Soybean trade and imported deforestation PhD Defense

Léa Crepin

June 6, 2024

Paris-Saclay Applied Economics, Agroparistech, University Paris-Saclay Climate Economics Chair (University Paris Dauphine-PSL)

Supervisors: Philippe Delacote, Julie Lochard, Clément Nedoncelle Jury Members: Juliano Assuncão, Mathieu Couttenier, Anne-Célia Disdier, Julien Wolfersberger Introduction Chapter I Chapter II Chapter III Conclusion References

- Deforestation has **local** and **global negative externalities** (LULCC = 14% of GHG emissions, Friedlingstein et al. 2023) → land sector is key to climate and biodiversity objectives
- **Foreign demand** has been identified as a key driver of deforestation in tropical countries: shared responsibilities (Defries et al. 2010; Pendrill et al. 2019)

- Deforestation has **local** and **global negative externalities** (LULCC = 14% of GHG emissions, Friedlingstein et al. 2023) → land sector is key to climate and biodiversity objectives
- **Foreign demand** has been identified as a key driver of deforestation in tropical countries: shared responsibilities (Defries et al. 2010; Pendrill et al. 2019)
- From a local resources management problem to an international policy issue! Ex: EU Regulation on "deforestation-free products" (Regulation (EU) 2023/III5)

9.6.2023	EN Official Journal of the European Union	L 150/206
REGULATION (EU) 2023/1115 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL		
of 31 May 2023		
on the making available on the Union market and the export from the Union of certain commodities and products associated with deforestation and forest degradation and repealing Regulation (EU) No 995/2010		

Figure: Publication of the EUDR in the Official Journal of the European Union

Soy trade contributes to deforestation (Barona et al. 2010; Song et al. 2021)

- Brazil is the first exporter
- Contributes to 33% of the EU imported deforestation emissions (EPRS, based on Commission IA)
- Targeted in the EU Regulation on deforestation-free products

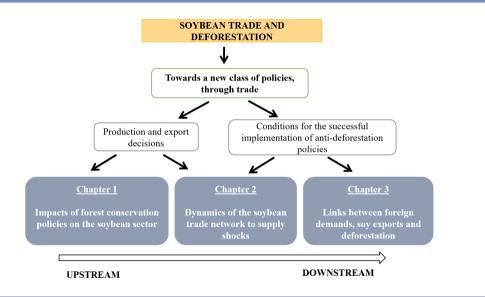
Figure: Soy field in Mato Grosso (Source: Damon Winter/The New York Times)

Main objective: Better understanding the links between soy trade from Brazil and deforestation

Contributions

- Literature on trade and the environment:
 - $\blacktriangleright\,$ Effectiveness of "supply-side" policies and their impact on soy trade $\rightarrow\, r^{st}\, chapter$
 - ▶ Credibility of "demand-side" policies $\rightarrow 2^{nd}$ and 3^{rd} chapters
- Intersection of methods and data from international economics, deforestation economics, and agricultural economics
 - Extensive use of the TRASE database
 - Use of satellite data

Introduction


Chapter I

hapter II

Chapter II

Conclusio

Introduction

CHAPTER I

DO FOREST CONSERVATION POLICIES UNDERMINE THE

SOYBEAN SECTOR IN THE BRAZILIAN AMAZON?

EVIDENCE FROM THE PRIORITY LISTING

Forthcoming in Ecological Economics in an updated version

PhD Defense

Introduction

Chapter I

Chapter II

Chapter III

Conclusior

References

Léa Crepin

Soybean trade and imported deforestation 6/28

Chapter I: Do Forest Conservation Policies Undermine the Soybean Sector in the Brazilian Amazon?

• Motivation:

- Soybean expansion is both a driver of tropical deforestation and a major source of income for Brazil. (Song et al. 2021)
- Trade-offs between agricultural production and forest conservation (Koch et al. 2019; Moffette, Skidmore, and Holly K. Gibbs 2021)
- Case study on the **priority list** implemented in 2008 in the Brazilian Amazon. (Assunção and Rocha 2019; Cisneros, Zhou, and Börner 2015; Assunção, Gandour, et al. 2020; Assunção, McMillan, et al. 2019; Harding, Herzberg, and Kuralbayeva 2021)

Research question: What are the impacts of this forest conservation policy on the soybean sector?

Lés Crent

Chapter I: Do Forest Conservation Policies Undermine the Soybean Sector in the Brazilian Amazon?

• Motivation:

- Soybean expansion is both a driver of tropical deforestation and a major source of income for Brazil. (Song et al. 2021)
- Trade-offs between agricultural production and forest conservation (Koch et al. 2019; Moffette, Skidmore, and Holly K. Gibbs 2021)
- Case study on the **priority list** implemented in 2008 in the Brazilian Amazon. (Assunção and Rocha 2019; Cisneros, Zhou, and Börner 2015; Assunção, Gandour, et al. 2020; Assunção, McMillan, et al. 2019; Harding, Herzberg, and Kuralbayeva 2021)

Research question: What are the impacts of this forest conservation policy on the soybean sector?

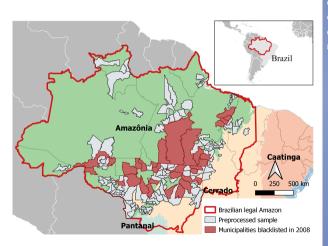
- Method:
 - Difference-in-differences
 - Generalized synthetic control (Xu 2017)

PhD Defense

Chapter I

Chapter II

hapter III


Conclusion

PhD Defense

161 municipalities in the Legal Amazon in Brazil from 2004 to 2012

- Deforestation (INPE)
- Agricultural production and yields (IBGE, MapBiomas)
- Exports (TRASE)

Chapter II Chapter III Conclusion

an trade and imported deforestation

- The priority list **curbed deforestation rates** of 36% to 41% compared to the other municipalities.
- Our analysis finds that **the soybean sector benefited from the policy** in terms of land use, production and exports.
- Shrinkage of the production of some staple food production areas, suggesting a **reallocation inside the agricultural sector towards more capital intensive activities**.
- Possible explanations: change in the production portfolio, land transfer towards soybean producers, role of local politics in reaction to the priority list.

Main results

Chapter I Chapter II Chapter III Conclusion References

CHAPTER II

SOY EXPORTERS' NETWORK AND LOCAL PRODUCTION

SHOCKS

muoducuoi

Chapter l

Chapter II

Chapter III

Conclusior

• Motivation:

- Risks of disruption of global supply chains (Boehm, Flaaen, and Pandalai-Nayar 2015; Barrot and Sauvagnat 2016; Inoue and Todo 2019) + the agricultural sector is heavily vulnerable to **droughts** (Rattis et al. 2021; Silva et al. 2023; Dou et al. 2023)
- Regulatory-induced shocks (e.g. EU Regulation) and leakages (N. B. Villoria and Hertel 2011; Meyfroidt et al. 2018; Stokeld et al. 2023)

Research question: How do the soy supply chains in Brazil respond to local supply shocks?

Chapter I

Chapter II

Chapter II

Conclusion

• Motivation:

- Risks of disruption of global supply chains (Boehm, Flaaen, and Pandalai-Nayar 2015; Barrot and Sauvagnat 2016; Inoue and Todo 2019) + the agricultural sector is heavily vulnerable to **droughts** (Rattis et al. 2021; Silva et al. 2023; Dou et al. 2023)
- Regulatory-induced shocks (e.g. EU Regulation) and leakages (N. B. Villoria and Hertel 2011; Meyfroidt et al. 2018; Stokeld et al. 2023)

Research question: How do the soy supply chains in Brazil respond to local supply shocks?

• Method: empirical approach

- Leveraging the temporal and spatial variability of droughts
- Regressions on network variables at municipality, transaction and exporter level
- Data: 5570 municipalities in Brazil from 2004 to 2018
 - Standardized Precipitation Index and other weather variables (Worldclim 2.1.)
 - Trade network measures (TRASE)

ina ou uctioi

Chapter I

Chapter II

Chapter II

Conclusion

Chapter II: Soy Exporters' Network and Local Production Shocks

Never hit 1.2 8-10

Before the shock M1 M2 M3 E1 After the shock M2 M3 M1 2 E1 M: municipality E: exporter

Figure: Frequency of droughts in Brazilian municipalities (2004-2018)

Figure: Tested effects of a supply shock

Chapter I

Chapter II

Chapter III

Conclusion

PhD Defense

Main results

Municipality-level:

 Droughts negatively affect soybean yields, leading to a decline in production and exports

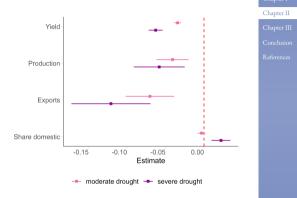
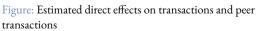


Figure: Estimated direct effects on municipalities


Main results

Municipality-level:

 Droughts negatively affect soybean yields, leading to a decline in production and exports

Downstream effects:

- Negative impact on the transactions between hit municipalities and exporters, but mostly at the intensive margin
- Exporters engage in strategies to cope with the shocks: they draw on established relationships
- But frictions in the supply chain

Introduction

Chapter I

Chapter II

Chapter III

Conclusion

References

Distinction between large and smaller firms

Larger trading firms can switch sourcing patterns more easily

Oping strategies of exporters relying on other sourcing locations

Diversified vs non-diversified portfolios

Existence of network frictions

Due to network frictions, the regulations could pose problems even for large companies in the short term if they source from high-risk suppliers.

CHAPTER III

FOREIGN DEMAND AND SOY EXPORTS: EVIDENCE AND IMPLICATIONS FOR DEFORESTATION

Léa Crepin, Clément Nedoncelle*

*Université Paris-Saclay, INRAE, AgroParisTech, Paris-Saclay Applied Economics, 91120, Palaiseau, France.

Introductio

Chapter I

Chapter II

Chapter III

Conclusion

Léa Crepin

Chapter III: Foreign Demand and Soy Exports: Evidence and Implications for Deforestation

Motivation:

- Most of the deforestation policies **supply-side policies** (Heilmayr et al. 2020; H. K. Gibbs et al. 2015; Assunção, Gandour, et al. 2020)
- Recent political willingness to go towards **demand-side policies** (Harstad 2022; Busch et al. 2022; N. Villoria et al. 2022)

Research question: Are these policies credible? What would be their heterogeneous effects?

11.0

Chapter I

Chapter I

Chapter III

Conclusion

Leferences

Chapter III: Foreign Demand and Soy Exports: Evidence and Implications for Deforestation

Motivation:

- Most of the deforestation policies **supply-side policies** (Heilmayr et al. 2020; H. K. Gibbs et al. 2015; Assunção, Gandour, et al. 2020)
- Recent political willingness to go towards **demand-side policies** (Harstad 2022; Busch et al. 2022; N. Villoria et al. 2022)

Research question: Are these policies credible? What would be their heterogeneous effects?

• **Method:** Estimation of a gravity equation at the municipality-firm-destination-year level to find an elasticity of exports to demand, and explore its heterogeneity.

Chapter I

Chapter II

Chapter III

Conclusion

Leferences

Soybean trade and imported deforestation 17/28

Chapter III: Foreign Demand and Soy Exports: Evidence and Implications for Deforestation

Motivation:

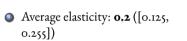
- Most of the deforestation policies **supply-side policies** (Heilmayr et al. 2020; H. K. Gibbs et al. 2015; Assunção, Gandour, et al. 2020)
- Recent political willingness to go towards **demand-side policies** (Harstad 2022; Busch et al. 2022; N. Villoria et al. 2022)

Research question: Are these policies credible? What would be their heterogeneous effects?

• **Method:** Estimation of a gravity equation at the municipality-firm-destination-year level to find an elasticity of exports to demand, and explore its heterogeneity.

• Data:

- Measures of foreign demand (BACI)
- Soy firm and municipality-level exports: 14 years of transaction data between municipalities, exporters and destination countries (TRASE Godar 2018)
- Changes in natural vegetation (MapBiomas Souza and Azevedo 2017)


PhD Defense

Chapter l

Chapter II

Chapter III

Conclusion

- Highly heterogeneous across exporters and cities.
 - Margins: bigger for larger firms, in places with lower past deforestation, with fewer competitors.

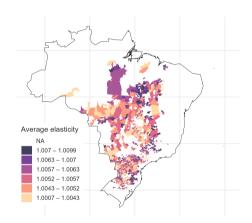


Figure: Average elasticities of exports in municipalities

Conclusion

Approach

- Main metric: avoided deforestation
- Combination of predicted elasticity of exports to demand (given observables) and potential soy expansion
- Positive correlation between avoided exports and potential soy expansion
- Main effects are in the Amazon. In Cerrado, low elasticity.

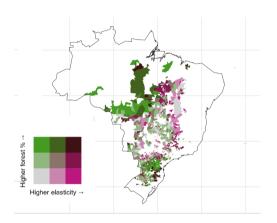


Figure: Potential of demand-side policies to avoid deforestation

ntroduction Chapter I Chapter II

Chapter III

Conclusion

- Demand-side policies are **credible**, and would/will have an aggregate effect on deforestation.
- These policies would also have some differential effects across space and across firms.
- **Market forces** (firm size, competition, location...) are going to shape the response.
- **O** Demand policies will curb deforestation, but not everywhere.

Chapter III

Introduction

Chapter I

Chapter II

Chapter III

Conclusion

References

CONCLUDING REMARKS

Transversal policy implications

- Supply-side policies are not always detrimental to trade (Chapter I) → suggests the possibility of combining increasing production while preserving natural resources.
- Demand-side policies could contribute to curbing deforestation rates (Chapter 3). But there are challenges regarding network dynamics and leakages (Chapter 2).

Introduction Chapter I Chapter II Chapter III Conclusion R aforemore

Transversal policy implications

- Supply-side policies are not always detrimental to trade (Chapter 1) → suggests the possibility of combining increasing production while preserving natural resources.
- Demand-side policies could contribute to curbing deforestation rates (Chapter 3). But there are challenges regarding network dynamics and leakages (Chapter 2).

Research perspectives

- Coordination and leakage between countries in demand-side policies.
- Social justice dimension of environmental / trade policies.
- Generalizability of the results to other contexts and other commodities.
- Instruments to alleviate the pressure on global soy demand.
- Macroeconomic level: addressing food, agricultural and trade policies as a whole.

Introduction Chapter I Chapter II Chapter III Conclusion

Introduction

Chapter I

Chapter II

Chapter III

Conclusion

References

Thank you for your attention

References I

Introduction

Conclusio

References

Assunção, Juliano, Clarissa Gandour, et al. (Feb. 2020). "The Effect of Rural Credit on Deforestation: Evidence from the Brazilian Amazon". en. In: *The Economic Journal* 130.626, pp. 290–330. ISSN: 0013-0133, 1468-0297. DOI: 10.1093/ej/uez060. URL: https://academic.oup.com/ej/article/130/626/290/5637860 (visited on 09/02/2021).

Assunção, Juliano and Romero Rocha (Apr. 2019). "Getting greener by going black: the effect of blacklisting municipalities on Amazon deforestation". en. In: *Environment and Development Economics* 24.2, pp. 115–137. ISSN: 1355-770X, 1469-4395. DOI: 10.1017/S1355770X18000499.URL: https://www.cambridge.org/core/product/identifier/S1355770X18000499/type/journal_article (visited on og/ca/2021).

Barona, Elizabeth et al. (Apr. 2010). "The role of pasture and soybean in deforestation of the Brazilian Amazon". In: *Environmental Research Letters* 5,2, p. 024002. ISSN: 1748-9326. DOI: 10.1088/1748-9326/5/2/024002. URL: http://dx.doi.org/10.1088/1748-9326/5/2/024002.

1

Barrot, Jean-Noël and Julien Sauvagnat (May 2016). "Input Specificity and the Propagation of Idiosyncratic Shocks in Production Networks". In: *The Quarterly Journal of Economics* 131, qjw018. DOI: 10.1093/qje/qjw018.

Boehm, Christoph, Aaron Flaaen, and Nitya Pandalai-Nayar (Oct. 2015). "Input Linkages and the Transmission of Shocks: Firm-Level Evidence from the 2011 Tohōku Earthquake". In: *Finance and Economics Discussion Series* 2015, pp. 1–73. DOI: 10.17016/FEDS.2015.094.

References II

1

Introduction Chapter I Chapter II Chapter III Conclusion References

Busch, Jonah et al. (Jan. 2022). "Effects of demand-side restrictions on high-deforestation palm oil in Europe on deforestation and emissions in Indonesia". In: *Environmental Research Letters* 17. DOI: 10.1088/1748-9326/ac435e.

Cisneros, Elías, Sophie Lian Zhou, and Jan Börner (Sept. 2015). "Naming and Shaming for Conservation: Evidence from the Brazilian Amazon". en. In: *PLOS ONE* 10.9. Ed. by Edward Webb, e0136402. ISSN: 1932-6203. DOI: 10.1371/journal.pone.0136402. URL: https://dx.plos.org/10.1371/journal.pone.0136402 (visited on 09/02/2021).

Defries, Ruth et al. (Feb. 2010). "Deforestation Driven by Urban Population Growth and Agricultural Trade in the Twenty-First Century". In: Nature Geoscience - NAT GEOSCI 3, pp. 178–181. DOI: 10.1038/nge0756.

Dou, Yue et al. (Aug. 2023). "Mapping crop producer perceptions: The role of global drivers on local agricultural land use in Brazil". In: Land Use Policy 133, p. 106862. DOI: 10.1016/j.landusepol.2023.106862.

Gibbs, H. K. et al. (2015). "Brazil's Soy Moratorium". In: Science 347.6220, pp. 377-378. DOI: 10.1126/science.aaa0181. eprint: https://www.science.org/doi/pdf/10.1126/science.aaa0181. URL: https://www.science.org/doi/abs/10.1126/science.aaa0181.

Godar, Javier (2018). "Supply chain mapping in Trase. Summary of data and methods". In: Publisher: Unpublished. DOI: 10.13140/RG.2.2.32335.02729. URL: http://rgdoi.net/10.13140/RG.2.2.32335.02729 (visited on 02/25/2023).

References III

Introduction Chapter I Chapter II Chapter III Conclusion References

Harding, Torfinn, Julika Herzberg, and Karlygash Kuralbayeva (July 2021). "Commodity prices and robust environmental regulation: Evidence from deforestation in Brazil". en. In: *Journal of Environmental Economics and Management* 108, p. 102452. ISSN: 00950696. pot: 10.1016/j.jeem.2021.102452. URL: https://linkinghub.elsevier.com/retrieve/pii/S0095069621000358 (visited on 09/21/2021).

Harstad, Bard (2022). "Trade, Trees, and Contingent Trade Agreements". en. In: SSRN Electronic Journal. ISSN: 1556-5068. DOI: 10.2139/ssrn.4043320. URL: https://www.ssrn.com/abstract=4043320 (visited on 05/07/2023).

Heilmayr, Robert et al. (Dec. 2020). "Brazil's Amazon Soy Moratorium reduced deforestation". en. In: *Nature Food* 1.12, pp. 801–810. ISSN: 2662-1355. DOI: 10.1038/s43016-020-00194-5. URL: http://www.nature.com/articles/s43016-020-00194-5 (visited on 10/18/2021).

Inoue, Hiroyasu and Yasuyuki Todo (Sept. 2019). "Firm-level propagation of shocks through supply-chain networks". In: *Nature Sustainability* 2, pp. 1–7. DOI: 10.1038/s41893-019-0351-x.

Koch, Nicolas et al. (Apr. 2019). "Agricultural Productivity and Forest Conservation: Evidence from the Brazilian Amazon". en. In: *American Journal of Agricultural Economics* 101.3, pp. 919–940. ISSN: 0002-9092, 1467-8276. DOI: 10.1093/ajae/aay110. URL: https://onlinelibrary.wiley.com/doi/abs/10.1093/ajae/aay110 (visited on 09/02/2021).

Meyfroidt, P. et al. (Nov. 2018). "Middle-range theories of land system change". en. In: *Global Environmental Change* 53, pp. 52–67. ISSN: 09593780. DOI: 10.1016/j.gloenvcha.2018.08.006. URL: https://linkinghub.elsevier.com/retrieve/pii/S0959378018302280 (visited on 10/27/2022).

Introduction Chapter I Chapter II Chapter III Conclusion References

Rattis, Ludmila et al. (Dec. 2021). "Climatic limit for agriculture in Brazil". In: *Nature Climate Change* II. DOI: 10.1038/s41558-021-01214-3.

transition". In: Environmental Research Letters 14, DOI: 10, 1088/1748-9326/ab0d41.

Silva, Daniel S. et al. (Feb. 2023). "Temperature effect on Brazilian soybean yields, and farmers' responses". In: International Journal of Agricultural Sustainability 21.1. ISSN: 1747-762X. DOI: 10.1080/14735903.2023.2173370. URL: http://dx.doi.org/10.1080/14735903.2023.2173370.

Moffette, Fanny, Marin Skidmore, and Holly K. Gibbs (Sept. 2021). "Environmental policies that shape productivity: Evidence from cattle ranching in the Amazon". en. In: *Journal of Environmental Economics and Management* 109, p. 102490. ISSN: 00950696. DOI: 10.1016/j.jeem.2021.102490. URL: https://linkinghub.elsevier.com/retrieve/pii/S0095069621000656

Pendrill, Florence et al. (May 2019). "Deforestation displaced: Trade in forest-risk commodities and the prospects for a global forest

Song, Xiao-Peng et al. (June 2021). "Massive soybean expansion in South America since 2000 and implications for conservation". en. In: *Nature Sustainability*. ISSN: 2398-9629. DOI: 10.1038/s41893-021-00729-z. URL: http://www.nature.com/articles/s41893-021-00729-z (visited on 09/02/2021).

Souza, Carlos M. and Tasso Azevedo (2017). "MapBiomas General "Handbook"". en. In: Publisher: Unpublished. DOI: 10.13140/RG.2.2.31958.88644. URL: http://rgdoi.net/10.13140/RG.2.2.31958.88644 (visited on 02/25/2023).

Stokeld, Emilie et al. (Nov. 2023). "Stakeholder perspectives on cross-border climate risks in the Brazil-Europe soy supply chain". In: *Journal of Cleaner Production* 428, p. 139292. ISSN: 0959-6526. DOI: 10.1016/j.jclepro.2023.139292. URL: http://dx.doi.org/10.1016/j.jclepro.2023.139292.

Introduction Chapter I Chapter II Chapter III Conclusion References

Villoria, Nelson et al. (Sept. 2022). "Leakage does not fully offset soy supply-chain efforts to reduce deforestation in Brazil". In: *Nature Communications* 13. DOI: 10.1038/s41467-022-33213-z.

Villoria, Nelson B. and Thomas W. Hertel (July 2011). "Geography Matters: International Trade Patterns and the Indirect Land Use Effects of Biofuels". en. In: *American Journal of Agricultural Economics* 93.4, pp. 919–935. ISSN: 0002-9092, 1467-8276. DOI: 10.1093/ajae/aar025. URL: https://onlinelibrary.wiley.com/doi/abs/10.1093/ajae/aar025 (visited on 02/04/2022).

Xu, Yiqing (Feb. 2017). "Generalized Synthetic Control Method: Causal Inference with Interactive Fixed Effects Models". In: *Political Analysis* 25, pp. 1–20. DOI: 10.1017/pan.2016.2.