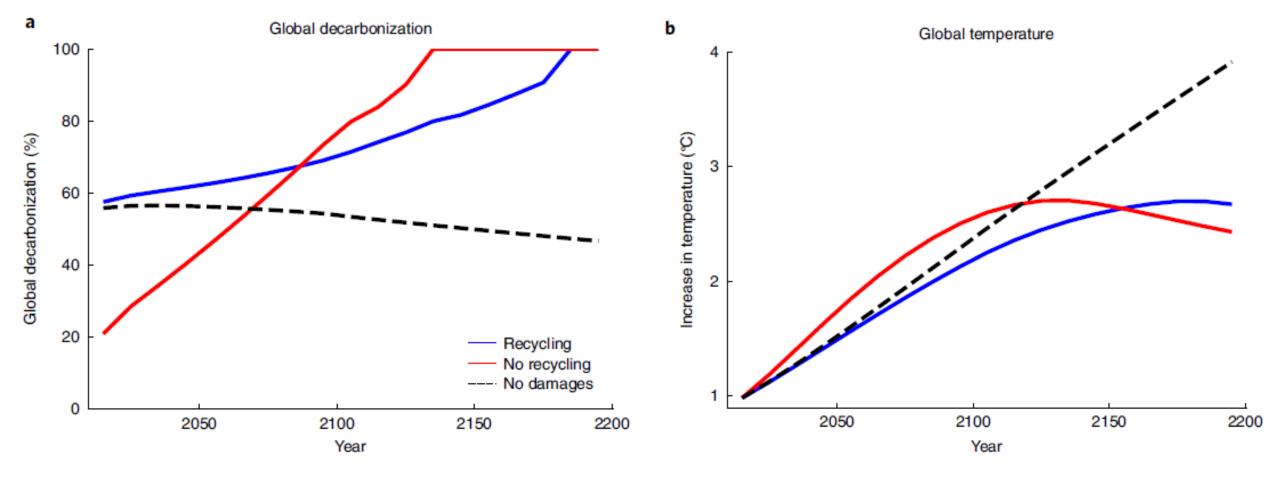
Noah Scovronick^{1,2,17}, Mark Budolfson ^{3,4,17}, Francis Dennig^{5,6,17}, Frank Errickson^{7,17}, Marc Fleurbaey^{2,8}, Wei Peng⁹, Robert H. Socolow¹⁰, Dean Spears^{11,12,13,14} & Fabian Wagner^{2,15,16,17}



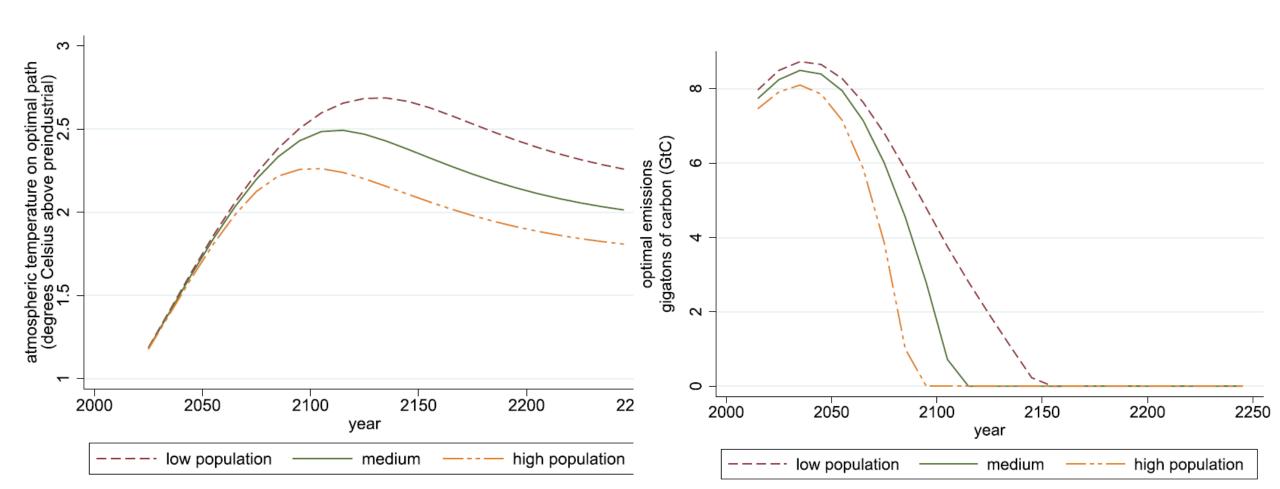
Journal of Environmental Economics and Management 107 (2021) 102450

The social cost of carbon and inequality: When local redistribution shapes global carbon prices


Ulrike Kornek a,b,*, David Klenert c, Ottmar Edenhofer a,d,e, Marc Fleurbaey f



Climate action with revenue recycling has benefits for poverty, inequality and well-being


Mark Budolfson¹¹², Francis Dennig¹, Frank Errickson^{3,4}, Simon Feindt^{5,6}, Maddalena Ferranna⁷, Marc Fleurbaey⁸, David Klenert⁹, Ulrike Kornek^{5,10}, Kevin Kuruc¹¹, Aurélie Méjean¹², Wei Peng¹³, Noah Scovronick¹⁴, Dean Spears¹⁵, Fabian Wagner¹⁶ and Stéphane Zuber¹⁷

Optimal Climate Policy and the Future of World Economic Development

Mark Budolfson, Francis Dennig, Marc Fleurbaey, Noah Scovronick, Asher Siebert, Dean Spears, and Fabian Wagner

Catastrophic climate change, population ethics and intergenerational equity

Aurélie Méjean¹ • Antonin Pottier² • Marc Fleurbaey³ • Stéphane Zuber³

	η									$b \text{ (per } {}^{\circ}C)$
0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	
2°C	2°C	2°C	2°C	2°C	2°C	2°C	2°C	2°C	2°C	$[10^{-2}; 10^{-1}]$
$2^{\circ}\mathrm{C}$	2°C	2°C	2°C	2°C	2°C	2°C	2°C	2°C	2°C	10^{-3}
$2^{\circ}\mathrm{C}$	2°C	2°C	2°C	2°C	2°C	2°C	2°C	2°C	2°C	10^{-4}
$2^{\circ}\mathrm{C}$	$2^{\circ}\mathrm{C}$	2°C	3°C	10^{-5}						
$2^{\circ}\mathrm{C}$	2°C	3°C	$[8.10^{-6}; 9.10^{-6}]$							
$2^{\circ}\mathrm{C}$	$2^{\circ}\mathrm{C}$	3°C	$[4.10^{-6}; 7.10^{-6}]$							
$2^{\circ}\mathrm{C}$	$2^{\circ}\mathrm{C}$	3°C	3.10^{-6}							
$2^{\circ}\mathrm{C}$	2°C	3°C	3°C	3°C	3°C	3°C	BAU	BAU	BAU	2.10^{-6}
$2^{\circ}\mathrm{C}$	2°C	3°C	3°C	3°C	BAU	BAU	BAU	BAU	BAU	10^{-6}
$2^{\circ}\mathrm{C}$	2°C	3°C	3°C	3°C	BAU	BAU	BAU	BAU	BAU	10^{-7}
2°C	2°C	3°C	3°C	3°C	BAU	BAU	BAU	BAU	BAU	0

(a)
$$\beta = 0$$

η										$b \text{ (per } {}^{\circ}C)$	
	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	
	2°C	2°C	2°C	2°C	2°C	2°C	2°C	2°C	2°C	2°C	$[10^{-2};10^{-1}]$
	$2^{\circ}\mathrm{C}$	$2^{\circ}\mathrm{C}$	2°C	$[4.10^{-6}; 10^{-3}]$							
	$2^{\circ}\mathrm{C}$	$2^{\circ}\mathrm{C}$	3°C	3°C	2°C	2°C	2°C	2°C	2°C	2°C	3.10^{-6}
	$2^{\circ}\mathrm{C}$	$2^{\circ}\mathrm{C}$	3°C	3°C	3°C	2°C	2°C	2°C	2°C	2°C	2.10^{-6}
ı	$2^{\circ}\mathrm{C}$	$2^{\circ}\mathrm{C}$	3°C	3°C	3°C	2°C	2°C	2°C	2°C	2°C	10^{-6}
ı	$2^{\circ}\mathrm{C}$	$2^{\circ}\mathrm{C}$	3°C	3°C	3°C	3°C	3°C	3°C	2°C	2°C	10^{-7}
	2°C	2°C	3°C	3°C	3°C	BAU	BAU	BAU	BAU	BAU	0
(b) $\beta = 0.1$											h (nor °C)
η										$b \text{ (per } {}^{\circ}C)$	
	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	
	2°C	2°C	2°C	2°C	2°C	2°C	2°C	2°C	2°C	2°C	$[10^{-2}; 10^{-1}]$
	$2^{\circ}\mathrm{C}$	$2^{\circ}\mathrm{C}$	2°C	$[10^{-6}; 10^{-3}]$							
	$2^{\circ}\mathrm{C}$	$2^{\circ}\mathrm{C}$	3°C	3°C	2°C	2°C	2°C	2°C	2°C	2°C	10^{-7}
	$2^{\circ}\mathrm{C}$	2°C	3°C	3°C	3°C	BAU	BAU	BAU	BAU	BAU	0

(c)
$$\beta = 1.0$$

social outcome preferred due to higher consumption

social outcome preferred due to lower risk

social outcome preferred due to higher consumption and lower risk