Motivation	Asymmetric Model	Equity Model	Data	Empirical analysis
00000				

Complications in Cooperating when Players are Asymmetric: Theory and Experimental Evidence

Charles F. Mason

H.A. "Dave" True, Jr. Chair in Petroleum and Natural Gas Economics, Department of Economics, University of Wyoming

18 November, 2028

Evennela 1		u. 1000a		
•00000				
Motivation	Asymmetric Model	Equity Model	Data	Empirical analysis

Example 1: East Texas, early 1930s

challenging conditions for oil firms

- firms of differing sizes
- ▷ weak demand, "over supply"
- > attempts to restrict production ("dancing partners") invalidated by courts
- Majors lobby for quota system to prop up prices
 - small firms resist
 - > regular violations of quotas, typically by independents
 - leads to movement for "field unitization"
 - one operator, firms allocated shares of field production
 - moderate success
 - ongoing resistance from small firms

Motivation 00000	Asymmetric Model	Equity Model	Data 000000	Empirical analysis
Example 2:	OPEC, early 19	980s		

	<u>19</u>	982	<u>1983</u>		
country	quota	output	quota	output	
Saudi Arabia	7650	6961	5000	4951	
Iran	1200	2397	2400	2454	

00000				
Motivation	Asymmetric Model	Equity Model	Data	Empirical analysis

Example 2: OPEC, early 1980s

	<u>19</u>	82	<u>1983</u>		
country	quota	output	quota	output	
Saudi Arabia	7650	6961	5000	4951	
Iran	1200	2397	2400	2454	
Venezuela	1500	1954	1675	1852	

00000					
Motivation		Asymmetric Model	Equity Model	Data	Empirical analysis

Example 2: OPEC, early 1980s

	19	<u>982</u>	19	<u>83</u>
country	quota	output	quota	output
Saudi Arabia	7650	6961	5000	4951
Iran	1200	2397	2400	2454
Venezuela	1500	1954	1675	1852

- Iran cheats on its quota in 1982
 - ▷ then gets a bigger quota in 1983
- Venezuela cheats on its quota in 1982
 - ▷ then gets a bigger quota in 1983
 - \triangleright cheats again in 1983
- Saudi's quota is reduced from 1982 to 1983 (and again in 1984)
- after prices collapse in 1986 quota system is formalized
 - o quotas based on reserves, capacity
 - limited ability to prop up prices

Motivation 00●000	Asymmetric Model	Equity Model	Data 000000	Empirical analysis
Major the	emes: IO			

- Forming a cooperative agreement is more difficult when players are asymmetric
 - differences in technology
 - ▷ differences in quality of inputs
 - ▷ boils down to differences in costs
- smaller (higher cost) firm more likely to defect
- Iltimate effect: asymmetric cartels appear to be largely ineffective

Motivation		Asymmetric	Model	Equity Model	Data	Empirical analy	sis
000000							
_	~			 			

Example 3: Climate negotiations

Kyoto: emission reductions from Annex I (developed) countries only

- motivated by equity concerns
- ▷ pushback from some large countries
- Copenhagen: bilateral discussions between US and China as means of pushing discussion forward
- Paris agreement: INDCs
 - ▷ all countries propose reductions
 - sense that much of the heavy lifting is done by developed ("large"?) countries

Ouestiene	, alimata apali	aatian		
000000	0000000	000	000000	000000
Motivation	Asymmetric Model	Equity Model	Data	Empirical analysis

Questions: climate application

Is forming an IEA more difficult when countries are asymmetric?

- ▷ differences in technical skills
- ▷ differences in assets
- b differences in exposure to climate damages
- can boil down to differences in abatement costs (*i.e.*, benefits from emissions)
- Ismaller (lower net benefit) country more likely to defect?
- Iltimate effect: asymmetric IEAs appear to be largely ineffective?

Motivation 00000●	Asymmetric Model	Equity Model	Data 000000	Empirical analysis
My goals ir	this paper			

To investigate these conjectures

- ▷ what do equilibria look like in asymmetric games?
 - without social considerations (baseline)
 - with social considerations
- ▷ which type of player seems more likely to be sticking point?
- analyze experimental evidence

Motivation 000000	Asymmetric Model ●000000	Equity Model	Data 000000	Empirical analysis	
Repeated game – emissions					

Players: countries 1, 2

- $\triangleright e_i = \text{country } i$'s emissions; $E = e_1 + e_2 = \text{global emissions}$
- asymmetric emission benefits / abatement costs
 - net benefit: $b_i = MB_i MC_i$
 - $b_1 b_2 \equiv c \ge 0$ (symmetric: c = 0, asymmetric: c > 0)
- common marginal damage from emissions, dE

▷ payoff for firm *i* in period t: $\pi_{it} = [b_i - dE_t]e_{it} = [b_i - de_{jt}]e_{it} - d(e_{it})^2$

- \blacktriangleright common discount factor δ
- one-shot Nash equilibrium emissions: $e_i^N = \frac{2b_i b_j}{3d}$

Suppose each country plays the grim strategy:

choose e_i^c if both players have chosen e_k^c in all previous periods $t \ge 0$ otherwise choose e_i^N

Motivation 000000	Asymmetric Model ○●○○○○○	Equity Model	Data 000000	Empirical analysis
Repeate	ed play: Cournot			

- Players: firms 1, 2
 - ▷ each firm has constant *MC*
 - $MC_1 = 0, MC_2 = c$ (symmetric: c = 0, asymmetric: c > 0)
- ▶ homogenous good, linear inverse demand: p = a bQ
 - \triangleright payoff for firm *i* in period t:

$$\pi_{it} = [a - c_i - bQ]q_{it} = [a - c_i - bq_{jt}]q_{it} - b(q_{it})^2$$

- common discount factor δ
- one-shot Cournot output:

$$q_i^N = rac{a - 2c_1 + c_j}{3b}; \quad \pi^N = b(q_i^N)^2$$

Quasi-cooperative outcome						
	000000					
Motivation	Asymmetric Model	Equity Model	Data	Empirical analysis		

Suppose each firm plays the grim strategy:

choose x_i^c if both players have chosen x^c in all previous periods $t \ge 0$ otherwise choose x_i^N

two subgames of note:

subgames where no player has deviated in any previous period

- ${f 2}$ subgames where ${f \geq}$ 1 player has deviated in some previous period
- subgame class 2 satisfied trivially
- note that the entire game falls into subgame class 1
 - demonstrating action rules yield a NE implies SPNE

Reneate	od dame analyze	he		
Motivation 000000	Asymmetric Model	Equity Model	Data 000000	Empirical analysis

Suppose player j uses grim strategy

- ▷ if player i follows grim strategy she will pick x_i^c ,
 - earns payoffs of π^c_i this period, return to same subgame next period
 - hence payoffs of π^c_i next period, and so the period after, and after that...
- ▷ therefore the PDV of following the grim strategy is $V_i^c = \frac{\pi_i^c}{1-\delta}$
- ▷ if deviate to e_i^d , get one-time gain of π_i^d , Cournot/Nash profits π_i^N thereafter
- ▷ so PDV of deviation is $V_i^d = \pi_i^d + \frac{\delta}{1-\delta}\pi_i^N$

• require $V_i^c \ge V_i^d$ (incentive constraint)

common to focus on most cooperative regime:

$$\pi_i^c = (1-\delta)\pi_i^d + \delta\pi_i^N$$

▶ in LQ structure, $V_i^c = V_i^d$ induces quadratic relation b/w x_i^c and x_i^c

Motivation 000000	Asymmetric Model	Equity Model	Data 000000	Empirical analysis
Penal code strategy				

- In period 1, and t > 1, if neither firm defected in period t − 1, firm i = 1,2 chooses the (cooperative action) x_i^c
- Should one player defect in period *t*, players switch to the punishment phase in period *t*+1. ["repentance" action, *x_k^r*; "punishment" action, *x_m^p*]
 k is deviator in *t*, and *m* is punisher
- If both players carry through with the punishment phase in period τ, play reverts to the cooperative phase in τ + 1.

Motivation 000000	Asymmetric Model	Equity Model	Data 000000	Empirical analysis
Penal code	strategy			

- In period 1, and t > 1, if neither firm defected in period t − 1, firm i = 1,2 chooses the (cooperative action) x_i^c
- Should one player defect in period *t*, players switch to the punishment phase in period *t*+1. ["repentance" action, *x_k^r*; "punishment" action, *x_m^p*]
 k is deviator in *t*, and *m* is punisher
- If both players carry through with the punishment phase in period τ, play reverts to the cooperative phase in τ + 1.
- conditions for SPNE:

$$\begin{split} &\pi_{i}^{c}(x_{j}^{c})(1+\delta) \geq \pi_{i}^{d}(x_{j}^{c}) + \delta\pi_{i}^{r}(x_{i}^{r}, x_{j}^{p}); \\ &\pi_{i}^{r}(x_{i}^{r}, x_{j}^{p}) + \delta\pi_{i}^{c}(x_{j}^{c}) \geq \pi_{i}^{d}(x_{j}^{p}) + \delta\pi_{i}^{r}(x_{i}^{r}, x_{j}^{p}); \\ &\pi_{i}^{p}(x_{i}^{p}, x_{j}^{r}) + \delta\pi_{i}^{c}(x_{j}^{c}) \geq \pi_{i}^{d}(x_{j}^{r}) + \delta\pi_{i}^{r}(x_{i}^{r}, x_{j}^{p}). \end{split}$$

Motivation 000000	Asymmetric Model 0000●00	Equity Model	Data 000000	Empirical analysis
Penal code	strategy			

- In period 1, and t > 1, if neither firm defected in period t − 1, firm i = 1,2 chooses the (cooperative action) x_i^c
- Should one player defect in period *t*, players switch to the punishment phase in period *t* + 1. ["repentance" action, *x_k^r*; "punishment" action, *x_m^p*]
 k is deviator in *t*, and *m* is punisher
- If both players carry through with the punishment phase in period τ, play reverts to the cooperative phase in τ + 1.
- conditions for SPNE:

$$\begin{split} &\pi_{i}^{c}(x_{j}^{c})(1+\delta) \geq \pi_{i}^{d}(x_{j}^{c}) + \delta\pi_{i}^{r}(x_{i}^{r}, x_{j}^{p}); \\ &\pi_{i}^{r}(x_{i}^{r}, x_{j}^{p}) + \delta\pi_{i}^{c}(x_{j}^{c}) \geq \pi_{i}^{d}(x_{j}^{p}) + \delta\pi_{i}^{r}(x_{i}^{r}, x_{j}^{p}); \\ &\pi_{i}^{p}(x_{i}^{p}, x_{j}^{r}) + \delta\pi_{i}^{c}(x_{j}^{c}) \geq \pi_{i}^{d}(x_{j}^{r}) + \delta\pi_{i}^{r}(x_{i}^{r}, x_{j}^{p}). \end{split}$$

$$\blacktriangleright \Leftrightarrow \underline{\delta} = \frac{\Delta_1^d(x_2^z)}{\Gamma(x_1^c, x_2^c, x_1^r, x_2^p)} = \frac{\Delta_2^d(x_1^z)}{\Gamma(x_1^c, x_2^c, x_2^r, x_1^p)}, \quad z = c, r, p,$$

 $\triangleright \Delta_i^d(x_i^z)$ is player is gain from defecting, $\Gamma_i = \pi_i^c(x_1^c, x_2^c) - \pi_i^r(x_i^r, x_j^p)$

Motivation 000000	Asymmetric Model	Equity Model	Data 000000	Empirical analysis

Collusive possibilities: symmetric players

maximally effective cartel: equal (pro-rata) output reductions

 maximally effective IEA: larger than equal (pro-rata) output reduction for H player

implies greater share of cooperative gains goes to larger country

- > will smaller country accept smaller piece of pie?
- analogy to ultimatum game?

A model with equity concerns						
Motivation 000000	Asymmetric Model	Equity Model	Data 000000	Empirical analysis		

 $\blacktriangleright\,$ denote large (small) player as 1 (2) $\Rightarrow \pi_1 > \pi_2$

suppose

$$\pi_i=(lpha_i-X)x_i, i=1,2$$
 $U_i(\pi_i,\pi_j)=\pi_i-\gamma|\pi_i-\pi_j|, \,\,\, ext{with}\,\,\gamma>0$

then the players' utilities can be written as

$$U_1=(1-\gamma)\pi_1+\gamma\pi_2; \quad U_2=(1+\gamma)\pi_2-\gamma\pi_1$$

 \Rightarrow reaction functions shift to

$$egin{aligned} x_1 &= rac{lpha_1}{2} - \left(rac{1}{2(1-\gamma)}
ight) x_2 & ext{(pivots in)} \ x_2 &= rac{lpha_2}{2} - \left(rac{1}{2(1+\gamma)}
ight) x_1 & ext{(pivots out)} \end{aligned}$$

pushes NE towards smaller x₁, bigger x₂

Cooperative possibilities: asymmetric players, equity

- similar effect is induced on quasi-cooperative play
 - ▷ incentive constraints shift left (and slightly up)
 - > substantially improved prospects for smaller player

Motivation 000000	Asymmetric Model	Equity Model ⊙⊙●	Data 000000	Empirical analysis
Theory res	ults			

Generalization of equity model:

$$U_i(\pi_i,\pi_j)=\pi_i+\lambda_i\pi_j,$$

where we expect $\lambda_2 < 0 < \lambda_1$

Proposition: Introducing social preferences, via $\lambda_2 < 0$, tightens firm 2's incentive constraint when firms play the grim strategy or penal code strategy.

Motivation 000000	Asymmetric Model	Equity Model ⊙⊙●	Data 000000	Empirical analysis
Theory res	ults			

Generalization of equity model:

$$U_i(\pi_i,\pi_j)=\pi_i+\lambda_i\pi_j,$$

where we expect $\lambda_2 < 0 < \lambda_1$

Proposition: Introducing social preferences, via $\lambda_2 < 0$, tightens firm 2's incentive constraint when firms play the grim strategy or penal code strategy.

Proposition: Introducing social preferences via $\lambda_1 > 0$ loosens firm 1's incentive constraint when firms play the grim strategy or penal code strategy.

Motivation 000000	Asymmetric Model	Equity Model	Data ●00000	Empirical analysis
Experiment	tal design			

- two market structures, each has $a = 4, b = \frac{1}{24}$
 - **()** symmetric design: $c_i = 0$
 - **2** asymmetric design: $c_1 = 0, c_2 = \frac{1}{2}$
- ► Cournot/Nash equilibrium outputs: $q_i^N = 32$ (symmetric); $q_1^N = 36, q_2^N = 24$ (asymmetric)
- profits presented to subjects via payoff tables
 - > profit from various (integer) output combinations shown in matrix form
- all experimental sessions ran at least 35 periods
 - \triangleright random termination rule (continuation p = .8)
- six experimental sessions
 - b three symmetric sessions: 38 subjects (19 pairs) made choices for between 35 and 46 periods
 - b three asymmetric sessions: 50 subjects (25 pairs) made choices for between for 36 to 46 periods

Motivation 000000	Asymmetric Model	Equity Model	Data o●oooo	Empirical analysis

Experimental results 1: symmetric firms

substantial reductions below Cournot/Nash eq'm output

Motivation	Asymmetric Model	Equity Model	Data	Empirical analysis
			000000	

Experimental results 2: symmetric vs. asymmetric (L)

asymmetric markets far less collusive than symmetric markets

> virtually no reduction below Cournot/Nash eq'm output

Motivation 000000	Asymmetric Model	Equity Model	Data ooo●oo	Empirical analysis

Experimental results 3: symmetric vs. asymmetric (H)

Motivation 000000	ivation Asymmetric Model		Equity Model		Data 0000●0	Empirical analysis	

Experimental results 4A: asymmetric firms (levels)

Motivation	Asymmetric Model	Equity Model	Data	Empirical analysis
			000000	

Experimental results 4B: asymmetric firms (pct. C-N)

- theory: H players should accept larger than pro-rata output reductions
- results: inconsistent with these predictions
 - > L players: substantial reductions below Cournot/Nash eq'm output
 - H players: one-shot best-reply to L player output?

Asymmetric Cooperation & Equity

Motivation 000000	Asymmetric Model	Equity Model	Data 000000	Empirical analysis
Econometric model				

- unbalanced panel
 - > over-weighting observations from sessions that ran longer?
- truncate at period $35 \Rightarrow$ create balanced panel
- allow for play using "dynamic reaction functions"

 $q_{it} = \varphi_{0h} + \mu_{1h}q_{it-1} + \mu_{2h}q_{it-2} + \mu_{3h}q_{it-3} + \nu_{1h}q_{jt-1} + \nu_{2h}q_{jt-2} + \nu_{3h}q_{jt-3}$

- where h = L (respectively, H) if player *i* is low (respectively, high) cost
- k indexes the players' subject pair

compactly:

$$q_{it} = \phi_{i0} + \sum_{n=1}^{3} \mu_{nh} q_{i,t-n} + \sum_{n=1}^{3} \nu_{nh} q_{j,t-n} + \omega_{kt} + \eta_{it}$$

- ▷ individual-specific fixed effects (via ϕ_{i0})
- ▷ pair-specific variance (*i.e.*, random effects, via ω_{kt}^2)
- \triangleright individual-specific residual, η_{it} , is assumed to be white noise
- estimate w/robust standard errors (clustered at the subject pair level)

Motivation 000000	Asymmetric Model	Equity Model	Data 000000	Empirical analysis
Long-run ou	utcomes			

► suppose subjects in asymmetric structure play (q_L^*, q_H^*) for \geq 4 periods

$$q_{L}^{*} = \varphi_{0L} + \mu_{1L}q_{L}^{*} + \mu_{2L}q_{L}^{*} + \mu_{3L}q_{L}^{*} + \nu_{1L}q_{H}^{*} + \nu_{2L}q_{H}^{*} + \nu_{3L}q_{H}^{*}, \qquad (1)$$

$$q_{H}^{*} = \varphi_{0H} + \mu_{1H}q_{H}^{*} + \mu_{2H}q_{H}^{*} + \mu_{3H}q_{H}^{*} + \nu_{1H}q_{L}^{*} + \nu_{2H}q_{L}^{*} + \nu_{3H}q_{L}^{*}.$$
 (2)

• define
$$\tilde{\mu}_h = \mu_{1h} + \mu_{2h} + \mu_{3h}$$
; $\tilde{\nu}_h = \nu_{1h} + \nu_{2h} + \nu_{3h}$, $h + L$, H

solving the system of equations (1)–(2) yields:

$$q_{L}^{*} = \frac{\phi_{0L}(1 - \tilde{\mu}_{H}) + \tilde{\nu}_{L}\phi_{0H}}{(1 - \tilde{\mu}_{L})(1 - \tilde{\mu}_{H}) - \tilde{\nu}_{L}\tilde{\nu}_{H}},$$

$$q_{H}^{*} = \frac{\phi_{0L}\tilde{\nu}_{H} + \phi_{0H}(1 - \tilde{\mu}_{L})}{(1 - \tilde{\mu}_{L})(1 - \tilde{\mu}_{H}) - \tilde{\nu}_{L}\tilde{\nu}_{H}}.$$
(3)

interpret these as equilibrium (steady state) outputs

Deeree	ion roquito noto	tion		
				000000
Motivation	Asymmetric Model	Equity Model	Data	Empirical analysis

Regression results notation

- ▶ within a given treatment (LL, LH, HH) create vectors for each player *i*:
 - ▷ x_{ht-s} = i's choice in period t-s, s = 1, 2, 3
 - ▷ y_{ht-s} = i's rival's choice in period t-s, s = 1, 2, 3
- stack these vectors to get regressors
 - \triangleright x_{h1} is the vector for once-lagged own choices by h = L, H subjects
 - \triangleright y_{h1} is the vector for once-lagged rival's choices by h = L, H subjects
 - similarly for twice-, thrice-lagged choices

Motivation	Asymmet	ric Model E	zquity Model	Data 000000	Empirical analysis	
Regression Results						
	reg'r	LH (N=1600)	LL (N=1216)	HH (N=1386)		
	<i>x</i> _{L1}	-0.264***	-0.327***		-	
	<i>x</i> _{L2}	0.151	0.026			
	<i>x</i> _{L3}	-0.04	-0.131***			
	Y L1	0.253**	0.210***			
	YL2	-0.033	-0.022			
	У LЗ	0.075	0.103**			
	<i>X</i> _{<i>H</i>1}	-0.05		0.103		
	X _{H2}	0.1		0.502***		
	x _{H3}	-0.059		-0.048		
	У Н1	0.182***		0.101		
	Ун2	-0.141***		-0.003		
	Унз	0.029		0.044**		
	constant	21.064***	42.757***	7.328***		
	Q_L^*	33.21	29.22	_		
	Q_H^*	24.51	_	24.35		

Asymmetric Cooperation & Equity

Mason – CEC

18 November, 2028 26/28

Motivation 000000	Asymmetric Model	Equity Model	Data 000000	Empirical analysis 0000●0
Inferring γ				

- suppose these values are proportional to NE (based on some value of γ)
 as if pro-rata reductions
- gives a relation $f(\gamma)$ for Q_L/Q_H
- compare to $R \equiv Q_L^*/Q_H^* \Rightarrow \gamma^*$
- then infer $\mu^* = Q_i^* / Q_i^N(\gamma^*)$

Motivation 000000	Asymmetric Model	Equity Model	Data 000000	Empirical analysis 0000●0
Inferring γ				

- suppose these values are proportional to NE (based on some value of γ)
 as if pro-rata reductions
- gives a relation $f(\gamma)$ for Q_L/Q_H
- compare to $R \equiv Q_L^*/Q_H^* \Rightarrow \gamma^*$
- then infer $\mu^* = Q_i^* / Q_i^N(\gamma^*)$

Motivation 000000	Asymmetric Model	Equity Model	Data 000000	Empirical analysis
Conclusion				

- empirical evidence suggests quasi-cooperative play is undercut when players' payoffs are asymmetric
 - > commonly, 'smaller' players are source of friction
- in quasi-cooperative equilibrium of conventional model, gains from cooperation to large player are commonly less than for small player
 - > seems incompatible with empirical results above
- one possible resolution is that players exhibit equity concerns
- pushes one-shot equilibrium towards larger actions for small player (vs. standard model)
- enlarges scope for small player to benefit in quasi-cooperative outcome of repeated game...

Motivation 000000	Asymmetric Model	Equity Model	Data 000000	Empirical analysis
Conclusion				

- empirical evidence suggests quasi-cooperative play is undercut when players' payoffs are asymmetric
 - > commonly, 'smaller' players are source of friction
- in quasi-cooperative equilibrium of conventional model, gains from cooperation to large player are commonly less than for small player
 - > seems incompatible with empirical results above
- one possible resolution is that players exhibit equity concerns
- pushes one-shot equilibrium towards larger actions for small player (vs. standard model)
- enlarges scope for small player to benefit in quasi-cooperative outcome of repeated game...

but...

Motivation 000000	Asymmetric Model	Equity Model	Data 000000	Empirical analysis
Conclusion				

- empirical evidence suggests quasi-cooperative play is undercut when players' payoffs are asymmetric
 - > commonly, 'smaller' players are source of friction
- in quasi-cooperative equilibrium of conventional model, gains from cooperation to large player are commonly less than for small player
 - > seems incompatible with empirical results above
- one possible resolution is that players exhibit equity concerns
- pushes one-shot equilibrium towards larger actions for small player (vs. standard model)
- enlarges scope for small player to benefit in quasi-cooperative outcome of repeated game...

but...

- estimated long-run choices can be inverted to give estimate of $\gamma = .0492$
- based on that estimate, pro-rata reductions from NE are only about 4%