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Executive summary 

 

Decarbonizing energy, including through the deployment of renewable technologies, is a priority to 

mitigate climate change. In this context, the promotion of green innovation constitutes an important 

public policy lever, contributing to reducing the cost of these technologies. There has been rich 

economic literature, both theoretical and empirical, about the relationships between innovation, public 

policy and the energy transition. 

The model of environmental directed technical change by Acemoglu, Aghion, Bursztyn and Hemous 

(hereafter AABH) has led to abundant research. It describes the production of a unique final good 

from two inputs, a clean one and a dirty one. The authors show the existence of a virtuous path 

dependency of clean innovation: more innovation today would contribute to more innovation in the 

future. As a consequence, sustainable growth could be achieved with temporary taxes/subsidies 

aiming at redirecting innovation from fossil toward renewable technologies - once done, clean 

innovation would then increase by itself indefinitely. 

In this paper, we show that this result no longer holds when renewables intermittency is taken into 

account. To that purpose, we extend AABH framework by adding a storage factor in the production 

function. In our model, clean and dirty factors are assumed to be perfect substitutes, but clean energy 

is intermittent and needs to be backed up by dirty energy or storage. 

We show that high storage costs are conducive to dirty innovation, and all the more when renewables 

are cheap. Indeed, as long as storage is expensive, fossil fuels keep being used as a necessary 

back-up to renewables. In that case, high dirty energy prices make innovations in this sector more 

profitable. Thus, contrary to AABH conclusions, we find that redirecting innovation towards clean 

energy is not enough to ensure a sustainable growth path: storage technologies must also be 

developed to steer innovation away from fossil fuels. 

Within this framework, we also study the problem of the social planner. Which of the renewable, fossil 

or storage research sectors should be fostered? The answer is not obvious at first sight, because 

each one has some benefits and drawbacks: renewable energy is clean but intermittent, dirty energy 

is flexible but polluting, storage provides clean flexibility but does not produce any energy. We show 

that at the social optimum, there should be no innovation in the dirty sector: all the research should be 

allocated to clean and storage technologies. It is difficult to say explicitly in what proportions. 

However, if the objective is to minimize the period during which dirty energy is used, then innovation 

should always be directed towards the less advanced sector between clean energy and storage. 

In 2021, renewables were cheaper than fossil fuels, but storage was still expensive: the cost of gas 

combined cycle electricity was ranging between 45$ and 74$/MWh, the cost of utility-scale solar PV 

electricity between 28$ and 37$/MWh, and the cost of wholesale storage between 165$ and 

296$/MWh. These data, together with our model, suggest that governments should now prioritize 

research in the storage sector, in order to accelerate the energy transition and shift innovation away 

from fossil fuels. 
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1 Introduction

Decarbonising energy, including through the development of renewable technologies, is a priority to
control climate change. In this context, the promotion of green innovation constitutes an important
public policy lever, contributing to reducing the cost of these technologies. There has been rich economic
literature, both theoretical and empirical, about the relationships between innovation, public policy and
the energy transition (Popp (2019)).

The model of environmental directed technical change by Acemoglu et al. (2012) (hereafter AABH)
has become a reference and lead to abundant research. It describes the production of a unique final good
from two inputs, a clean one and a dirty one. When the two inputs are substitutes, the authors show the
existence of a virtuous path dependency of clean innovation: more innovation today would contribute to
more innovation in the future. As a consequence, sustainable growth could be achieved with temporary
taxes/subsidies aiming at redirecting innovation from fossil toward renewable technologies - once done,
clean innovation would then increase by itself indefinitely.

In this paper, we show that this result no longer holds when renewables intermittency is taken into
account. To that purpose, we extend AABH framework by adding a storage factor in the production
function. In our model, clean and dirty factors are assumed to be perfect substitutes, but clean energy
is intermittent and needs to be backed up by dirty energy or storage.

We show that high storage costs are conducive to dirty innovation, and all the more when renewables
are cheap. Indeed, as long as storage is expensive, fossil fuels keep being used as a necessary back-up to
renewables. In that case, high dirty energy prices make innovations in this sector more profitable. Thus,
contrary to AABH conclusions, we find that redirecting innovation towards clean energy is not enough to
ensure a sustainable growth path: storage technologies must also be developed to steer innovation away
from fossil fuels.

Within this framework, we also study the problem of the social planner. Which of the renewable,
fossil or storage research sectors should be fostered? The answer is not obvious at first sight, because each
one has some benefits and drawbacks: renewable energy is clean but intermittent, dirty energy is flexible
but polluting, storage provides clean flexibility but does not produce any energy. We show that at the
social optimum, there should be no innovation in the dirty sector: all the research should be allocated
to clean and storage technologies. It is difficult to say explicitly in what proportions. However, if the
objective is to minimize the period during which dirty energy is used, then innovation should always be
directed towards the less advanced sector between clean energy and storage.

The paper is organized as follows. We describe the model in Section 2, characterize the laissez-faire
equilibrium in Section 3, and the social optimal allocation in Section 4. Section 5 concludes.

2 Model

The model builds on Acemoglu et al. (2012). A final good is produced competitively using clean and dirty
energy inputs. Clean energy is intermittent and needs to be backed up by dirty energy or storage. They
are, in turn, produced from a continuum of intermediate machines that scientists can improve through
innovation.
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2.1 Final good production

The final (numéraire) output is produced competitively using clean and dirty energy, Yc and Yd, according
to the following production function

Yt = (Yct + Ydt)
κ (1)

where κ ∈ (0, 1). Clean and dirty inputs are assumed to be perfect substitutes, but clean energy is
intermittent. Dirty energy and/or storage are needed in back-up to get a smooth supply, hence the
following constraint

Yct ≤ ρYdt + Yst (2)

where Yst is the use of energy storage and ρ is a technical parameter. A representative final good producer
therefore earns the profit:

ΠFG
t = (Yct + Ydt)

κ − pctYct − pdtYdt − pstYst (3)

and solves
max

Yct,Ydt,Yst

ΠFG
t (4)

under the constraint (2), where pjt is the price of the input in sector j ∈ {c, d, s}.

2.2 Clean, dirty and storage inputs production

Each input Yj (with j ∈ {c, d, s}) is produced using labor L and a continuum of sector-specific interme-
diates:

Yjt = L1−α
jt

∫ 1

0

A1−α
jit x

α
jit di (5)

where α ∈ (0, 1), Ajit is the productivity of intermediate of type i ∈ [0, 1] used in sector j ∈ {c, d, s}, and
xjit is the quantity of this intermediate. Total labour is normalised to 1:

Lct + Ldt + Lst = 1 (6)

A representative input producer therefore earns the profit:

ΠI
jt = pjtL

1−α
jt

∫ 1

0

A1−α
jit x

α
jit di− wtLjt −

∫ 1

0

pjitxjit di (7)

and solves
max
Ljt,xjit

ΠI
jt (8)

under the constraint (6), where pjit is the price of the intermediate machine i in sector j and wt is the
wage.

2.3 Intermediate machines producers

Intermediates are supplied by monopolistically competitive firms at constant cost of ψ. Without loss of
generality, we set ψ := α. Producer of machine i earns the profit:

ΠM
jit = pjitxjit −Ψxjit (9)
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and solves
max
pjit

ΠM
jit (10)

Market clearing for the final good implies

Ct = Yt − ψ

(∫ 1

0

xcit di+

∫ 1

0

xdit di+

∫ 1

0

xsit di

)
(11)

2.4 Scientists

There is a continuum of scientists in (0, 1). At the beginning of each period, each scientist decides in
which sector j she will carry out her research. She is then randomly allocated to one machine i in this
sector, and is successful in innovation with probability nj ∈ (0, 1), where innovation increases the quality
of the machine by a factor 1 + γ. She then obtains a one-period patent and becomes the entrepreneur
for the current period in the production of machine i. Let sjt be the number of scientists in sector j at
time t. Total number of scientists is normalised to 1:

sct + sdt + sst = 1 (12)

The expected profit of a scientist allocated to machine i in sector j is therefore

ΠS
jt = ηj

∫ 1

0

ΠM
jit di (13)

where Ajt =
∫ 1

0
Ajit di is the average productivity of machines in sector j, which evolves according to the

following dynamics
Ajt = (1 + γηjsjt)Ajt−1 (14)

Scientists rationally choose the sector with highest expected revenue, i.e. for any k ∈ {c, d, s}

skt > 0 ⇐⇒ ΠS
kt ≥ ΠS

jt ∀j ∈ {c, d, s} (15)

2.5 Environment

Environmental quality, denoted by St ∈ [0, S], evolves according to the following dynamics1

St+1 = −ξYdt + (1 + δ)St (16)

where the parameter ξ measures the rate of environmental degradation resulting from the production of
dirty inputs, and δ is the rate of "environmental regeneration".

We say that there is an "environmental disaster" at time t if St = 0.

1When the right hand side is higher than S, we set St+1 = S; and when it is negative, we set St+1 = 0
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3 The Laissez-Faire equilibrium

In this section, we study the equilibrium without policy intervention. After solving the problem of the
final good producers and characterizing the expected profit of a scientist in each sector, we study the
direction of technical change. We show that if the cost of storage is too high, innovation will always head
towards the dirty sector, even if clean energy is cheaper.

Definition 3.1. A laissez-faire equilibrium is a sequence of demands for inputs Yjt, demands for machines
xjit, labour demands Ljt, research allocations sjt, input prices pjt and machine prices pjit solution of the
system formed by (4), (8), (10) under the constraints (2), (6), (11), (12), (14), (16) and condition (15),
and where the wage wt and prices pjt respectively clear the labour and input markets.

We first solve the problem of the final good producers, i.e. solving (4) under constraint (2). As a
result, we obtain in the following Lemma the equilibrium demand for inputs.2

Lemma 3.1. At the laissez-faire equilibrium:

1. If pct > pdt, then κY κ−1
dt = pdt, Yct = 0, Yst = 0.

2. If pct < pdt, then:

(a) if pst > pdt−pct
1+ρ

, then κ(Ydt + Yct)
κ−1 = pdt+ρpct

1+ρ
, Yct = ρYdt and Yst = 0.

(b) if pst < pdt−pct
1+ρ

, then Ydt = 0, κY κ−1
ct = pct + pst and Yst = Yct.

3. If pct = pdt, then Yst = 0, Ydt > 0 and 0 ≤ Yct ≤ ρYdt.

When renewables are more expensive than fossil fuels, the final good is only produced by dirty energy.
When renewables become cheaper, as long as storage remains expensive, renewables are backed by fossil
fuels. When storage technologies become, in turn, cheap enough, production becomes clean and storage
is used to compensate for renewables intermittency.

Now, applying optimality conditions to (8) and (10) under their respective constraints gives equilib-
rium prices and quantities of machines as

xjit = p
1/(1−α)
jt LjtAjit (17)

pjit = ψ2/α = α (18)

as well as the relationship between input prices and knowledge

pjt
pkt

=

(
Ajt

Akt

)−(1−α)

(19)

which indicates that the most technologically advanced sector is the one with the lowest price. Combining
(17) and (18), we get the equilibrium profits of machine producers

ΠM
jit = α(1− α)p

1/(1−α)
jt LjtAjit (20)

2All the proofs of this paper are available in the supplementary material.
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and therefore the expected profit of scientists engaged in research in sector j

ΠS
jt = ηj

∫ 1

0

ΠM
jit di = ηj(1 + γ)(1− α)αp

1/(1−α)
jt LjtAjt−1 (21)

The scientists’ profits ratios between sectors j, k ∈ {c, d, s} are then given by

ΠSC
jt

ΠSC
kt

=
ηj
ηk

(
pjt
pkt

)1/(1−α)
Ljt

Lkt

Ajt−1

Akt−1

(22)

The higher this ratio, the more profitable is R&D directed towards technology j compared to technol-
ogy k. We find again the three incentive effects on innovation revealed by AABH: a price effect, a market
size effect and a direct productivity effect. As highlighted by Lemma 3.1, the market size depends on
the relative prices of dirty energy, clean energy and storage. Consequently, R&D profits also depend on
these prices and are given by the following Lemma.

Lemma 3.2. At the laissez-faire equilibrium:

1. If pct > pdt, then ΠS
ct = 0 and ΠS

st = 0.

2. If pct < pdt, then:

(a) If pst < pdt−pct
1+ρ

, then ΠS
dt = 0 and

ΠS
ct

ΠS
st

=
ηc
ηs

(
1 + γηcsct
1 + γηssst

)−(2−α) (
Act−1

Ast−1

)−(1−α)

(23)

(b) If pst > pdt−pct
1+ρ

, then ΠS
st = 0 and

ΠS
ct

ΠS
dt

= ρ
ηc
ηd

(
1 + γηcsct
1 + γηdsdt

)−(2−α) (
Act−1

Adt−1

)−(1−α)

(24)

Main outcome of this Lemma is that innovation will always favor the less technologically advanced
sector used in the production. This means that the price effect (that encourages innovation towards the
less advanced sector) is more important than the market size effect (that encourages innovation towards
the most advanced sector). AABH comes to the opposite conclusion, when the clean and dirty inputs
are substituable. This is precisely because we assumed that clean energy is intermittent: as opposed to
AABH, here clean and dirty energy (as well as clean energy with storage) are not substituable factors.
They actually behave as complementary factors due to the intermittency constraint (2).

For example, assume that pct < pdt and pst >
pdt−pct
1+ρ

. In this case, clean energy is cheap but storage
is expensive. By Lemma 3.1, both clean and dirty energy will be used in the production: the two sectors
share the same market size. As a consequence, innovation will go the sector where price is the highest:
the dirty one.

Thus, if the cost of storage is too high, innovation will always head towards the dirty sector, even if
clean energy is cheaper. But the story does not end there. With innovation, the price of dirty energy will
fall, eventually below that of clean energy, pushing it out of the production of the final good. Environment
will deteriorate, leading to an environmental disaster.
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This dynamics is expressed in the Proposition 3.2 hereafter. Let us denote by s∗ct, s∗dt and s∗st the
laissez-faire allocation of scientists. Consider the following assumption

Assumption 3.1. 0 < ρηc/ηd < 1.

The following Proposition first states that an environmental disaster occurs if the dirty sector is
initially more technologically advanced than the clean sector.

Proposition 3.1. Assume
(1 + γηc)Ac0 < Ad0 (25)

Then s∗st = 0, s∗ct = 0 and s∗dt = 1 for all t. There is an environmental disaster.

Now, the next Proposition states that an environmental disaster occurs if the storage sector is not
technologically advanced enough, even if the clean sector is more advanced than the dirty one.

Proposition 3.2. Assume (3.1) holds, and
Ad0 < Ac0

As0 <

[
A

−(1−α)
d0 −A

−(1−α)
c0

(1+ρ)(1+γηs)

]− 1
1−α (26)

Then s∗st = 0 for all t, s∗ct → 0 and s∗dt → 1 in finite time. There is an environmental disaster.

On the contrary, if the clean and storage sectors are well enough developed, innovation and production
move away from the dirty sector and an environmental disaster is avoided. This is expressed in Proposition
3.3.

Proposition 3.3. Assume 
(1 + γηd)Ad0 < Ac0

As0 ≥
[
(1+γηd)A

−(1−α)
d0 −A

−(1−α)
c0

1+ρ

]− 1
1−α (27)

Then, s∗dt = 0 for all t. Environment regenerates in finite time and there is no disaster.

To summarize, Propositions 3.1, 3.2 and 3.3 emphasize the key role of storage in achieving a fully clean
innovation and production system. When storage is not well developed, all innovation ends up going to
the dirty sector. Thus, contrary to AABH conclusions, we find that redirecting innovation towards clean
energy is not enough to ensure a sustainable growth path: storage technologies must also be developed
to steer innovation away from fossil fuels.

4 The Social Optimal Allocation

In this section, we study the socially optimal allocation. We show that the optimal policy shoud combine
a (temporary) carbon tax with a R&D subsidy to the clean and storage sectors. We then study how the
research should be allocated between these two sectors.

6



Assume that a representative household has the following intertemporal utility

∞∑
t=0

u(Ct, St)

(1 + r)t
(28)

where Ct is consumption, St is environmental quality and r is the discount rate. We assume that the
function u is twice differentiable, increasing and jointly concave in both variables, and satisfies

lim
C→0

∂u(C, S)

∂C
= ∞, lim

S→0

∂u(C, S)

∂C
= ∞, and lim

C→0
u(C, S) = −∞

Definition 4.1. The social optimal allocation is a dynamic path that maximises intertemporal utility (28)
over final good quantity Yt, consumption Ct, input quantities Yjt, machines quantities xjit, labour alloca-
tion Ljt, scientists allocation sjt, environmental quality St and machines productivities Ajit ; according
to the constraints (1), (2), (5), (6), (11), (12) and (16).

Let denote by λt, µ1
t , µjt, λjt and ωt+1 the respective Lagrange multipliers of constraints (1), (2),

(5) and (16). The value p̂jt := λjt/λt may be considered as the shadow price of input j at time t. The
following Lemma gives the optimal use of clean, dirty and storage inputs.

Lemma 4.1. Let p̂∗dt := p̂dt + ωt+1ξ/λt. At the social optimum:

• When p̂∗dt < p̂ct, then Yct = 0, Yst = 0 and κY κ−1
dt = p̂∗dt

• When p̂∗dt > p̂ct and p̂st >
p̂∗dt−p̂ct
1+ρ

, then Yst = 0, κ[(1 + ρ)Ydt]
κ−1 =

p̂∗dt+ρp̂ct
1+ρ

and Yct = ρYdt

• When p̂∗dt > p̂ct and p̂st <
p̂∗dt−p̂ct
1+ρ

, then Ydt = 0, κY κ−1
ct = p̂ct + p̂st and Yst = Yct.

Moreover:
p̂dt = κ(Yct + Ydt)

κ−1 + ρp̂st −
ωt+1ξ

λt
+
µdt

λt
(29)

p̂ct = κ(Yct + Ydt)
κ−1 − p̂st +

µct

λt
(30)

Equalities (29) and (30) highlight the externalities relative to the use of each input. The use of dirty
energy leads to a negative environmental externality (−ωt+1ξ

λt
) and a positive flexibility externality (+ρp̂st).

The use of clean energy leads to negative flexibility externality (−p̂st). Flexibility constraints are already
internalized by the final good producers, through the condition (2). Therefore, as in AABH, we obtain
that a carbon tax is enough to achieve socially optimal final good production:

τt :=
ωt+1ξ

λtp̂dt
(31)

Now, let us focus on the optimal scientists allocation. Which research sector needs to be fostered? Each
one has some benefits and drawbacks: dirty energy increases production and flexibility but is polluting,
renewable energy is clean but intermittent, storage provides clean flexibility but is not productive. The
following Proposition states that at the social optimum, there is no research in the dirty sector, and
production of the dirty input vanishes in finite time.
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Proposition 4.1. Assume that the discount rate r is low enough. At the social optimum, there is no
research in the dirty sector. All dirty production tends to zero in finite time. The long-run consumption
level is

Ct = α− α
1−ακ

1
1−κα (1− κα)

[
A

−(1−α)
ct + A

−(1−α)
st

]− 1
1−κα

Thus, at the social optimum, environment regenerates in finite time. As a consequence, the optimal
carbon tax is temporary. Indeed, as in AABH,3 we can show that as soon as St = S, ωt = 0, hence τt = 0.

Moreover, all the research is allocated to the clean and storage sectors. In what proportions? It
is actually difficult to explicitly obtain the optimal innovation policy that maximises the intertemporal
utility (28). However, it is still possible to determine the innovation policy that leads to the fastest
transition from dirty to clean energy.

By Proposition 4.1, at the social optimum, sdt = 0. Thus sst = 1− sct. The optimal innovation policy
can therefore be reduced to the only choice of sct. Let us simply write sct = st. We also assume that the
sequence (st)t≥0 belongs to {0, 1}N.

In the presence of a carbon tax, for any innovation policy s := (st)t≥0,

T (s) := min
{
T ≥ 0, ∀t ≥ T, A

−(1−α)
ct + (1 + ρ)A

−(1−α)
st ≤ (1 + τt)[(1 + γηd)Ad0]

−(1−α)
}

is, by Proposition 3.3, the duration needed to phase out dirty energy. Let

T ∗ = min
(st)∈{0,1}N

T (s)

be the shortest of these durations.

The following Proposition 4.2 and its Corollary 4.1 state that T ∗ can be achieved with an innovation
policy that allocates, at each time, the research to the less advanced sector between clean energy and
storage.

To simplify the proof of this Proposition, we make the following assumptions.

Assumption 4.1. ηc = ηs := η.

Assumption 4.2. Ac0 > As0 and there exists n ∈ N such that

Ac0 = (1 + ρ)−1/(1−α)(1 + γη)nAs0

and
A

−(1−α)
c0 + (1 + ρ)(1 + γη)−(1−α)nA

−(1−α)
s0 > (1 + τn)[(1 + γηd)Ad0]

−(1−α)

The first assumption states that the success rate of research is the same in the two sectors. The second
assumption states that the clean sector is initially more advanced than the storage sector and, having
reached the same level of technological development, both are still not competitive enough against the
dirty sector.

3Proof of Proposition 5, equality A.8.
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Proposition 4.2. The shortest duration to phase out dirty energy, T ∗, can be achieved with the following
innovation policy (△):

s△t = 1, if (1 + γη)Act ≤ (1 + ρ)−
1

1−αAst

s△t = 0, if Act ≥ (1 + ρ)−
1

1−α (1 + γη)Ast

s△t = 0 or 1, if Act = Ast

We can obtain a simpler expression of the optimal policy, if γ and η are small.

Corollary 4.1. If γ and η are small, the optimal innovation policy of Proposition 4.2 can be approximated
by

s△t = 1, if Act ≤ (1 + ρ)−
1

1−αAst

s△t = 0, if Act ≥ (1 + ρ)−
1

1−αAst

s△t = 0 or 1, if Act = Ast

In 2021, renewables were cheaper than fossil fuels, but storage was still expensive: the cost of gas
combined cycle electricity was ranging between 45$ and 74$/MWh, the cost of utility-scale solar PV
electricity between 28$ and 37$/MWh, and the cost of wholesale storage between 165$ and 296$/MWh
(Lazard (2021a), Lazard (2021b)). These data, together with our model, suggest that governments
should now prioritise research in the storage sector, in order to accelerate the energy transition and shift
innovation away from fossil fuels.

5 Conclusion

Our model emphasizes the key role of storage technologies in successfully achieving the energy transition.
As long as storage is expensive, renewables must be backed up by fossil fuels, which end up capturing all
the innovation. The regulator can counteract this effect and reach the social optimum by implementing
a carbon tax and subsidising the research in the clean and storage sectors. It is difficult to explicitly
determine in which proportions, and we leave this question for a future research. However, if the objective
of the social planner is to minimize the transition period during which fossil fuels are used, then innovation
should always be directed towards the less advanced sector between clean energy and storage.
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Proofs

Proof of Lemma 3.1

The proof is a long but straightforward application of the KKT conditions. Let us write the Lagrangian

L(Yct, Yst, Ydt, µ1
t , µ

c
t , µ

s
t) = ΠFG

t − µ1
t (Yct − ρYdt − Yst) + µc

tYct + µd
tYdt + µs

tYdt (32)

where µ1
t , µc

t , µs
t and µd

t are the respective Lagrange multipliers of constraints Yct ≤ ρYdt + Yst, Yct ≥ 0,
Yst ≥ 0 and Ydt ≥ 0. Applying KKT conditions yields:

κ(Yct + Ydt)
κ−1 − pct − µ1

t + µc
t = 0 (33)

κ(Yct + Ydt)
κ−1 − pdt + ρµ1

t + µd
t = 0 (34)

−pst + µ1
t + µs

t = 0 (35)
Yct − ρYdt − Yst = 0 or µ1

t = 0 (36)
Yct = 0 or µc

t = 0 (37)
Ydt = 0 or µd

t = 0 (38)
Yst = 0 or µs

t = 0 (39)

1st case µ1
t = 0.

• 1st subcase µs
t = 0. Then pst = 0. This means that storage is free, we set this case aside.

• 2nd subcase µs
t > 0. Then pst > 0 and Yst = 0.

– 1st subsubcase µc
t = 0 and µd

t > 0. Then pdt > pct, Ydt = 0, κY κ−1
ct = pct and Yst = 0. This

solution is impossible because it does not respect the constraint (2).

– 2nd subsubcase µc
t > 0 and µd

t = 0. Then pdt < pct, Yct = 0, κY κ−1
dt = pdt and Yst = 0. This

solution corresponds to the case 1 of the Lemma.

– 3rd subsubcase µc
t = 0 and µd

t = 0. Then pdt = pct, κ(Yct + Ydt)
κ−1 = pc/dt and Yst = 0. This

solution is the limit of case 1 of the Lemma.

2nd case µ1
t > 0.

Then Yct = ρYdt + Yst.

• 1st subcase µs
t = 0. Then pst = µ1

t .

– 1st subsubcase µc
t = 0, µd

t > 0. Then pdt−pct = (1+ρ)pst+µ
d
t , therefore pst < pdt−pct

1+ρ
. Besides,

Ydt = 0, κY κ−1
ct = pct + pst, and Yst = Yct. This solution corresponds to the case 2-(b) of the

Lemma.

– 2nd subsubcase µc
t > 0, µd

t = 0. Then pdt − pct = (1 + ρ)pst − µc
t . Besides, Yct = 0, κY κ−1

dt =
pdt − ρpst and Yst = −ρYdt. This solution is impossible.

10



– 3rd subsubcase µc
t = 0, µd

t = 0. Then pdt − pct = (1 + ρ)pst, and κ(Yct + Ydt)
κ−1 = pct + pst.

This solution is the limit of case 2-(b) of the Lemma.

• 2nd subcase µs
t > 0. Then pst = µ1

t + µs
t and Yst = 0.

– 1st subsubcase µc
t = 0 and µd

t > 0. Then pdt − pct = (1 + ρ)µ1
t + µd

t , Ydt = 0, κY κ−1
ct = pct and

Yst = 0. This solution is impossible because it does not respect the constraint (2).

– 2nd subsubcase µc
t > 0 and µd

t = 0. Then pdt−pct = (1+ρ)µ1
t −µc

t , Yct = 0, κY κ−1
dt = pdt−ρµ1

t

and Yst = 0. This solution is impossible, because we should have Yct = ρYdt + Yst.

– 3rd subsubcase µc
t = 0 and µd

t = 0. Then pdt− pct = (1+ ρ)µ1
t , therefore pst > pdt−pct

1+ρ
. Besides,

κ(Yct + Ydt)
κ−1 = pct + µ1

t , Yct = ρYdt and Yst = 0. This solution corresponds to the case 2-(a)
of the Lemma.

Proof of Lemma 3.2

If pct > pdt, the result follows directly from Lemma 3.1. Assume that pct < pdt, and that pst < pdt−pct
1+ρ

.
By Lemma 3.1, ΠS

dt = 0 and, by equations (5) and (17), we have

Yct
Yst

=
Lct

Lst

(
pct
pst

) α
1−α Act

Ast

(40)

Using Yct = Yst by Lemma 3.1 and equations (14), (19) and (22), we get

ΠS
ct

ΠS
st

=
ηc
ηs

(
1 + γηcsct
1 + γηssst

)−(2−α) (
Act−1

Ast−1

)−(1−α)

(41)

which is the desired result. A similar proof applies for the case where pst > pdt−pct
1+ρ

.

Proof of Proposition 3.1

(1+γηc)Ac0 < Ad0 implies Ac1 < Ad1 which, in turn, implies pc1 > pd1 and therefore ΠS
c1 = 0 and ΠS

s1 = 0.
Then, s∗c1 = 0, s∗s1 = 0 and s∗d1 = 1. As a result, Ac1 = Ac0 and (1 + γηc)Ac1 = (1+ γηc)Ac0 < Ad0 < Ad1.
By repetition, s∗ct = 0, s∗st = 0 and s∗dt = 1 for all t.

Proof of Proposition 3.2

Proving that s∗st = 0 for all t is very similar to the proof of Proposition 3.1.

Let us show that s∗ct → 0 in finite time. Assume that (26) holds not only at time zero, but also for
some time t− 1. The function

ΠS
ct

ΠS
dt

(sct) = ρ
ηc
ηd

(
1 + γηcsct

1 + γηd(1− sct)

)−(2−α) (
Act−1

Adt−1

)−(1−α)

11



is decreasing in sct. As Adt−1 < Act−1, we have ΠS
ct

ΠS
dt

(
sct =

ηd
ηc+ηd

)
< 1. Thus, if sct = ηd

ηc+ηd
, ΠS

ct < ΠS
dt.

Therefore, by condition (15), the laissez-faire allocation of scientists is such that s∗ct < ηd/(ηc + ηd).

If
ΠS

ct

ΠS
dt

(sct = 0) < 1

i.e.

ρ
ηc
ηd
(1 + γηd)

2−α

(
Act−1

Adt−1

)−(1−α)

< 1

then s∗ct = 0 is the unique equilibrium.

Otherwise, by the intermediate value theorem, there exists s(1)ct ∈
[
0, ηd

ηc+ηd

]
such that

ΠS
ct

ΠS
st

(
s
(1)
ct

)
= 1

Define s(2)ct such that (
1 + γηcs

(2)
ct

)
Act−1 =

(
1 + γηd(1− s

(2)
ct )

)
Adt−1

i.e. pct = pdt. When sct < s
(2)
ct , then pct < pdt and ΠS

ct = 0.

If ηc
ηd
ρ < Adt−1

Act−1
, then s

(1)
ct < s

(2)
ct and s∗ct = 0 is the unique equilibrium. Otherwise, there are two

possible equilibria: s∗ct = 0 or s∗ct = s
(1)
ct . Let us show that in any case, s∗ct → 0 in finite time. Let(

s∗cϕ(t)

)
be the subsequence of scientist allocations such that s∗cϕ(t) = s

(1)
ct for all t. The subsequence(

s∗cϕ(t)

)
is nondecreasing because for all t,

ΠS
cϕ(t)

ΠS
dϕ(t)

= 1 while the sequence
(

Adϕ(t−1)

Acϕ(t−1)

)
increases. Indeed,

since s(1)ct ∈
[
0, ηd

ηc+ηd

]
, we have 1+γηcs

(1)
ct

1+γηd(1−s
(1)
ct )

> 1, and therefore

Adϕ(t)

Acϕ(t)

=
1 + γηcs

(1)
ct

1 + γηd(1− s
(1)
ct )

Adϕ(t)−1

Acϕ(t)−1

>
Adϕ(t)−1

Acϕ(t)−1

≥
Adϕ(t−1)

Acϕ(t−1)

The subsequence
(
s∗cϕ(t)

)
is also bounded from above, by ηd/(ηc + ηd). Therefore, it converges. Denote

by s
(1)
c its limit. If s(1)c < ηd/(ηc + ηd), then Adt

Act
tends to infinity (because Adt

Act
= 1+γηcsct

1+γηd(1−sct)

Adt−1

Act−1
) and

s∗ct → 0 in finite time. If s(1)c = ηd/(ηc + ηd), then

ρ
ηc
ηd

 1 + γηcs
(1)
c

1 + γηd

(
1− s

(1)
c

)
−(2−α)(

Act−1

Adt−1

)−(1−α)

= 1

and
1 + γηcs

(1)
c

1 + γηd (1− sc)
= 1

12



Therefore
Adt−1

Act−1

→
(
ρ
ηc
ηd

)− 1
1−α

> 1

thanks to assumption (3.1). This implies that s∗ct tends to 0 in finite time.

Proof of Lemma 4.1

The proof is a long but straightforward application of the KKT conditions. The proof follows the same
arguments as in Lemma 3.1. Recall that µc

t , µd
t , µs

t , λt, λ
j
t and ωt+1 denote the respective Lagrange

multipliers of Yct ≤ ρYdt+Yst, Yct ≥ 0, Yst ≥ 0, Ydt ≥ 0, (1), (5) and (16). We also denote by p̂jt := λjt/λt
the shadow price of input j at time t.

Applying KKT conditions yields:

λtκ(Yct + Ydt)
κ−1 − λct − µ1

t + µc
t = 0 (42)

λtκ(Yct + Ydt)
κ−1 − λdt − ωt+1ξ + ρµ1

t + µd
t = 0 (43)

−λst + µ1
t + µs

t = 0 (44)
Yct − ρYdt − Yst = 0 or µ1

t = 0 (45)
Yct = 0 or µc

t = 0 (46)
Ydt = 0 or µd

t = 0 (47)
Yst = 0 or µs

t = 0 (48)

1st case µ1
t = 0.

• 1st subcase µs
t = 0. Then λst = 0. This means that storage has no cost, we set this case aside.

• 2nd subcase µs
t > 0. Then λst > 0 and Yst = 0.

– 1st subsubcase µc
t = 0 and µd

t > 0. Then λdt + ωt+1ξ > λct , Ydt = 0, κY κ−1
ct = p̂ct and Yst = 0.

This solution is impossible because it does not respect the constraint (2).

– 2nd subsubcase µc
t > 0 and µd

t = 0. Then p̂dt+ωt+1ξ/λt < p̂ct, Yct = 0, κY κ−1
dt = p̂dt+ωt+1ξ/λt

and Yst = 0. This solution corresponds to the case 1 of the Lemma.

– 3rd subsubcase µc
t = 0 and µd

t = 0. Then p̂dt + ωt+1ξ/λt = p̂ct, κ(Yct + Ydt)
κ−1 = p̂ct =

p̂dt + ωt+1ξ/λt and Yst = 0. This solution is the limit of case 1 of the Lemma.

2nd case µ1
t > 0.

Then Yct = ρYdt + Yst.

• 1st subcase µs
t = 0. Then λst = µ1

t .

– 1st subsubcase µc
t = 0, µd

t > 0. Then λdt + ωt+1ξ − λct = (1 + ρ)λst + µd
t , therefore p̂st <

p̂dtωt+1ξ/λt−p̂ct
1+ρ

. Besides, Ydt = 0, κY κ−1
ct = p̂ct + p̂st, and Yst = Yct. This solution corresponds to

the case 2-(b) of the Lemma.

13



– 2nd subsubcase µc
t > 0, µd

t = 0. Then λdt + ωt+1ξ − λct = (1 + ρ)λst − µc
t . Besides, Yct = 0,

κY κ−1
dt = p̂dt + ωt+1ξ/λt − ρp̂st and Yst = −ρYdt. This solution is impossible (because Yst is

negative).

– 3rd subsubcase µc
t = 0, µd

t = 0. Then λdt +ωt+1ξ−λct = (1+ρ)λst , and κ(Yct+Ydt)κ−1 = p̂ct+ p̂st.
This solution is the limit of case 2-(b) of the Lemma.

• 2nd subcase µs
t > 0. Then λst = µ1

t + µs
t and Yst = 0.

– 1st subsubcase µc
t = 0 and µd

t > 0. Then λdt +ωt+1ξ−λct = (1+ρ)µ1
t +µ

d
t , Ydt = 0, κY κ−1

ct = p̂ct
and Yst = 0. This solution is impossible because it does not respect the constraint (2).

– 2nd subsubcase µc
t > 0 and µd

t = 0. Then λdt + ωt+1ξ − λct = (1 + ρ)µ1
t − µc

t , Yct = 0,
κY κ−1

dt = p̂dt+ωt+1ξ/λt−ρµ1
t and Yst = 0. This solution is impossible, because we should have

Yct = ρYdt + Yst.

– 3rd subsubcase µc
t = 0 and µd

t = 0. Then λdt + ωt+1ξ − λct = (1 + ρ)µ1
t , therefore p̂st >

p̂dt+ωt+1ξ/λt−p̂ct
1+ρ

. Besides, κ(Yct + Ydt)
κ−1 = p̂ct + µ1

t , Yct = ρYdt and Yst = 0. This solution
corresponds to the case 2-(a) of the Lemma.

Proof of Proposition 4.1

The sketch of the proof is as follows. First, we show that at the social optimum, production of the final
good is unbounded (Lemma 5.1). As a consequence, the use of dirty input goes to zero in finite time:
otherwise, there would be an environmental disaster (Lemma 5.4). This implies that research in the dirty
sector goes to zero in finite time (Lemma 5.5). We finally derive the long-term consumption level (Lemma
5.6).

Lemma 5.1. At the social optimum, (Yt) is not bounded.

Proof. Consider an allocation where (Yt) is bounded. Then (Ct) is bounded. Let C be a majorant of
(Ct). Assume that in this allocation, As0 ≤ Ac0 (the opposite case can be treated in the same way).

Now, let "·a" be an alternative allocation such that Aa
st catches up with Aa

ct in finite time. Let t̂ such
that Aa

st̂
= Aa

ct̂
.

For all t ≥ t̂, let La
st = 1/2, La

ct = 1/2, La
dt = 0, sast = 1/2, sact = 1/2, sadt = 0, xasit = 1, xacit = 1,

xadit = 0.

Then, for all t > t̂, we have Y a
dt = 0 and Y a

ct = Y a
st. Moreover, since Aa

ct, A
a
st → ∞ (because sast = 1/2,

sact = 1/2 for all t ≥ t̂), we have Y a
ct, Y

a
st → ∞. As a result, Sa

t → S in finite time and Ca
t → ∞.

Let t0 such that for all t ≥ t0, Sa
t = S and Ca

t > C. Then, for all t ≥ t0,

u(Ca
t , S

a
t )− u(Ct, St) > u(Ca

t , S)− u(C, S) > 0

14



by monotonicity of u(·, S). Therefore

W a −W =
∞∑
t=0

1

(1 + r)t
[u(Ca

t , S
a
t )− u(Ct, St)]

≤
t0∑
t=0

1

(1 + r)t
[u(Ca

t , S
a
t )− u(Ct, St)] +

1

(1 + r)t0

∞∑
t=t0

1

(1 + r)t−t0
[u(Ca

t , S)− u(C, S)]

−→
r→0

∞

Thus, there exists r0 > 0 such that W a
r0
−Wr0 > 0. The alternative allocation "·a" is better than the

initial one. As a consequence, at the social optimum, (Yt) is unbounded.

Lemma 5.2. The socially optimal productions of clean, dirty, and storage inputs are given by

• If p̂∗dt < p̂ct, then Yct = 0, Yst = 0 and Ydt = α− α
1−α

[
κY κ−1

dt − ωt+1ξ
λt

] α
1−α

Adt

• If p̂∗dt > p̂ct and p̂st >
p̂∗dt−p̂ct
1+ρ

, then Yst = 0, Ydt = α− α
1−ακ

1
1−κα (1 + ρ)

κα
1−κα

[
A

−(1−α)
dt + ρA

−(1−α)
ct

]− 1
1−κα

and Yct = ρYdt

• If p̂∗dt > p̂ct and p̂st <
p̂∗dt−p̂ct
1+ρ

, then Ydt = 0, Yct = α− α
1−ακ

1
1−κα

[
A

−(1−α)
ct + A

−(1−α)
st

]− 1
1−κα and

Yst = Yct.

Proof. At the social optimum, we still have, for j ∈ {c, d, s} and i ∈ [0, 1]

xjit =

(
p̂jt
α

) 1
1−α

AjitLjt (49)

and
p̂jt
p̂kt

=

(
Ajt

Akt

)−(1−α)

(50)

Combining (5) with (49) allows to get
Yjt = Ljtp̂

α
1−α

jt Ajt (51)

Combining (6), (50), (51) and the results of Lemma 4.1 allows to get the results in each case.

Let us call the first case (p̂∗dt < p̂ct) "regime 1", the second case (p̂∗dt > p̂ct and p̂st >
p̂∗dt−p̂ct
1+ρ

) "regime

2" and the third case (p̂∗dt > p̂ct and p̂st <
p̂∗dt−p̂ct
1+ρ

) "regime 3".

Lemma 5.3. At the social optimum, Act → ∞ and Ast → ∞.

Proof. For j ∈ {c, d, s}, the sequences (Ajt) are nondecreasing, so either they converge, or they tend to
infinity. Let us examine the different cases.

• 1st case Adt → ∞. Then, there exists t0 > 0 such that for all t ≥ t0, p̂∗dt > p̂ct; otherwise,
there would be an environmental disaster (because we would have Ydt → ∞). The only regimes
compatible with the social optimum are the regimes 2 and 3.
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– 1st subcase Act → ac ∈ R. Then, by Lemma 5.2, (Yct), (Ydt) and (Yst) are bounded in the
regimes 2 and 3, whatever the behaviour of the sequence (Ast). Therefore, (Yt) is bounded.
This contradicts Lemma 5.1. As a consequence, this subcase is impossible.

– 2nd subcase Act → ∞. If Ast → as ∈ R, the regime 3 would be bounded. Since (Yt) is not
bounded, there would exist M > 1 and t1 such that in the regime 2, Yt1 > M(1+ρ)(1+ δ)S/ξ.
But in this case, Ydt1 = 1

1+ρ
Yt1 > (1 + δ)S/ξ and there would be an environmental disaster.

Thus, Ast → ∞.

• 2nd case Adt → ad ∈ R. Then the regime 1 is bounded.

– 1st subcase Act → ac ∈ R. Then the regimes 2 and 3 are also bounded, whatever the
behaviour of the sequence (Ast). This subcase contradicts Lemma 5.1 and is therefore not
possible.

– 2nd subcase Act → ∞. If Ast → as ∈ R, then the regimes 2 and 3 would also be bounded,
in contradiction with Lemma 5.1. As a consequence, Ast → ∞.

Conclusion: we have Act → ∞ and Ast → ∞.

Lemma 5.4. At the social optimum, Ydt → 0 in finite time.

Proof. From Lemma 5.3, we know that at the social optimum, Act → ∞ and Ast → ∞.

• 1st case Adt → ∞. Then there exists t0 > 0 such that for all t ≥ t0, p̂∗dt > p̂ct (regimes 2 and 3),
because otherwise there would be an environmental disaster. Besides, as

α− α
1−ακ

α
1−κα (1 + ρ)

κα
1−κα

[
A

−(1−α)
dt + ρA

−(1−α)
ct

]− 1
1−κα −→

t→∞
∞

there exists t1 > 0 such that for all t ≥ t1, p̂st <
p̂∗dt−p̂ct
1+ρ

(regime 3). Indeed, otherwise, by Lemma
5.2, there would be an environmental disaster. Thus, for all t ≥ t1, Ydt = 0.

• 2nd case Adt → ad. Then since
p̂ct
p̂dt

=

(
Act

Adt

)−(1−α)

there exists t0 such that for all t ≥ t0,
p̂ct ≤ p̂dt

Besides, there exists t1 > t0, for all t ≥ t1, A
−(1−α)
ct + (1 + ρ)A

−(1−α)
st ≤ A

−(1−α)
dt , i.e.

p̂st ≤
p̂dt − p̂ct
1 + ρ

≤ p̂∗dt − p̂ct
1 + ρ

Therefore, for all t ≥ t1, we are in the regime 3, and Ydt = 0.

Conclusion: Ydt → 0 in finite time.

Lemma 5.5. At the social optimum, for all t, sdt = 0, if the discount rate is low enough.
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Proof. By contradiction, let us assume that there exists t0 such that sdt0 ̸= 0. The optimal policy implies
that there exists t1 such that for all t ≥ t1, Ydt = 0 and St = S.

Consider an alternative policy "·a" such that for all t ≤ t1,

sadt = 0, sact = sct + s̃t, s
a
st = sst + (sdt − s̃t) ;

La
dt = 0, La

ct = 1/2, La
st = 1/2 ;

xadit = 0, xacit = 1, xasit =

[∫
Aa

cit
1−α di/

∫
Aa

sit
1−α di

]1/α
with

s̃t =
(1 + sst)

−1

(1 + sct)−1 + (1 + sst)−1
· sdt

and, for all t > t1, we keep the same policy as the initial one. With this alternative policy, for all t,
Y a
ct = Y a

st and Y a
dt = 0.

Now,

W a −W =

t1∑
t=0

1

(1 + r)t
[u(Ca

t , S
a
t )− u(Ct, St)] +

1

(1 + r)t1

∞∑
t=t1+1

1

(1 + r)t−t1
[u(Ca

t , S)− u(Ct, S)]

But, for all t ≥ t1,

Ca
t − Ct = Y a

t − Yt

= Y a
ct
κ − Y κ

ct

= La
ct
κ

(∫
Aa

cit
1−αxacit

αdi

)κ

− Lκ
ct

(∫
A1−α

cit x
α
citdi

)κ

= Lκ
ct

(∫
Aa

cit
1−αxαcitdi

)κ

− Lκ
ct

(∫
A1−α

cit x
α
citdi

)κ

= Lκ
ct

(∫
A1−α

cit x
α
citdi

)κ [(∫
Aa

cit
1−αxαcitdi∫

A1−α
cit x

α
citdi

)κ

− 1

]
= Y κ

ct

[(∫
Aa

cit
1−αxαcitdi∫

A1−α
cit x

α
citdi

)κ

− 1

]
= Yt

[(∫
Aa

cit
1−αxαcitdi∫

A1−α
cit x

α
citdi

)κ

− 1

]

The term
∫
Aa

cit
1−αxα

citdi∫
A1−α

cit xα
citdi

is strictly higher than one because Aa
cit ≥ Acit (since for all t ≥ 0, sact ≥ sct) and

Aa
cit0

> Acit0 (because sact0 > sct0 - since sdt0 ̸= 0). Besides, the sequence (Yt) is unbounded from Lemma
5.1. It actually goes to infinity from Lemmas 5.2, 5.3 and 5.4. Thus, Yt → ∞. Therefore, Ca

t −Ct → ∞,
and then u(Ca

t , S)− u(Ct, S) → ∞. As a result, W a −W −→
r→0

∞. Therefore, if the discount rate is low
enough, the initial policy is not an optimal one. Conclusion: sdt = 0 for all t.

Lemma 5.6. At the social optimum, let t0 > 0 be such that for all t > t0, Ydt = 0 (regime 3). For all
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t ≥ t0, we have

Ct = α− α
1−ακ

1
1−κα (1− κα)

[
A

−(1−α)
ct + A

−(1−α)
st

]− 1
1−κα

Proof. For all t ≥ t0, we have

Ct = Y κ
ct − ψ

∫ 1

0

xcit di− ψ

∫ 1

0

xsit di

= Y κ
ct − ψα− 1

1−α p̂
α

1−α

ct ActLct − ψα− 1
1−α p̂

α
1−α

st AstLst

= Y κ
ct − ψα−1p̂ctYct − ψα−1p̂stYst

= Y κ
ct − ψα−1(p̂ct + p̂st)Yct

= Y κ
ct − ψα−1κY κ−1

ct Yct

= α− α
1−ακ

1
1−κα (1− κα)

[
A

−(1−α)
ct + A

−(1−α)
st

]− 1
1−κα

where we used equation (49) and Lemma 5.2.

Proof of Proposition 4.2

First, T ∗ does exist and is a minimum because the set
{
T (s), s ∈ {0, 1}N

}
is non-empty, countable and

minorized (by zero). Let s∗ be an associated policy – i.e. such that T (s∗) = T ∗.

Let us note, for all t > 0, Bct := A
−(1−α)
ct and Bst := A

−(1−α)
st . The dynamics of Bct and Bst are

Bct = (1 + γηst)
−(1−α)Bct−1 (52)

Bst = (1 + γη(1− st))
−(1−α)Bst−1 (53)

Since st ∈ {0, 1}, we have, for all t > 0

BctBst = (1 + γη)−(1−α)Bct−1Bst−1

Therefore
BcT ∗BsT ∗ = (1 + γη)−(1−α)T ∗

Bc0Bs0

Then

BcT ∗ + (1 + ρ)BsT ∗ = BcT ∗ +
(1 + ρ)(1 + γη)−(1−α)T ∗

Bc0Bs0

BcT ∗

The function

F (BcT ∗) := BcT ∗ +
(1 + ρ)(1 + γη)−(1−α)T ∗

Bc0Bs0

BcT ∗

admits a minimum for B2
cT ∗ = (1+ρ)(1+γη)−(1−α)T ∗

Bc0Bs0 = (1+ρ)BcT ∗BsT ∗ , i.e. for BcT ∗ = (1+ρ)BsT ∗ .

The innovation policy (△)

s△t = 1, if (1 + ρ)Bst ≤ (1 + γη)−(1−α)Bct

s△t = 0, if (1 + γη)−(1−α)(1 + ρ)Bst ≥ Bct

18



s△t = 0 or 1, if Bct = Bst

is such that, up to one iteration, B△
cT ∗ = (1 + ρ)B△

sT ∗ . If we note B△
jt and B∗

jt the dynamics respectively
associated to s△ and s∗, we therefore have B△

cT ∗ + (1 + ρ)B△
sT ∗ ≤ B∗

cT ∗ + (1 + ρ)B∗
sT ∗ , i.e. A△

cT ∗
−(1−α) +

(1 + ρ)A△
sT ∗

−(1−α) ≤ A∗
cT ∗

−(1−α) + (1 + ρ)A∗
sT ∗

−(1−α)

Conclusion: T ∗ can be achieved with the innovation policy (△).
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