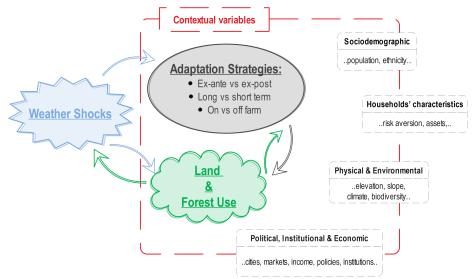


May 16th, 2024

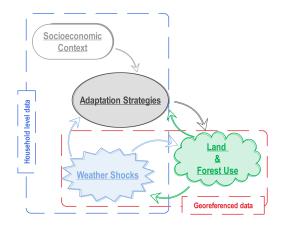
Forest Cover and Weather Shocks:

LAND USE ON THE QUEST FOR ADAPTATION AND CONSERVATION


CHAPTER 1

INTRODUCTION

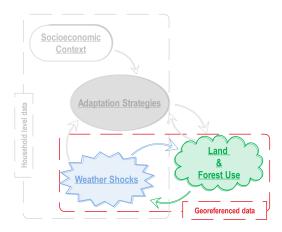
Investigating the relations between **drought** and **land use** at different **time** and **geographical** scale.


DEFORESTATION AND ADAPTATION STRATEGIES

LITERATURE'S RESEARCH METHODS

Households surveys
 (Rodriguez-Solorzano, 2014; Tsegaye et al., 2010; Roncoli, Ingram & Kirshen, 2001)

Satellite and georeferenced data (Desbureaux & Damania, 2018; Leblois, 2021; Zaveri, Russ & Damania, 2020)



LITERATURE'S RESEARCH METHODS

Households surveys

(Rodriguez-Solorzano, 2014; Tsegaye et al., 2010; Roncoli, Ingram & Kirshen, 2001)

Satellite and georeferenced data (Desbureaux & Damania, 2018; Leblois, 2021; Zaveri, Russ & Damania, 2020)

RESEARCH QUESTIONS

- 1. Is there a common response to **droughts** in **tropical** areas determining **forest cover change** or degradation? (Ch. 2)
- 2. Does the **timing** of agricultural droughts matter in determining forest cover loss? (Ch. 3)
- 3. Is the impact of drought on forest loss and degradation inhibited within protected areas (PA), Indigenous Lands (IL)? (Ch. 2 & Ch. 3)
- 4. Does **dam construction** and consequent changes in water distribution affects LUC? (Ch. 4)

KEY TAKEAWAYS

- 1. Deforestation and degradation as globally adopted responses to droughts the case of tropical areas; (Ch. 2)
- 2. Responses may be context dependent the case of agricultural seasonality in DRC; (Ch. 3)
- 3. Investments as a driver of land use change the case of dams in Sub-Saharan Africa (SSA); (Ch. 4)

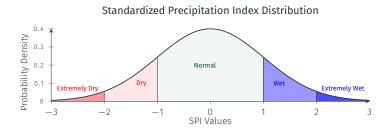
CHAPTER 2

PANTROPICAL DEFORESTATION AND DEGRADATION

Vaglietti G., Leblois A. & Delacote P. - Working Paper

- Is there a common response to droughts in tropical areas determining forest cover change or degradation? Discussing the influence of <u>spatial</u> & <u>temporal</u> heterogeneity and precipitation endowment.
- Is the impact of drought on forest loss and degradation inhibited within PA, IL, agricultural or urban areas?

DATA AVAILABILITY & PROCESSING


Deforestation and degradation

Source: Tropical Moist Forest Explorer

- Data: TMF, long-term deforestation and degradation in tropical moist forests; (Vancutsem et al., 2021)
- · Period: 1990-2020;
- **Resolution**: Georeferenced, 30x30m pixel \rightarrow 5x5km pixel;
- **Output**: Panel, **dependent variable** indicating the share of deforested or degraded area as % of total pixel mapped area;

DATA AVAILABILITY & PROCESSING

- Data: Monthly precipitations CHIRPS; (Funk et al., 2015)
- · Period: 1990-2020;
- Resolution: Georeferenced, 5x5km pixel;
- **Processing**: Creation of a Standardized Precipitation Index (SPI) for assessing and quantifying meteorological drought; (MCKee et al., 1993)
- **Output**: Independent variable dummy, $SPI_{it} \leq -1$ at year t and pixel $i \Rightarrow D_{it} = 1$;

IDENTIFICATION STRATEGY

1. Global and regional impact:

$$Log(L_{it} + 1) = \beta_0 + \beta_1 D_{it} + \gamma_i + \delta_t + u_{it}$$

- 2. Sources of heterogeneity:
 - Shock intensity;
 - Interactions with Protected Areas and Indigenous Lands
 - Time trends;

IDENTIFICATION STRATEGY

- 1. Global and regional impact;
- 2. Sources of heterogeneity:
 - · Shock intensity low, medium, average, high

 $Log(L_{it} + 1) = \beta_0 + \beta_1 \mathbf{D} \mathbf{l}_{it} + \beta_2 \mathbf{D} \mathbf{m}_{it} + \beta_3 \mathbf{D} \mathbf{a}_{it} + \beta_4 \mathbf{D} \mathbf{h}_{it} + \gamma_i + \delta_t + u_{it}$

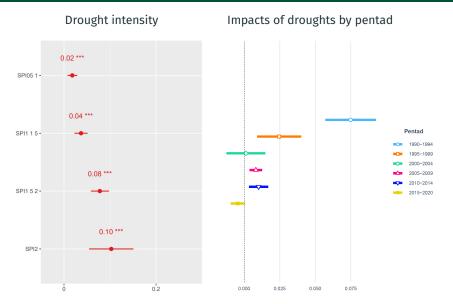
• Interactions with land policies treatment (Tr), PA and IL

 $Log(L_{it} + 1) = \beta_0 + \beta_1 D_{it} + \beta_2 D_{it} * \mathbf{Tr}_{it} + \gamma_i + \delta_t + u_{it}$

• Time trends over pentads, *e.g.*, 1990 ≤t< 1995, ..., 2015 ≤t< 2020

$$Log(L_{it}+1) = \beta_0 + \beta_1 D_{it} + \gamma_i + \delta_t + u_{it}$$

GLOBAL AND REGIONAL IMPACTS


Global and regional deforestation in droughts eventuality, 1990-2020

	Dependent variable:							
	Deforestation							
Sub-basin	(1) Global	(2) Africa	(3) Americas	(4) Asia	(5) Oceania			
Year SPI \leq -1	0.051*** (0.007)	0.032* (0.019)	0.027** (0.011)	0.040*** (0.010)	0.059** (0.027)			
Time and pixel FE	Yes	Yes	Yes	Yes	Yes			
Observations	27,441,293	7,585,731	12,595,238	5,854,474	769,234			
R ²	0.865	0.822	0.890	0.887	0.870			
Adjusted R ²	0.860	0.816	0.886	0.884	0.866			
Residual Std. Error	1.025	1.167	0.893	0.946	0.921			

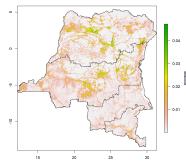
Note:

*p<0.1; **p<0.05; ***p<0.01

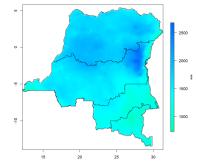
SOURCES OF HETEROGENEITY

CHAPTER 3

DROUGHTS AND DEFORESTATION: DOES SEASONALITY MATTER?

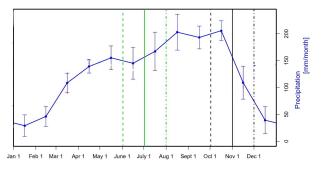

Vaglietti G., Leblois A. & Delacote P, 2022. Plos One

- Does the timing of agricultural droughts matter in determining forest cover loss? Discussing the influence of previous vs current experience and agricultural cycle.
- Is the impact of drought on forest loss and degradation inhibited within PA, IL, agricultural or urban areas?


DATA AVAILABILITY & PROCESSING

Forest Loss

- Data: Global Forest Change; (Hansen et al., 2013)
- · Panel: 2001-2020;
- **Output**: 5*5km cell, total ha deforested in year *t* and cell *i*;


Precipitations

- Data: Monthly precipitations CHIRPS; (Perterson et al., 2014)
- Output: $SPI \leq -1$ at season t, drought $D_{it} = 1$; (McKee et al., 1993)

DATA AVAILABILITY & PROCESSING

Agricultural Cycle

- Data: Crop Calendar Dataset; (Sachs et al., 2010)
- · Crops and Cycle: Maize, Cassava;
- Crops and Cycle: Planting (PL), Growing (GR), Harvesting (HA);
- Independent variable: D_Maize_PL1,2_{it}.

IDENTIFICATION STRATEGY

Forest loss & droughts seasonality, both for past and present events:

$$Log(L_{it} + 1) = \beta_0 + \beta_1 D_C assava_P L_{it} + \beta_2 D_C assava_P A_{it} + \beta_3 D_M aize_P L_{1,2}_{it} + \beta_4 D_M aize_G R_{1,2}_{it} + \beta_5 D_M aize_P A_{1,2}_{it} + \gamma_i + \delta_t + u_{it}$$

DROUGHTS & THE AGRICULTURAL CYCLE

	Dependent variable: Log of deforested hectares + 1					
	0					
	(1) Experienced Droughts (2) Current Droughts					
Cassava						
Planting	-0.0186 (0.0248)	0.0569** (0.0249)				
Harvesting	-0.0597 (0.0441)	-0.0636 (0.0535)				
Maize						
Planting 1,2	0.0150 (0.0172)	-0.0304** (0.0136)				
Growing 1,2	-0.0256* (0.0150)	-0.0689*** (0.0199)				
Harvesting 1,2	-0.0194* (0.0115)	0.0592*** (0.0129)				
Observations	519,160	519,160				
F Statistic (df = 5; 493178)	37.6635***	73.8697***				
Note:	* p<0.1; ** p<0.05; *** p<0.01					
	Time and cell fixed effect, clustered at the sector administrative level					

Deforestation in response of experienced and current droughts. Analysis in areas with at least 50% forest cover in year 2000.

CHAPTER 4

DAMS CONSTRUCTION, LAND PRODUCTIVITY, FOREST COVER AND LAND USE CHANGE

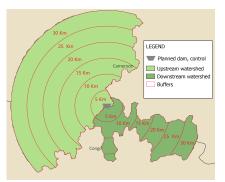
Vaglietti G. & Noack F. - Working Paper

1. Does **dam construction** and consequent changes in water distribution affect

LUC?

- Agricultural & irrigated lands;
- Forests extension;
- Flooded areas;
- Productivity & economic activities.

DATA AVAILABILITY & PROCESSING


SSA Dams: treated and controls, watersheds and command areas

Source: Personal elaboration of GADM, Hydrosheds sub-basin (level 9) and DEM)

			Dala			
ESA					ESA	
and					and	
Ngl	Dams	Npp		Ngl	Npp	Dams
start	start	start		end	end	end
1992	1994	2001		2018	2020	2023

DATA AVAILABILITY & PROCESSING

Source: Personal elaboration of **Hydrosheds** sub-basin (level 9), integrated with a **hydrological modelling** (Whiteboxtool R) based on a DEM and dams location

- Dams: FAO AQUASTAT African Dams database, 37 built and 55 planned;
- 2. Land Use: ESA Copernicus (1992-2020), unit of analysis pixels (300x300m) inside the dams' watershed
 - Agriculture;
 - Irrigated agriculture;
 - Forest;
 - Waters.

3. Economic activities:

- Nightlights; (Li et al., 2020)
- Net Primary Productivity; (Running et al., 2015)

IDENTIFICATION STRATEGY

Estimate the causal effect of dam construction over time by staggered difference-in-difference (Sun & Abraham, 2021):

$$LUC_{it} = \mu_i + \eta_t + \sum_{k=-L}^{-1} \tau^k Tr_{it}^k + \sum_{k=0}^{K} \tau^k Tr_{it}^k + \epsilon_{it}$$

Where *LUC* is a dummy indicating Land Use Change (e.g., if investigating agriculture $LUC_{it} = 1$ if the pixel has agricultural lands and 0 otherwise), while *Tr* a dummy indicating the treatment.

Land Use

Upstream	5 Km	10 Km	15 Km	20 Km	25 Km	30 Km
Waters	0.0188***	0.0164***	0.0040***)	0.0004	1.51×10^{-5}	0.0002
Agriculture	-0.0150***	-0.0158**	-0.0017		-0.0097***	-0.0249***
Forest	0.0135		-0.0064		0.0152***	0.0309***
Irrigation	8.71×10^{-5}		-7.02×10^{-5}	2.52×10^{-5}	1.37×10^{-5}	-0.0002*
Downstream	5 Km	10 Km	15 Km	20 Km	25 Km	30 Km
Waters	0.0009**)	-0.0015*	-0.0008	0.0008	-0.0024	0.0005
Agriculture	-0.0114*	-0.0165**			0.0092*	
Forest	0.0470***	0.0402***	0.0129*	0.0117**		
Irrigation	-0.0027	-0.0040	-0.0013	0.0007	-0.0002	0.0001

Clustered at dam watershed. * p<0.1; ** p<0.05; *** p<0.01

Land Use

Upstream	5 Km	10 Km	15 Km	20 Km	25 Km	30 Km
Waters	0.0188***	0.0164***	0.0040***	0.0004	1.51×10^{-5}	0.0002
Agriculture	-0.0150***	-0.0158**	-0.0017	0.0008	-0.0097***	-0.0249***
Forest	0.0135	0.0016	-0.0064	0.0007	0.0152***	0.0309***
Irrigation	8.71×10^{-5}		-7.02×10^{-5}	2.52×10^{-5}	1.37×10^{-5}	-0.0002*
Downstream	5 Km	10 Km	15 Km	20 Km	25 Km	30 Km
Waters	0.0009**	-0.0015*	-0.0008	0.0008	-0.0024	0.0005
Agriculture	-0.0114*	-0.0165**)			0.0092*	
Forest	0.0470***	0.0402***	0.0129*	0.0117**		
Irrigation	-0.0027	-0.0040	-0.0013	0.0007	-0.0002	0.0001

Clustered at dam watershed. * p<0.1; ** p<0.05; *** p<0.01

Land Use

Upstream	5 Km	10 Km	15 Km	20 Km	25 Km	30 Km
Waters	0.0188***	0.0164***	0.0040***	0.0004	1.51×10^{-5}	0.0002
Agriculture	-0.0150***	-0.0158**	-0.0017	0.0008	-0.0097***	-0.0249***
Forest	0.0135	0.0016	-0.0064	0.0007	0.0152***	0.0309***
Irrigation	8.71×10^{-5}	-0.0002	-7.02×10^{-5}	2.52×10^{-5}	1.37×10^{-5}	-0.0002*
Downstream	5 Km	10 Km	15 Km	20 Km	25 Km	30 Km
Waters	0.0009**	-0.0015*	-0.0008	0.0008	-0.0024	0.0005
Agriculture	-0.0114*	-0.0165**		0.0068	0.0092*	
Forest	0.0470***	0.0402***	0.0129*	0.0117**)		
Irrigation	-0.0027	-0.0040	-0.0013	0.0007		

Clustered at dam watershed. * p<0.1; ** p<0.05; *** p<0.01

ECONOMIC ACTIVITIES AND PRODUCTIVITY

Upstream	5 Km	10 Km	15 Km	20 Km	25 Km	30 Km
(NPP	-0.1211	-0.1119**	-0.2736***	-0.0783	-0.1871**	-0.3034***)
Urban	-0.0003	0.0003	0.0014*	0.0007***	7.96×10^{-5}	-0.0005
Nightlights	-1.319***					
Downstream	5 Km	10 Km	15 Km	20 Km	25 Km	30 Km
NPP	-0.1351	-0.0336	-0.0877	0.0048	0.1220	-0.0207
Urban	-0.0026	0.0027***	0.0037**	0.0097***	-4.72×10^{-5}	
Nightlights	-0.9228***	0.5483***	0.7431***	0.5645**		

Clustered at dam watershed. * p<0.1; ** p<0.05; *** p<0.01

DISCUSSION

- Human-induced global **deforestation increases** when droughts occur. Although sources of spatial, climate and temporal **heterogeneity** exist:
 - · Drought-response decreases over time;
 - Deforestation is influenced by droughts' intensity;
 - Shocks experience and protection policies influence land use-choices with potential **policy implications**.
- · Investments may lead to unintended redistribution of land uses;
- Potential interplay between mitigation tools (forests) and adaptation strategies (land use choices): what are the implications for public policies?

DISCUSSION

THANKS FOR LISTENING! ANY QUESTION?

ACKNOWLEDGMENTS I would like to extend my heartfelt gratitude to the esteemed members of the jury - Pr. Chakir, Pr. Di Falco, Pr. Strobl & Dr. Boltz - for their time, expertise, and rigorous evaluation throughout this journey. I am thankful to the reviewers - Pr. Di Falco & 2r. Strobl - for the valuable contributions shared so far.

TABLE OF CONTENTS

Chapter 4 Agriculture Forest Irrigation Productivity and economic activities Discussion Next Steps Limitations Economic insights

REFERENCES I

P. Angelidis, F. Maris, N. Kotsovinos, and V. Hrissanthou. Computation of drought index spi with alternative distribution functions.

Water resources management, 26:2453–2473, 2012.

S. Desbureaux and R. Damania.

Rain, forests and farmers: Evidence of drought induced deforestation in Madagascar and its consequences for biodiversity conservation.

Biological Conservation, 221:357–364, 2018.

- E. Duflo and R. Pande.

Dams.

The Quarterly Journal of Economics, 122(2):601–646, 2007.

REFERENCES II

Aquastat database, 2015.

Date accessed: 10 June 2022.

C. Funk, A. Verdin, J. Michaelsen, P. Peterson, D. Pedreros, and G. Husak.

A global satellite-assisted precipitation climatology. Earth System Science Data, 7(2):275, 2015.

M. C. Hansen, P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, et al.

High-resolution global maps of 21st-century forest cover change.

science, 342(6160):850–853, 2013.

REFERENCES III

A. Leblois.

Mitigating the impact of bad rainy seasons in poor agricultural regions to tackle deforestation.

Environmental Research Letters, 16(5):054003, apr 2021.

- X. Li, Y. Zhou, M. Zhao, and X. Zhao.
 A harmonized global nighttime light dataset 1992–2018. Scientific data, 7(1):168, 2020.
- T. B. McKee, N. J. Doesken, J. Kleist, et al.

The relationship of drought frequency and duration to time scales.

In *Proceedings of the 8th Conference on Applied Climatology*, volume 17, pages 179–183. Boston, 1993.

REFERENCES IV

- I. Rodríguez-Iturbe.
- Droughts and climate change.
- In AIP Conference Proceedings, volume 277, pages 96–111. American Institute of Physics, 1992.
- C. Roncoli, K. Ingram, and P. Kirshen. The costs and risks of coping with drought: Livelihood impacts and farmers' responses in burkina faso. Climate Research - CLIMATE RES, 19:119–132, 12 2001.

🔋 S. W. Running, Q. Mu, M. Zhao, R. B. Myneni, B. Riveiro, E. R. Hunt, and S. S. Saatchi. Mod17a2h modis/terra gross primary productivity 8-day l4 global 500m sin grid v006 [data set]. NASA EOSDIS Land Processes DAAC, 2015.

REFERENCES V

- W. J. Sacks, D. Deryng, J. A. Foley, and N. Ramankutty. **Crop planting dates: an analysis of global patterns.** *Global ecology and biogeography*, 19(5):607–620, 2010.
- A. Staal, B. M. Flores, A. P. D. Aguiar, J. H. Bosmans, I. Fetzer, and O. A. Tuinenburg.

Feedback between drought and deforestation in the amazon. *Environmental Research Letters*, 15(4):044024, 2020.

E. Strobl and R. Strobl.

The distributional impact of large dams: Evidence from cropland productivity in africa.

Journal of development Economics, 96(2):432–450, 2011.

REFERENCES VI

L. Sun and S. Abraham.

Estimating dynamic treatment effects in event studies with heterogeneous treatment effects. *Journal of Econometrics*, 225(2):175–199, 2021.

- A. S. Tefera, J. Ayoade, and N. Bello.
 Comparative analyses of spi and spei as drought assessment tools in tigray region, northern ethiopia.
 SN Applied Sciences, 1:1–14, 2019.

D. Tsegaye, S. Moe, P. Vedeld, and E. Betemariam. Land-use/cover dynamics in northern afar rangelands, ethiopia.

Agriculture Ecosystems and Environment, 139:174–180, 10 2010.

REFERENCES VII

- G. Vaglietti, P. Delacote, and A. Leblois. **Droughts and deforestation: Does seasonality matter?** *Plos one*, 17(10):e0276667, 2022.
- C. Vancutsem, F. Achard, J.-F. Pekel, G. Vieilledent, S. Carboni, D. Simonetti, J. Gallego, L. E. Aragao, and R. Nasi.
 Long-term (1990–2019) monitoring of forest cover changes in the humid tropics.

Science Advances, 7(10):eabe1603, 2021.

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20]

EWE AGRICULTURE

Extreme weather events (EWE)

Occurrence of a weather variable value above (below) a threshold value near the upper (or lower) 'tails' of the observed values range. (IPCC, 2012)

EWE & agriculture, effects:

• Direct: Yield, Livestock (Thornton and Cramer, 2012; Mbilinyi et al., 2013; Fitchett and Grab, 2014; Guan et al.,

2015; Herrero et al., 2009; Thornton and Cramer, 2012)

Indirect: Ecosystem services (Rosenzweig et al., 2001; Thornton and Cramer, 2012)

FARMER RESPONSES TO EWE

Short term:

 collection of forest products (wood and NTFP), agroforestry

(Noack et al., 2019; Delacote, 2007)

- selling assets / livestock $_{\mbox{\tiny (Carter &}}$

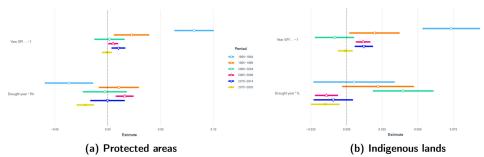
Zimmerman,2006)

• looking for off-farm work (Millock et al., 2015)

Long-term:

- activity portfolio diversification (Girard et al., 2019)
- migration and remittance USE (Duval & Wolff, 2009)
- building asset stocks (Wunder et al., 2014)
- land reallocation and farming practices (Wunder et al., 2014)

Future robustness check may include alternatives calculation of the SPI or more elaborated drought indexes:


- "The Standardized Precipitation Index (SPI) is widely used as drought meteorological index, to identify the duration and/or severity of a drought. The SPI is usually computed by fitting the gamma probability distribution to the observed precipitation data. [...] It is concluded that for SPI of 12 or 24 months, the log-normal or the normal probability distribution can be used for simplicity, instead of gamma, producing almost the same results." Angelidis et al., 2012
- Standard Precipitation and Evapotranspiration Index (SPEI): both precipitation and temperature, thereby considering the influence of global warming.
- There is a degree of **agreement between SPI and SPEI** at all time scales (Tefera *et al.*, 2019).

SOURCES OF HETEROGENEITY: TIME SPACE

Table 1: Time trends of the deforestation-response to droughts, acrosscontinents and rainfall endowments

Continent:	Rainfall endowment:			
	Low	Mid	High	
Africa	+ to -	- to + to -	- to + to -	
Americas	+ to +	+ to - to +	+ to -	
	(decreasing)			
Asia	- to +	+ to -	+ to 0	
Oceania	+ to +	+ to +	0 to +	
	(decreasing)	(decreasing)		

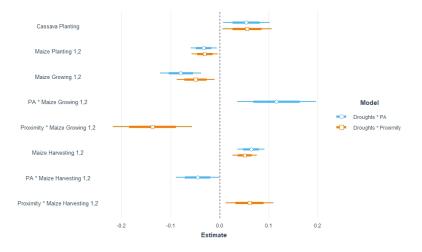
RESULTS: LAND POLICIES

HDFE Linear regression				
Number of obs	27,441,293			
Absorbing 2 HDFE groups	F(3, 18861) = 22.09			
Statistics robust to heteroskedasticity	Prob > F = 0.0000			
R-squared	0.8648			
Adj R-squared	0.8603			
Within R-sq.	0.0006			
Number of clusters (admin_2)	18,862			
Root MSE	1.0251			

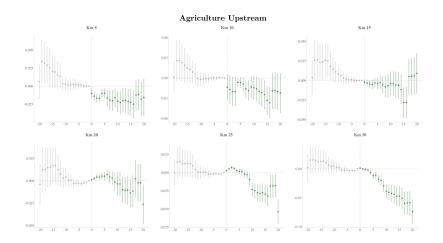
	Dependent variable:					
	Log of L + 1					
	Coef.	Std. Err.	t	P > t	[95% Conf.	Interval]
D	.1151	.0149	7.74	0.000	.0859	.1442
D P2	0977	.0163	-5.99	0.000	1297	0657
D P3	1042	.0141	-7.40	0.000	1318	0766
Constant	4.6873	.0012	3910.02	0.000	4.6849	4.6896

- 1. Forest loss & droughts seasonality, both for past and present events.
- 2. Interactions with land policies treatment (Tr), PA and proximity to cities:

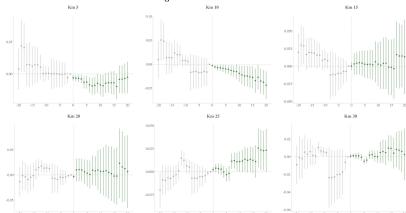
$$\begin{split} & Log(L_{it}+1) = \beta_0 + \beta_1 D_Cassava_PL_{it} + \beta_2 D_Cassava_HA_{it} + \beta_3 D_Maize_PL1, 2_{it} + \beta_4 D_Maize_GR1, 2_{it} \\ & + \beta_5 D_Maize_HA1, 2_{it} + \beta_6 D_Cassava_PL_{it} * \mathbf{Tr} + \beta_7 D_Cassava_HA_{it} * \mathbf{Tr} + \beta_8 D_Maize_PL1, 2_{it} * \mathbf{Tr} \\ & + \beta_9 D_Maize_GR1, 2_{it} * \mathbf{Tr} + \beta_{10} D_Maize_HA1, 2_{it} * \mathbf{Tr} + \beta_4 b_Maize_PL1, 2_{it} * \mathbf{Tr} + \beta_{10} D_Maize_HA1, 2_{it} * \mathbf{Tr} + \beta_{10} D_Maize_H$$


	Dependent variable:
	Log of deforested hectares + 1 Yearly aggregation
Experienced, y	-0.0180
	(0.0115)
Current, y	-0.0005
-	(0.0110)
Observations	519,160
F Statistic	27.8757***
	(df = 2; 493181)
Note:	* p<0.1; ** p<0.05; *** p<0.01;
	Time and cell fixed effect, clustered at the sector administrative level

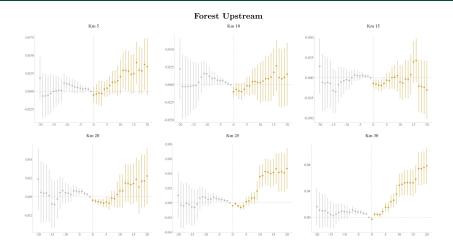
Deforestation and both experienced and current droughts, yearly aggregation.



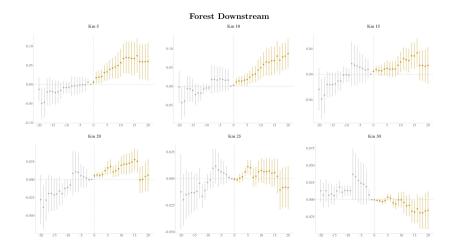
RESULTS: SOURCES OF HETEROGENEITY


Interactions with protected areas and proximity to cities:

DID AGRICULTURE UPSTREAM



DID AGRICULTURE DOWNSTREAM



Agriculture Downstream

DID FOREST UPSTREAM

DID FOREST DOWNSTREAM

DID IRRIGATION UPSTREAM

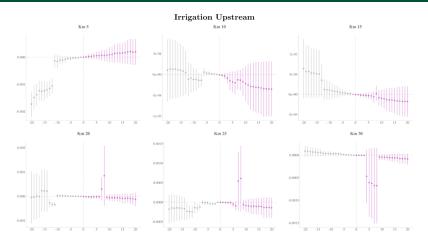


Figure A3: Event study, change in irrigated land in the upstream watershed by distance from the dam

DID IRRIGATION DOWNSTREAM

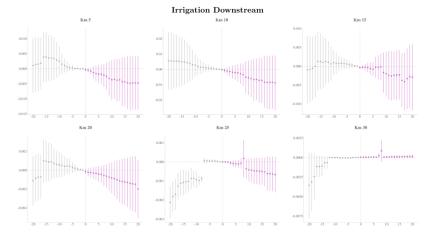


Figure A4: Event study, change in irrigated land in the downstream watershed by distance from the dam

DID URBAN DOWNSTREAM

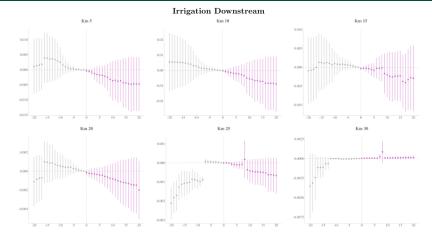
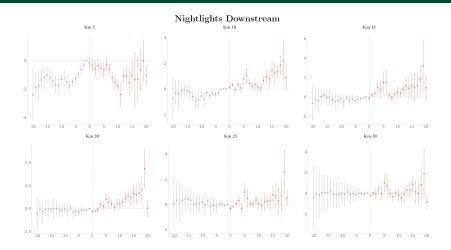
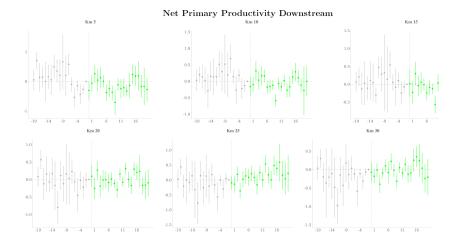




Figure A4: Event study, change in irrigated land in the downstream watershed by distance from the dam

DID NIGHTLIGHTS DOWNSTREAM

DID NET PRIMARY PRODUCTIVITY DOWNSTREAM

D. L. L. L. L.

- **Pantropical Data comparison**: comparing deforestation outcomes at tropical level between Hansen *et al.* (2013) and Vancutsem *et al.* (2021)
- Dams Aggregated effects: at basin level to compare with milestones of the literature such as Duflo & Pande (2007) and Strobl & Strobl (2011)

Limitations:

- Adaptation practices are not explicitly considered here (households' surveys)
- Database reliability specially for LU is highly debated

Next steps:

- \cdot Socioeconomic environment
- Resilience

What can we learn from an economic perspective?

- As afforestation is a globally adapted mitigation tool, therefore global results were necessary for the generalisation of local or climate results highlighted so far by the academic literature (Desbureaux and Damania, 2018; Leblois, 2021; Staal *et al.*, 2020);
- We underline that **private adaptation** may have an **impact on public goods**;
- If the impacted public goods are also a mitigation tool, as forest are, the risk is to **fuel a vicious circle** undermining mitigation tools efficiency ;
- Therefore, our results are a starting baseline to **orient policies towards equitable and sustainable adaptation strategies** that are not at detriment of those goods used as a tool for mitigation such forests.