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Executive summary 
 

 

Stochastic processes that depend on the "future" values of an independent and identically 

distributed (i.i.d.) sequence, often referred to as anticipative, have experienced growing 

interest. This interest has been driven by their convenience in modeling exotic patterns in 

time series, such as explosive bubbles in financial prices. These anticipative processes are 

well known as solutions to the rational expectations model and as a method to address non-

fundamentalness in macroeconometric literature. More recently, they have been considered 

an effective tool for modeling climate variables associated with extreme weather events, such 

as global sea level, greenhouse gas (GHG) emissions, global temperature, sea ice area, and 

various natural ocean oscillation indices (e.g., the Southern Oscillation Index, SOI). 

 

Due to climate change, the frequency and strength of these extreme weather events are 

increasing. Predicting these shocks is of primary interest, as it provides numerous societal 

benefits, from extreme weather warnings to agricultural planning. However, while the 

estimation aspect of these anticipative processes is well-covered, the appealing flexibility of 

these processes cannot yet be fully leveraged. Their dynamics, particularly the conditional 

distribution of future paths given the observed past trajectory, remain largely unexplored. This 

limits the applicability for applied prediction purposes. 

 

In this paper, we propose a new representation for general two-sided stable MA processes 

using a semi-norm. The conditional distribution of future paths can then be explicitly derived 

using the regularly varying tails property of stable vectors and has a natural interpretation in 

terms of pattern identification. This leads to some interesting results: under certain 

persistence conditions in the anticipative part, the crash date or reversal date could be 

determined with certainty. This is highly relevant for climate variables and is linked to the 

concept of tipping points. 

 

Through Monte Carlo simulations, we develop procedures to forecast crash probabilities and 

crash dates and demonstrate their finite sample performance. As an empirical illustration, we 

estimate reversal probabilities and dates of El Niño and La Niña occurrences. 

 

To replicate the numerical and empirical results presented in the paper and to demonstrate 

the generality of our approach, we have developed a web application (link to the web app). 

This application enables users to replicate our findings, explore examples of simulated 

trajectories, and apply our methods to other time series, particularly in the fields of 

macroeconomics, finance, and climate science. 

. 

https://marforecast.streamlit.app/


1 Introduction

Stochastic processes depending on the “future” values of an independent and identically dis-

tributed (i.i.d.) sequence, often referred to as anticipative, have witnessed a recent surge of

attention from the statistical and econometric literature. Historically, the growing interest in

this process has been driven by its convenience for modelling exotic patterns in time series, such

as explosive bubbles in financial prices (Hencic and Gouriéroux, 2015; Fries and Zakoian, 2019;

Gouriéroux and Zakoian, 2017; Hecq et al., 2017a; Cavaliere et al., 2017; Gouriéroux and Jasiak,

2017; Hecq et al., 2020; Fries, 2021; Hecq and Voisin, 2021). This anticipative process-known as

the solution to the rational expectations model (Gourieroux et al., 2020)-has also been explored

as a method to address non-fundamentalness in the macroeconometric literature (Lanne and

Luoto, 2013; Gouriéroux et al., 2019; Chahrour and Jurado, 2021; Hecq et al., 2024) and as an

effective tool for modelling climate variables associated with extreme weather events, such as

global sea level, greenhouse gas (GHG) emissions, global temperature, sea ice area, and various

natural ocean oscillation indices (e.g., the Southern Oscillation Index, SOI), see e.g., Gianca-

terini et al. (2022). Despite the fact that the estimation aspect is well-covered in both univariate

and multivariate settings (see Andrews et al., 2009; Lanne and Saikkonen, 2011; Behme, 2011;

Behme et al., 2011; Lanne and Saikkonen, 2013; Hecq et al., 2016; Chen et al., 2017; Fries

and Zakoian, 2019; Hecq et al., 2017b; Cavaliere et al., 2017; Velasco and Lobato, 2018; Hecq

et al., 2020; Gouriéroux and Jasiak, 2016, 2017; Gourieroux and Jasiak, 2023), the appealing

flexibility of anticipative processes cannot yet be fully leveraged. Their dynamics—particularly

the conditional distribution of future paths given the observed past trajectory—remain largely

unexplored. The absence of closed-form formulas has prompted the literature to propose nu-

merical approaches (see Lanne et al., 2012; Lanne and Luoto, 2016; Gourieroux et al., 2021a,b).

Unfortunately, these algorithms, while based on attractive heuristics, lack strong theoretical

foundations and offer no guarantees of soundness or accuracy. Moreover, as noted by Hecq

and Voisin (2021), they are computationally intensive for larger prediction horizons and fail to

accurately capture the dynamics during explosive episodes.

An exception is the anticipative α-stable AR(1) process, for which partial results were ob-

tained in Gouriéroux and Zakoian (2017) and later completed in Fries (2021).1 Even in the

simplest case within the family of anticipative processes, future realizations exhibit a complex

dependence on the observed past. This is reflected in the functional forms of the conditional
1Gourieroux and Jasiak (2024) proposed a closed-form solution for the predictive density within a general

semi-parametric anticipative framework. However, their approach ultimately relies on numerical approximation

using a kernel estimator.
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moments, which are generally nonlinear. Interestingly, the dynamics of the anticipative stable

AR(1) process simplify during extreme events, appearing to follow an explosive exponential

path with a determined killing probability. This naturally raises the question of whether, and

in what form, such behavior might occur in more general stable processes. For Xt a two-sided

moving average, defined by

Xt =
∑
k∈Z

dkεt+k (1.1)

where (εt) is an i.i.d. α-stable sequence and (dk) is a sequence of non-random coefficients,

this paper examines the conditional distribution of future paths—specifically, (Xt+1, . . . , Xt+h)

given the observed trajectory (Xt−m, . . . , Xt) with m ≥ 0 and h ≥ 1 —when the process

deviates significantly from its central values. Only mild summability conditions are assumed

on the sequence (dk), and in particular, we do not make any assumptions upfront about the

anticipativeness or non-anticipativeness of (Xt). Under this general framework, any vector of

the form Xt = (Xt−m, . . . , Xt+h) is multivariate α-stable and its distribution is characterised

by a unique finite measure Γ on the Euclidean unit sphere Sm+h+1 = {s ∈ Rm+h+1 : ∥s∥e =

1}, where ∥ · ∥e denotes the Euclidean norm (Theorem 2.3.1 in Samorodnitsky and Taqqu

(1994)). The measure Γ completely describes the conditional distribution of the normalized

paths Xt/∥Xt∥e, which represents the “shape” of the trajectory, when Xt is large according

to the Euclidean norm and given some information about the observed first m + 1 entries. A

straightforward application of Theorem 4.4.8 by Samorodnitsky and Taqqu (1994) indeed shows

that

P
(
Xt/∥Xt∥e ∈ A

∣∣∣ ∥Xt∥e > x and Xt/∥Xt∥e ∈ B
)

−→
x−→∞

Γ(A ∩B)
Γ(B) , (1.2)

for any appropriately chosen Borel sets A,B ⊂ Sm+h+1. As such, however, (1.2) is of limited

value for prediction purposes, where only Xt−m, . . . , Xt are assumed to be observed. This is

because the conditioning generally depends on the future realizations Xt+1, . . . , Xt+h, mainly

through the Euclidean norm of Xt. The idea developed here is to obtain a version of (1.2)

where the Euclidean norm is replaced by a seminorm ∥ · ∥ satisfying

∥(x−m, . . . , x0, x1, . . . , xh)∥ = ∥(x−m, . . . , x0, 0, . . . , 0)∥, (1.3)

for any (x−m, . . . , xh) ∈ Rm+h+1. In this context, a new representation of stable random vectors

on the “unit cylinder” C∥·∥
m+h+1 := {s ∈ Rm+h+1 : ∥s∥ = 1} is explored, where ∥ · ∥ is such a

seminorm. Contrary to representations involving norms (see Theorem 2.3.8 in Samorodnitsky

and Taqqu (1994)), not all stable random vectors can be characterized on unit cylinders, and a

representation theorem is provided. It is shown that Xt admits a representation by a measure
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Γ|·| on C |·|
m+h+1 if and only if (Xt) is “anticipative enough”. The equation (1.2) is then shown to

hold with an adequate seminorm and with Γ (resp. Sm+h+1) replaced by Γ∥·∥ (resp. C∥·∥
m+h+1).

The problem finally comes down to choosing the appropriate Borels B in (1.2) reflecting that

only the past “shape” (Xt−m, . . . , Xt)/∥Xt∥ is observed.

The use of (1.2) to infer the future paths of (Xt) is related to the so-called spectral process

introduced by Basrak and Segers (2009), which has opened a fruitful line of research (see, for

instance, Basrak et al. (2016); Dombry et al. (2017); Janßen (2019); Janßen and Segers (2014);

Meinguet and Segers (2010); Planinić and Soulier (2017)). This spectral process is defined as

the limit in distribution of a vector of observations from a multivariate regularly varying time

series, conditionally on the first observation being large. The approach followed here differs

in that it operates at the representation level of α-stable vectors, establishing a link between

the spectral representation and the tail conditional distribution of stable linear processes, while

shedding light on the (un)predictability of their extremes. A natural interpretation of path

prediction in terms of pattern identification emerges from (1.2) when applied to stable linear

processes.

Section 2 characterizes the representation of general α-stable vectors on seminorm unit cylin-

ders and shows that (1.2) can be restated under this new representation. Focusing on α-stable

processes defined by 1.1, Section 3 studies under which condition the vector (Xt−m, . . . , Xt+h)

admits a representation on the unit cylinder C∥·∥
m+h+1. The anticipativeness of (Xt) interestingly

emerges as a necessary condition for such a representation to exist. Section 4 leverages (1.2) to

analyze the tail conditional distribution of specific processes: the anticipative AR(1), AR(2),

and the anticipative fractionally integrated process. For the last two processes, it appears pos-

sible to determine, in theory with certainty, the dates of extreme events, provided the current

pattern is properly identified. Section 5 presents a set of Monte Carlo simulations that illustrate

how this pattern identification can be practically applied to accurately predict future trajecto-

ries. In particular, we propose simple procedures to forecast crash probabilities and determine

crash dates. In Section 6, we demonstrate the empirical relevance of our theoretical results

through a climate forecasting exercise. Specifically, we predict the occurrences of El Niño and

La Niña, as well as their reversal dates, using the Southern Oscillation Index (SOI) data.2 To

replicate the numerical and empirical results presented in the paper and to demonstrate the

generality of our approach, we have developed a web application. This application enables users

to replicate our findings, explore examples of simulated trajectories, and apply our methods to
2Data and methodology are available at: https://www.ncei.noaa.gov/access/monitoring/enso/soi
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other time series, particularly in the fields of macroeconomics, finance, and climate science.3

Section 7 concludes the paper. Complementary empirical results are provided in Appendix B,

and the proofs are collected in Appendix C.

2 Representation of stable random vectors on unit cylinders

We start with a review of the characterization of stable random vectors on the Euclidean unit

sphere. First, we recall that a random vector X = (X1, . . . , Xd) is defined to be a stable random

vector in Rd if and only if, for any positive numbers A and B there is a positive number C and

a deterministic vector D ∈ Rd such that

AX(1) +BX(2) d= CX + D,

where X(1) and X(2) are independent copies of X. Furthermore, if X is stable, then there

exists a real number α ∈ (0, 2] such that the above relation holds with C = (Aα +Bα)1/α, and

X is referred to as α-stable. The Gaussian case (α = 2) is henceforth excluded.

For, X an α-stable random vector with 0 < α < 2, one can define a unique pair (Γ,µ0),

where Γ is a finite measure on Sd and µ0 a non-random vector in Rd, such that,

E
[
ei⟨u,X⟩

]
= exp

{
−
∫

Sd

|⟨u, s⟩|α
(

1 − i sign(⟨u, s⟩)w(α, ⟨u, s⟩)
)

Γ(ds) + i ⟨u,µ0⟩
}
, ∀u ∈ Rd,

(2.1)

where ⟨·, ·⟩ denotes the canonical scalar product, w(α, s) = tg
(

πα
2
)
, if α ̸= 1, and w(1, s) =

− 2
π ln |s| otherwise, for s ∈ R. The pair (Γ,µ0) is called the spectral representation of the stable

vector X, Γ is its spectral measure and µ0 its shift vector. In particular, X is symmetric if and

only if µ0 = 0 and Γ(A) = Γ(−A) for any Borel set A in Sd (Theorem 2.4.3 in Samorodnitsky

and Taqqu (1994)), and in that case

E
[
ei⟨u,X⟩

]
= exp

{
−
∫

Sd

|⟨u, s⟩|αΓ(ds)
}
, ∀u ∈ Rd. (2.2)

The representations (2.1) and (2.2) of a stable random vector involves integration over all

directions of Rd,4 parameterized here by the unit sphere with respect to the Euclidean norm.

Proposition 2.3.8 in Samorodnitsky and Taqqu (1994) shows that the unit sphere with respect

to any norm can be used instead, provided a change of spectral measure and shift vector.
3The web application is available at the following link: https://marforecast.streamlit.app/?utm_medium=

oembed
4 By direction of Rd, we mean the equivalence classes of the relation “≡” defined by: u ≡ v if and only if

there exists λ > 0 such that u = λv, for u, v ∈ Rd.
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We explore alternative representations where integration is carried out over a unit cylinder

relative to a seminorm. However, for a given seminorm, not all stable vectors admit such a

representation, motivating the following definition.

Definition 2.1 Let ∥·∥ be a seminorm on Rd, C∥·∥
d := {s ∈ Rd : ∥s∥ = 1} be the corresponding

unit cylinder, and let X = (X1, . . . , Xd) be an α-stable random vector.

(ι) Asymmetric case:

In the case where X is not symmetric, we say that X is representable on C
∥·∥
d if there

exists a non-random vector µ0
∥·∥ ∈ Rd and a Borel measure Γ∥·∥ on C

∥·∥
d satisfying for all

u ∈ Rd

∫
C

∥·∥
d

|⟨u, s⟩|αΓ∥·∥(ds) < +∞, (2.3)

if α ̸= 1, and if α = 1, ∫
C

∥·∥
d

|⟨u, s⟩|
∣∣∣ ln |⟨u, s⟩|

∣∣∣Γ∥·∥(ds) < +∞, (2.4)

such that the joint characteristic function of X can be written as in (2.1) with (Sd,Γ,µ0)

replaced by (C∥·∥
d ,Γ∥·∥,µ0

∥·∥).

(ιι) Symmetric case:

In the case where X is symmetric α-stable (SαS), 0 < α < 2, we say that X is repre-

sentable on C
∥·∥
d if there exists a symmetric Borel measure Γ∥·∥ on C

∥·∥
d satisfying (2.3)

such that the joint characteristic function of X can be written as in (2.2) with (Sd,Γ)

replaced by (C∥·∥
d ,Γ∥·∥).

The integrability conditions (2.3)-(2.4) ensure the validity of the above definition, as they ac-

count for the unbounded nature of unit cylinders. The following proposition begins by char-

acterizing stable random vectors that can be represented on a unit cylinder defined by a given

seminorm.

Proposition 2.1 Let ∥ · ∥ be a seminorm on Rd and C
∥·∥
d be the corresponding unit cylinder.

Denote K∥·∥ = {x ∈ Sd : ∥x∥ = 0}. Let also X be an α-stable random vector on Rd with spectral

representation (Γ,µ0) on the Euclidean unit sphere (with µ0 = 0 if X is SαS). If α ̸= 1 or if

X is S1S, then

X is representable on C
∥·∥
d ⇐⇒ Γ(K∥·∥) = 0.

If α = 1 and X is not symmetric, then

X is representable on C
∥·∥
d ⇐⇒

∫
Sd

∣∣∣ ln ∥s∥
∣∣∣Γ(ds) < +∞.
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Moreover, if X is representable on C
∥·∥
d , its spectral representation is then given by (Γ∥·∥,µ0

∥·∥)

where

Γ∥·∥(ds) = ∥s∥−α
e Γ ◦ T−1

∥·∥ (ds)

with T∥·∥ : Sd \K∥·∥ −→ C
∥·∥
d defined by T∥·∥(s) = s/∥s∥, and

µ0
∥·∥ =

 µ0, if α ̸= 1 or if X is S1S,

µ0 + µ̃, if α = 1 and X is not symmetric,

µ̃ = (µ̃j), and µ̃j = − 2
π

∫
Sd\K∥·∥

sj ln ∥s∥Γ(ds), j = 1, . . . , d.

It can be noticed from Proposition 2.1 that the representability condition in the case

α = 1 and X is not symmetric, is slightly stronger than that in the other cases. Indeed,∫
K∥·∥

∣∣∣ ln ∥s∥
∣∣∣Γ(ds) ≤

∫
Sd

∣∣∣ ln ∥s∥
∣∣∣Γ(ds) < +∞ necessarily implies that Γ(K∥·∥) = 0 since∣∣∣ ln ∥s∥

∣∣∣ = +∞ for s ∈ K∥·∥.

Remark 2.1 The case d = 2 is particularly insightful. In light of (1.2), the spectral measure

of the α-stable vector (X1, X2) characterizes its likelihood of being in any particular direction

of R2 when it is large in norm. Since unit spheres relative to norms encompass all directions in

R2, spectral measures on such spheres can capture any potential tail dependence of (X1, X2).

However, unit cylinders do not span all directions in R2 and therefore, spectral measures on such

cylinders encode less information. Consider for instance the unit cylinder C∥·∥
2 = {(s1, s2) ∈

R2 : |s1| = 1} associated to the seminorm such that ∥(x1, x2)∥ = |x1| for all (x1, x2) ∈ R2.

It is straightforward to observe that C∥·∥
2 spans all directions of R2 except for those of (0,−1)

and (0,+1). A stable vector (X1, X2) will admit a representation on C
∥·∥
2 if these directions

are irrelevant for characterizing its distribution, that is, if Γ
(
{(0,−1), (0,+1)}

)
= 0. In terms

of tail dependence, the latter condition intuitively implies that realizations (X1, X2) where X2

is extreme and X1 is not, almost never occur (i.e., they occur with probability zero). The

conditions Γ
(
{(0,−1), (0,+1)}

)
= 0 and

∫
S2

∣∣ ln ∥s∥
∣∣Γ(ds) < +∞ can also be related to the

stronger condition ensuring the existence of conditional moments of X2 given X1 as discussed

in Cioczek-Georges and Taqqu (1994, 1998) - see also Theorem 5.1.3 in Samorodnitsky and

Taqqu (1994). This stronger condition requires that Γ is not too concentrated around the points

(0,±1). Specifically, assuming
∫

S2
|s1|−νΓ(ds) < +∞ for some ν ≥ 0, then E[|X2|γ |X1] < +∞

for γ < min(α+ ν, 2α+ 1), even though E[|X2|α] = +∞. If this condition holds for some ν > 0,

then both of the aforementioned conditions must necessarily be satisfied.

Provided that the appropriate representation exists, (1.2) holds with seminorms instead of

norms. This forms the foundation for studying the tail conditional distribution of stable pro-

cesses and leads to the following proposition:
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Proposition 2.2 Let X = (X1, . . . , Xd) be an α-stable random vector and let ∥·∥ be a seminorm

on Rd. If X is representable on C
∥·∥
d , then for every Borel sets A,B ⊂ C

∥·∥
d with Γ∥·∥

(
∂(A ∩

B)
)

= Γ∥·∥(∂B) = 0, and Γ∥·∥(B) > 0,

P∥·∥
x (X, A|B) −→

x→+∞

Γ∥·∥(A ∩B)
Γ∥·∥(B)

, (2.5)

where ∂B (resp. ∂(A ∩B)) denotes the boundary of B (resp. A ∩B), and

P∥·∥
x (X, A|B) := P

(
X

∥X∥
∈ A

∣∣∣∣∥X∥ > x,
X

∥X∥
∈ B

)
.

3 Unit cylinder representation for the paths of stable linear

processes

Given a seminorm, Proposition 2.2 is only applicable to stable vectors that are representable on

the corresponding unit cylinder. This section investigates under which condition on an stable

moving average (Xt) vectors of the form (Xt−m, . . . , Xt, Xt+1, . . . , Xt+h) admit such represen-

tations. A characterization is proposed and extended to linear combinations of stable moving

averages. Any seminorm satisfying (1.3) could be relevant for the prediction framework men-

tioned in the introduction. However, to simplify the discussion and avoid considering numerous

cases for all possible kernels, we restrict attention to seminorms such that

∥(x−m, . . . , x0, x1, . . . , xh)∥ = 0 ⇐⇒ x−m = . . . = x0 = 0, (3.1)

for any (x−m, . . . , xh) ∈ Rm+h+1, which in particular satisfy (1.3). As an example, seminorms

on Rm+h+1 satisfying (3.1) can be naturally derived from norms on the m+ 1 first components

of vectors. For any p ∈ [1,+∞], one can, for instance, consider seminorms of the form ∥ · ∥

defined by

∥(x−m, . . . , x0, x1, . . . , xh)∥ =
( 0∑

i=−m

|xi|p
)1/p

,

for any (x−m, . . . , x0, x1, . . . , xh) ∈ Rm+h+1 with by convention
(∑0

i=−m |xi|p
)1/p = sup

−m≤i≤0
|xi|

for p = +∞.

Now, assuming any seminorm satisfying (1.3) and (3.1), we consider (Xt) the α-stable mov-

ing average defined by

Xt =
∑
k∈Z

dkεt+k, εt
i.i.d.∼ S(α, β, σ, 0) (3.2)

with (dk) a real deterministic sequence such that

if α ̸= 1 or (α, β) = (1, 0), 0 <
∑
k∈Z

|dk|s < +∞, for some s ∈ (0, α) ∩ [0, 1], (3.3)
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and

if α = 1 and β ̸= 0, 0 <
∑
k∈Z

|dk|
∣∣∣ ln |dk|

∣∣∣ < +∞. (3.4)

Letting for m ≥ 0, h ≥ 1,

Xt = (Xt−m, . . . , Xt, Xt+1, . . . , Xt+h), (3.5)

it follows from Proposition 13.3.1 in Brockwell and Davis (1991) that the infinite series converge

almost surely and both (Xt) and Xt are well-defined and the random vector Xt is multivariate

α-stable. Denoting dk := (dk+m, . . . , dk, dk−1, . . . , dk−h) for k ∈ Z, the spectral representation

of Xt on the Euclidean sphere is given by (Γ,µ0) with

Γ = σα
∑

ϑ∈S1

∑
k∈Z

wϑ∥dk∥α
e δ{ ϑdk

∥dk∥e

}, (3.6)

µ0 = −1{α=1}
2
π
βσ

∑
k∈Z

dk ln ∥dk∥e,

where wϑ = (1+ϑβ)/2, S1 = {−1,+1}, δ is the Dirac mass and by convention, if for some k ∈ Z,

dk = 0, i.e. ∥dk∥e = 0, then the kth term vanishes from the sums. Notice in particular that for

β = 0, it holds that w−1 = w+1 = 1/2, µ0 = 0, and both the measure Γ and the random vector

Xt are symmetric. The following representation theorem characterizes the representability of

Xt on a unit cylinder for fixed m and h.

Theorem 3.1 Let Xt satisfy (3.2)-(3.5) and let ∥·∥ be a seminorm on Rm+h+1 satisfying (3.1).

For α ̸= 1 or (α, β) = (1, 0), the vector Xt is representable on C
∥·∥
m+h+1 if and only if

∀k ∈ Z,
[
(dk+m, . . . , dk) = 0 =⇒ ∀ℓ ≤ k − 1, dℓ = 0

]
. (3.7)

For α = 1 and β ̸= 0, the vector Xt is representable on C
∥·∥
m+h+1 if and only if in addition to

(3.7), it holds that

∑
k∈Z

∥dk∥e

∣∣∣∣ ln (∥dk∥/∥dk∥e

)∣∣∣∣ < +∞. (3.8)

In the cases, α ̸= 1 and (α, β) = (1, 0), the representability of Xt on a seminorm unit cylinder

depends on the number of observation m + 1 but not on the prediction horizon h.5 This is

particularly important for the applicability of Proposition 2.2 when studying the conditional

dynamics of a given stable moving average. Indeed, this proposition relies on seminorms instead

of norms, meaning that we use only a portion of size m+ 1 of an observed path. This leads to

the notion of past-representability, stated by the following definition:
5The case α = 1, β ̸= 0 is more intricate, as the roles of m and h in the validity of the additional requirement

(3.8) are not as clear-cut.
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Definition 3.1 Let (Xt) be an α-stable moving average satisfying (3.2)-(3.4). We say that the

stable process (Xt) is past-representable if there exists at least one pair (m,h), m ≥ 0, h ≥ 1,

such that Xt = (Xt−m, . . . , Xt, Xt+1, . . . , Xt+h) is representable on C
∥·∥
m+h+1 for any seminorm

satisfying (3.1). For any such pair (m,h), we will say that (Xt) is (m,h)-past-representable.

Definition 3.1, holds for any seminorm satisfying (3.1) because it ensures that all these semi-

norms have the same kernel. Moreover, it is straightforward to observe that this definition

holds for any m′ ≥ m, because if (3.7) is true for some m ≥ 0, it is true for any m′ ≥ m.

Thus, the notion of past-representability can be defined independently of the particular choice

of a seminorm but relies on the existence of at least one m, for which the considered process is

(m,h)-past-representable.6 The following proposition provides this characterization.

Proposition 3.1 Let (Xt) be an α-stable moving average satisfying (3.2)-(3.4).

(ι) With the set M = {m ≥ 1 : ∃k ∈ Z, dk+m = . . . = dk+1 = 0, dk ̸= 0}, define

m0 =

 sup M, if M ≠ ∅,

0, if M = ∅.
(3.9)

(a) For α ̸= 1 or (α, β) = (1, 0), the process (Xt) is past-representable if and only if

m0 < +∞. (3.10)

Moreover, letting m ≥ 0, h ≥ 1, the process (Xt) is (m,h)-past-representable if and only

if (3.10) holds and m ≥ m0.

(b) For α = 1 and β ̸= 0, the process (Xt) is past-representable if and only if in addition

to (3.10), there exist an m ≥ m0 and an h ≥ 1 such that (3.8) holds. If such a pair (m,h)

exists, (Xt) is then (m,h)-past-representable.

(ιι) Let ∥ · ∥ a seminorm satisfying (3.1) and assume that (Xt) is (m,h)-past-representable

for some m ≥ 0, h ≥ 1. The spectral representation (Γ∥·∥,µ∥·∥) of the vector Xt =

(Xt−m, . . . , Xt, Xt+1, . . . , Xt+h) on C∥·∥
m+h+1 is then given by (3.6) with the Euclidean norm

∥ · ∥e replaced by the seminorm ∥ · ∥.

It can be noted, that m0 = 0 if and only if for some k0 ∈ Z ∪ {−∞}, dk ̸= 0 for all k ≥ k0 and

dk = 0 for all k < k0.

Proposition 3.1 shows that for an α-stable moving average to be past-representable, sequences
6This will not be true in general under the weaker assumption (1.3) and different notions of representability

of a process could emerge depending on the kernels of the seminorms.
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of consecutive zero values in the coefficients (dk) must be either of finite length or infinite to

the right. This surprisingly makes the anticipativeness of a stable moving average a necessary

condition, and sufficient for α ̸= 1 and (α, β) = (1, 0), for its past-representability. The less

anticipative a moving average is (i.e., the larger the gaps of zeros on its forward-looking side),

the higher m must be chosen to ensure the representability of (Xt−m, . . . , Xt, Xt+1, . . . , Xt+h)

on the appropriate unit cylinder. Purely non-anticipative moving averages are, in particular,

immediately ruled out. This property is demonstrated in the following corollary.

Corollary 3.1 Let (Xt) an α-stable moving average satisfying (3.2)-(3.4). If (Xt) is purely

non-anticipative, i.e., dk = 0 for all k ≥ 1, then (Xt) is not past-representable.

Corollary 3.1, sheds light on the predictability of extreme events in linear processes. For

illustration, we consider the following two α-stable AR(1) processes, defined as the stationary

solutions of:

Xt = ρXt+1 + εt, ∀t ∈ Z, (3.11)

Yt = ρYt−1 + ηt, ∀t ∈ Z, (3.12)

where 0 < |ρ| < 1, and (εt), (ηt) are independent i.i.d. stable sequences. While (Xt) generates

bubble-like trajectories –explosive exponential paths eventually followed by sharp returns to

central values–, the trajectories of (Yt) feature sudden jumps followed by exponential decays. In

both processes, an extreme event results from a large realisation of an underlying error ετ or ητ ,

at some time τ . On the one hand, for the non-anticipative AR(1) process (3.12), a jump does

not manifest any early visible signs before its date of occurrence, as it is independent of the

past trajectory. Jumps in the trajectory of (Yt) are unpredictable, and one only has information

about their unconditional likelihood of occurrence. On the other hand, for the anticipative

AR(1) process (3.11), extremes do manifest early visible signs and are gradually reached as

their occurrence dates approach. The past trajectory is informative about future extreme events,

and, in particular, it is more informative than their plain unconditional likelihood of occurrence.

Building on the “information encoding” interpretation of spectral measures given in Remark

2.1, the fact that (Xt) (resp. (Yt)) is past-representable (resp. not past-representable) can be

seen as a consequence of the dependence (resp. independence) of future extreme events on past

ones. The following Corollary 3.2 states the condition for past-representability for ARMA.

Corollary 3.2 Let (Xt) be the strictly stationary solution of

Ψ(F )Φ(B)Xt = Θ(F )H(B)εt, εt
i.i.d.∼ S(α, β, σ, 0),
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where Ψ, Φ, Θ, H are polynomials of arbitrary finite degrees with roots located outside the

unit disk and F (resp. B) is the forward (resp. backward) operator: FXt := Xt+1 (resp.

BXt := Xt−1). We suppose furthermore that Ψ and Θ (resp. Φ and H) have no common roots.

Then, for any α ∈ (0, 2) and β ∈ [−1, 1], the following statements are equivalent:

(ι) (Xt) is past-representable,

(ιι) deg(Ψ) ≥ 1,

(ιιι) m0 < +∞,

with m0 as in (3.9). Moreover, letting m ≥ 0, h ≥ 1, the process (Xt) is (m,h)-past-

representable if and only if m ≥ m0 with m0 < +∞.

For the ARMA process, the past-representability condition simplifies and is equivalent to

the autoregressive polynomial having at least one root inside the unit circle. Also, only the

roots of the AR polynomial matter for past-representability, the MA part having no role. In the

noncausal literature, if Θ = H = 1, it is called a mixed-causal process MAR(p, q) model, first

introduced by Lanne and Saikkonen (2011), where p corresponds to deg(Φ) and q corresponds

to deg(Ψ).

4 Tail conditional distribution of stable anticipative processes

In this section, we will derive the tail conditional distribution of linear stable processes for which

Proposition 2.2 will be applicable. The case of a general past-representable stable process is

considered, along with particular examples.

To be relevant for the prediction framework, the Borel set B appearing in Proposition 2.2 must

be chosen such that the conditioning event {∥Xt∥ > x} ∩ {Xt/∥Xt∥ ∈ B} is independent of

the future realizations Xt+1, . . . , Xt+h. For ∥ · ∥ a seminorm on Rm+h+1 satisfying (3.1), denote

S
∥·∥
m+1 = {(s−m, . . . , s0) ∈ Rm+1 : ∥(s−m, . . . , s0, 0, . . . , 0)∥ = 1}.7 Then, for any Borel set

V ⊂ S
∥·∥
m+1, define the Borel set B(V ) ⊂ C

∥·∥
m+h+1 as

B(V ) = V × Rh.

Notice in particular that for V = S
∥·∥
m+1, we have B(V ) = C

∥·∥
m+1 = S

∥·∥
m+1. In the following, we

will use Borel sets of the above form to condition the distribution of the entire vector Xt/∥Xt∥

on the observed “shape” of the past trajectory. The latter information is contained in the Borel

set V , which we will typically assume to be a small neighborhood on S∥·∥
m+1. It will be useful in

7The set S
∥·∥
m+1 corresponds to the unit sphere of Rm+1 relative to the restriction of ∥ · ∥ to the first m + 1

dimensions.
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the following to note that

V × Rh =
{

s ∈ C
∥·∥
m+h+1 : f(s) ∈ V

}
,

where f is the function defined by

f :
Rm+h+1 −→ Rm+1

(x−m, . . . , x0, x1, . . . , xh) 7−→ (x−m, . . . , x0)
. (4.1)

4.1 Stable past-representable processes: general case

Let (Xt) an α-stable process satisfying Definition 3.1. This states that (Xt) is (m,h)-past-

representable, for some m ≥ 0, h ≥ 1 and let Xt as in (3.5). Denoting Γ∥·∥ the spectral measure

of Xt on the unit cylinder C∥·∥
m+h+1 for some seminorm satisfying (3.1), we know by Proposition

3.1 (ιι), that Γ∥·∥ is of the form

Γ∥·∥ =
∑

ϑ∈S1

∑
k∈Z

wϑ∥dk∥αδ{ ϑdk

∥dk∥

}. (4.2)

leading to the following proposition:

Proposition 4.1 Under the above assumptions, we have

P∥·∥
x

(
Xt, A

∣∣∣B(V )
)

−→
x→+∞

Γ∥·∥
({

ϑdk

∥dk∥
∈ A : ϑf(dk)

∥dk∥
∈ V

})

Γ∥·∥

({
ϑdk

∥dk∥
∈ C

∥·∥
m+h+1 : ϑf(dk)

∥dk∥
∈ V

}) , (4.3)

for any Borel sets A ⊂ C
∥·∥
m+h+1, V ⊂ S

∥·∥
m+1 such that

{
ϑdk

∥dk∥
∈ C

∥·∥
m+h+1 : ϑf(dk)

∥dk∥
∈ V

}
̸= ∅,

Γ∥·∥
(
∂(A ∩B(V ))

)
= Γ∥·∥(∂B(V )) = 0, where B(V ) = V × Rh and f is as in (4.1).

From Proposition 4.1 and by setting V = S
∥·∥
m+1, and A an arbitrarily small closed neighborhood

of all the points (ϑdk/∥dk∥)ϑ,k, we can see that lim
x→+∞

P
(
Xt/∥Xt∥ ∈ A

∣∣∣∥Xt∥ > x
)

= 1. In

other words, when far from central values, the trajectory of the process (Xt) necessarily features

patterns of the same shape as some ϑdk/∥dk∥, which is a finite piece of a moving average’s

coefficient sequence. The index k indicates to which piece (dk+m, . . . , dk, dk−1, . . . , dk−h) of this

moving average it corresponds to, and, ϑ ∈ {−1,+1} indicates whether the pattern is flipped

upside down (in case the extreme event is driven by a negative value of an error ετ ). The

likelihood of a pattern ϑdk/∥dk∥ can be evaluated by setting A to be a small neighborhood of

that point. From this viewpoint, the observed path, (Xt−m, . . . , Xt−1, Xt)/∥Xt∥ will a fortiori

be of the same shape as some ϑ(dk+m, . . . , dk+1, dk)/∥dk∥ when an extreme event approaches

in time. Observing the initial part of the pattern can provide information about the remaining

12



unobserved part: the conditional likelihood of the latter can be assessed by setting V to be a

small neighborhood of the observed pattern.

Remark 4.1 The tail conditional distribution given in (4.3) highlights three types of uncer-

tainty/approximation for prediction. We deal with two of them in the rest of the paper and

leave the third for future research. 8

(ι) In practice, events of the type

{(Xt−m, . . . , Xt−1, Xt)/∥Xt∥ = ϑ(dk+m, . . . , dk+1, dk)/∥dk∥}

have probability zero of occurring, and only noisy observations such as

(Xt−m, . . . , Xt−1, Xt)/∥Xt∥ ≈ ϑ(dk+m, . . . , dk+1, dk)/∥dk∥ are available on a real-

ized trajectory. The choice of an adequate conditioning neighborhood V in (4.3) given

a piece of the trajectory, will thus need to rely on a statistical approach. One could

envision hypothesis tests to determine whether a piece of the realized (noisy) trajectory

“is more similar” to a certain pattern 1 or to another pattern 2.

(ιι) Even if the observed path can be confidently identified with a particular pattern, uncer-

tainty regarding the future trajectory may remain. It could indeed be that several patterns

ϑdk/∥dk∥ coincide on their first m + 1 components, but differ in the last h components.

The stable anticipative AR(1) process is a typical example of this phenomenon, which will

be studied in the next section. Interestingly, the stable anticipative AR(2) process, and

more generally persistent enough processes, avoid this issue, as discussed hereafter.

(ιιι) The tail conditional distribution (4.3) represents an asymptotic behavior as the (semi-)

norm of Xt grows infinitely large. It is, therefore, only an approximation of the true dy-

namics during extreme events. It would be interesting to obtain a more refined asymptotic

development in x of the above convergence in order to gauge the approximation error of

the true conditional distribution. We partially investigate this issue by means of Monte

Carlo simulation. In particular, we numerically quantify how far from„ the predicted

patterns the future path can be, depending on the quantile of the observed realizations.
8The considerations developed in this remark focus solely on the probabilistic uncertainty of the prediction,

assuming that the process (Xt) is entirely known; that is, no parameter nor any sequence (dj,k) needs to be

inferred from the data. We leave for future research issues related to statistical uncertainty.
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4.2 The anticipative AR(1)

We now consider (Xt) the stable anticipative AR(1) process defined by

Xt = ρXt+1 + εt, 0 < |ρ| < 1, (4.4)

where (εt)t∈Z
i.i.d.∼ S(α, β, 1, 0). The moving average coefficient is of the form (ρk1{k≥0})k, and

thus, m0 = 0 as stated in (3.9). By Corollary (3.2), we know that for any m ≥ 0, h ≥ 1, (Xt) is

(m,h)-past-representable. The spectral measures of paths Xt simplify and charge finitely many

points. Their forms are given in the following lemma.

Lemma 4.1 Let (Xt) be an α-stable anticipative AR(1) processes as in (4.4). Letting Xt as

in (3.5) for m ≥ 0, h ≥ 1, its spectral measure on C
∥·∥
m+h+1 for a seminorm satisfying (3.1) is

given by

Γ∥·∥ =
∑

ϑ∈S1

[
wϑδ{(ϑ,0,...,0)} + wϑ

h−1∑
k=−m+1

∥dk∥αδ{ ϑdk

∥dk∥

} + w̄ϑ

1 − |ρ|α
∥dh∥αδ{ ϑdh

∥dh∥

}], (4.5)

where for all ϑ ∈ S1 and −m+ 1 ≤ k ≤ h,

dk = (ρk+m1{k≥−m}, . . . , ρ
k1{k≥0}, ρ

k−11{k≥1}, . . . , ρ
k−h1{k≥h}),

wϑ = (1 + ϑβ)/2,

w̄ϑ = (1 + ϑβ̄)/2,

β̄ = β
1 − ρ<α>

1 − |ρ|α
,

and if h = 1 and m = 0, the sum
∑h−1

k=−m+1 vanishes by convention.

The next proposition provides the tail conditional distribution of future paths in the case where

ρ is positive. Let us first introduce useful neighborhoods of the distinct charged points of Γ∥·∥.

Denote d0,−m = (
m+h+1︷ ︸︸ ︷

1, 0, . . . , 0) so that the charged points of Γ∥·∥ are all of the form ϑdk/∥dk∥

with indexes (ϑ, k) in the set I := S1 ×
(
{−m,h} ∪ {(0,−m)}

)
. With f as in (4.1), define for

any (ϑ0, k0) ∈ I, the set V0 as any closed neighborhood of ϑ0f(dk0)/∥dk0∥ such that

∀(ϑ′, k′) ∈ I, ϑ′f(dk′)
∥dk′∥

∈ V0 =⇒ ϑ′f(dk′)
∥dk′∥

= ϑ0f(dk0)
∥dk0∥

, (4.6)

In other terms, V0 × Rd is a subset of C∥·∥
m+h+1 where the only points charged by Γ∥·∥ have

their first (m+ 1)th components coinciding with ϑ0f(dk0)/∥dk0∥. Define Aϑ,k for any (ϑ, k) as

any closed neighborhood of ϑdk/∥dk∥ that does not contain any other charged point of Γ∥·∥,

meaning:

∀(ϑ′, k′) ∈ I, ϑ′dk′

∥dk′∥
∈ Aϑ,k =⇒ (ϑ′, k′) = (ϑ, k). (4.7)
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Proposition 4.2 Let (Xt) be an α-stable anticipative AR(1) processes as in (4.4) with ρ ∈

(0, 1). Let Xt, the dk’s and the spectral measure of Xt be as given in Lemma 4.1, for any

m ≥ 0, h ≥ 1. Let V0 be any small closed neighborhood of ϑ0f(dk0)/∥dk0∥ in the sense of

(4.6) for some (ϑ0, k0) ∈ I and let B(V0) = V0 × Rh. Then, with Aϑ,k an arbitrarily small

neighborhood of some ϑdk/∥dk∥ as in (4.7), the following hold.

(ι) Case m ≥ 1.

(a) If 0 ≤ k0 ≤ h:

P∥·∥
x

(
Xt, Aϑ,k

∣∣∣B(V0)
)

−→
x→∞


|ρ|αk(1 − |ρ|α)δϑ0(ϑ), 0 ≤ k ≤ h− 1,

|ρ|αhδϑ0(ϑ), k = h.

(b) If −m ≤ k0 ≤ −1:

P∥·∥
x

(
Xt, Aϑ,k

∣∣∣B(V0)
)

−→
x→∞

δϑ0(ϑ)δk0(k).

(ιι) Case m = 0.

P∥·∥
x

(
Xt, Aϑ,k

∣∣∣B(V0)
)

−→
x→∞



wϑ0

pϑ0

δ{ϑ0}(ϑ), k = 0

|ρ|αk(1 − |ρ|α)δ{ϑ0}(ϑ), 1 ≤ k ≤ h− 1,

|ρ|αhδ{ϑ0}(ϑ), k = h,

with pϑ0 = wϑ0/(1 − |ρ|α).

For m ≥ 1, meaning the observed path is assumed to be of length at least 2, there is a

significant distinction depending on whether k0 ∈ {0, . . . , h} or k0 ∈ {−m, . . . ,−1}. In the

latter case, this means that the shock is already observed. This implies that, given the observed

path, the shape of the future trajectory is completely determined, as the asymptotic probability

of the entire path Xt/∥Xt∥ being in an arbitrarily small neighborhood of ϑdk/∥dk∥ is 1 when

ϑ = ϑ0, k = k0. For the former case, this probability is strictly positive if and only if ϑ = ϑ0,

but the observed pattern is compatible with several distinct future trajectories. This can be

understood by examining the form of the sequences dk/∥dk∥ and their restrictions to the first
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m+ 1 components f(dk)/∥dk∥. On the one hand (omitting ϑ),

dk

∥dk∥
=



(

m+1︷ ︸︸ ︷
ρk+m, . . . , ρk,

h︷ ︸︸ ︷
ρk−1, . . . , ρ, 1, 0, . . . , 0)

∥(ρk+m, . . . , ρk, ρk−1, . . . , ρ, 1, 0, . . . , 0)∥ , for k ∈ {0, . . . , h},

(ρk+m, . . . , ρ, 1, 0, . . . , 0, 0, . . . , 0)
∥(ρk+m, . . . , ρ, 1, 0, . . . , 0︸ ︷︷ ︸

m+1

, 0, . . . , 0︸ ︷︷ ︸
h

)∥
, for k ∈ {−m, . . . ,−1}.

We can observe that all the above sequences are segments of explosive exponential functions,

each truncated at a certain coordinate. For k ∈ {0, . . . , h}, the first zero component, repre-

senting the “crash of the bubble”, is located at or after the (m + 2)th component, whereas for

k ∈ {−m, . . . ,−1}, it is located at or before the (m+ 1)th component. Using the homogeneity

of the seminorm and (1.3), we have on the other hand that

f(dk)
∥dk∥

=



(
m+1︷ ︸︸ ︷

ρm, . . . , ρ, 1)
∥(ρm, . . . , ρ, 1︸ ︷︷ ︸

m+1

, 0, . . . , 0, 0, . . . , 0︸ ︷︷ ︸
h

)∥ , for k ∈ {0, . . . , h},

(

m+1︷ ︸︸ ︷
ρk+m, . . . , ρ, 1, 0, . . . , 0)

∥(ρk+m, . . . , ρ, 1, 0, . . . , 0︸ ︷︷ ︸
m+1

, 0, . . . , 0︸ ︷︷ ︸
h

)∥
, for k ∈ {−m, . . . ,−1}.

Thus, conditioning the trajectory on the event {f(Xt)/∥Xt∥ ≈ f(dk0)/∥dk0∥} for some k0 ∈

{−m, . . . ,−1} amounts to conditioning on the burst of a bubble being observed in the past

trajectory, with no new bubble forming yet. This allows for the exact identification of the

position of the pattern within the moving average’s coefficient sequence.

When conditioning with k0 ∈ {0, . . . , h} however, the crash date is not observed and can occur

either within the next h − 1 periods or after h. The shape of the observed path, though,

corresponds to a segment of exponential growth with a rate of ρ−1 regardless of how much

time remains before the burst. This leaves several potential future paths. The likelihood of

each possible scenario can be quantified as follows: the quantity |ρ|αk(1 − |ρ|α) represents the

probability that the bubble will peak in exactly k periods (0 ≤ k < h), while |ρ|αh represents the

probability that the bubble will last at least h more periods. This confirms the interpretation of

the conditional moments proposed in Fries (2021). Additionally, it extends this interpretation

by considering entire paths rather than just point predictions. For m = 0, meaning only the

present value is observed, no pattern can be identified, only the sign of the shock. Hence, the

growth rate ρ−1 of the ongoing event becomes unidentifiable. This is reflected in the fact that
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the asymptotic probabilities of paths with growth rates ρ−1, are positive (as shown in case (ιι)

of Proposition 4.2).

4.3 The anticipative AR(2) and fractionally integrated white noise

We focus here on two processes that both share the interesting property of having a 0-1 tail

conditional distribution whenever the observed path has length at least 2 (i.e., m ≥ 1): the

anticipative AR(2) and the anticipative fractionally integrated white noise (FWN). With

an appropriate choice of parameters, the former can generate bubble-like trajectories with

accelerating or decelerating growth rates, while the latter can accommodate hyperbolic bubbles.

In contrast with the anticipative AR(1), these bubbles do not display an exponential profile,

but they still exhibit an inflation-peak-collapse behavior. Any extension of these two minimal

specifications should preserve the following properties.

Anticipative AR(2)

The anticipative AR(2) is the strictly stationary solution of

(1 − λ1F )(1 − λ2F )Xt = εt, εt
i.i.d.∼ S(α, β,σ, 0), (4.8)

where λi ∈ C and 0 < |λi| < 1 for i=1,2. In case λi ∈ C \ R, i = 1, 2, we impose that λ1 = λ̄2

to ensure (Xt) is real-valued. We further assume that λ1 + λ2 ̸= 0, to exclude the cases where

(X2t) and (X2t+1) are independent anticipative AR(1) processes. The solution of (4.8) admits

the moving average representation Xt =
∑

k∈Z dkεt+k with

dk =


λk+1

1 − λk+1
2

λ1 − λ2
1{k≥0}, if λ1 ̸= λ2,

(k + 1)λk 1{k≥0}, if λ1 = λ2 = λ.

(4.9)

Anticipative fractionally integrated white noise

The anticipative FWN process can be defined as the stationary solution of

(1 − F )dXt = εt, εt
i.i.d.∼ S(α, β,σ, 0), (4.10)

with α(d − 1) < −1. The solution of (4.10) admits the moving average representation Xt =∑+∞
k=0 dkεt+k with d0 = 1 and

dk = Γf (k + d)
Γf (d)Γf (k + 1) 1{k≥0}, for k ̸= 0, (4.11)

where Γf ( · ) denotes the Gamma function.
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It can be shown that both process are necessarily (m,h)-past-representable for m ≥ 1 and h ≥ 1.

The 0-1 tail conditional distribution property, when the observed path has length at least 2, is

demonstrated in the next proposition:

Proposition 4.3 Let (Xt) be the α-stable anticipative AR(2) or anticipative fractionally

integrated white noise. For any m ≥ 1 and h ≥ 1, let Xt as in (3.5) and dk =

(dk+m, . . . , dk, dk−1, . . . , dk−h) where (dk) is as in (4.9) or (4.11). Also V0 is a small neigh-

borhood of ϑ0dk0/∥dk0∥ as in (4.6) for some ϑ0 ∈ S1, k0 ∈ {−m, . . . , h}, and B(V0) = V0 ×Rh.

Then,

P∥·∥
x

(
Xt, A

∣∣∣B(V0)
)

−→
x→∞


1, if ϑ0dk0

∥dk0∥
∈ A,

0, otherwise,

for any closed neighborhood A ⊂ C
∥·∥
m+h+1 such that

∂A ∩ {ϑdk/∥dk∥ : ϑ ∈ S1, k ∈ {−m, . . . , h}} = ∅.

Remark 4.2 Contrary to the anticipative AR(1), the trajectories of the anticipative AR(2)

and fractionally integrated processes do not leave room for indeterminacy of the future path.

Asymptotically, given any observed path of length at least 2, the shape of the future trajectory

can be deduced deterministically. This holds even if the peak/collapse of a bubble is not yet

present in the observed piece of trajectory. Therefore, provided the current pattern is properly

identified,9 it appears possible in the framework of these models to infer in advance the peak

and crash dates of bubbles with very high confidence, in principle, with certainty.

5 Monte Carlo study and numerical analysis

In this section, we take advantage of our theoretical results in different ways. In particular,

we suggest two forecasting procedures and demonstrate their performances in finite samples.

We also use numerical simulations to provide a visual illustration of the unit cylinder in the

particular case of a {0, 1} tail conditional distribution.

5.1 Visualisation of the unit cylinder

In the spirit of the Remark 2.1, we consider an α-stable vector Xt = (Xt−1, Xt, Xt+1) whereXt is

an anticipative AR(2) specified as in 5.2. Xt being past-representable, it admits a representation
9See point (ι) of Remark 4.1.
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Figure 1: Unit cylinder and unit sphere representations of Xt = 0.7Xt+1 + 0.1Xt+2 + εt
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on the unit-cylinder, as the Theorem 3.1 applies. Furthermore, as discussed in 4.3, its spectral

measure exhibits the following asymptotic behavior

P∥·∥
x

(
Xt, A

∣∣∣B(V0)
)

−→
x→∞

Γ∥·∥
(
A ∩

{
ϑ0dk0

∥dk0∥

})

Γ∥·∥

({
ϑ0dk0

∥dk0∥

}) .

and hence P∥·∥
x

(
Xt, A

∣∣∣B(V0)
)

is either 1 or 0. This peculiar {0, 1} tail conditional distribu-

tion leads to the following graphical representation on the unit-cylinder (see Figure 1.a). The

simulation of Xt is performed for a sample size n = 1000.

We clearly see that C
∥·∥
3 spans all directions of R3 but the ones of (0, 0,−1) and

(0, 0,+1). This is of no consequence as the representability property holds and implies that

Γ
(
{(0, 0,−1), (0, 0,+1)}

)
= 0 as x → ∞. In other words, the seminorm representability reflect

the fact that extreme realizations of Xt+1 never occur conditionally to small realizations of

Xt−1 and Xt. Those inaccessible coordinates are indicated by the two red cross. In the opposite

case where we represent Xt on the unit sphere, S3 spans all directions of R3 and describes any

potential tail dependence of (Xt−1, Xt, Xt+1). This includes the tail dependence between Xt+1

and the past, which reflects the odd (and rare, as depicted in Figure 1.b) situation where the

realisation of Xt+1 is extreme whereas immediate past realizations are not.
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5.2 Forecasting crash probabilities

In this section, we illustrate through simulations that the probability on the left-hand side of

Proposition 4.1, converges to the right-hand side when the conditioning value ∥Xt∥ is large. For

the anticipative AR(2), this proposition boils down to Proposition 4.3, with the intriguing result

that the future path is purely deterministic. To illustrate these two propositions, we simulate

100 trajectories of N = 106 observations for four different specifications of MAR processes, as

defined in Corollary 3.2. The results of each simulation are reported in the associated tables:

the purely anticipative AR(2) (or MAR(0,2)) process in Table 1, the MAR(1,1) process in

Table 2, the MAR(1,2) process in Table 3, and the purely anticipative AR(3) (or MAR(0,3))

process in Table 4.10 As in the empirical section, where the best retained specification is an

anticipative AR(2), we begin by presenting the MC simulation procedure for this process. The

procedure for the other three specifications is similar. The simulated process, is the following:

Xt = 0.7Xt+1 + 0.1Xt+2 + εt where εt
i.i.d.∼ S(1.5, 0, 0.5, 0). We focus here on the case m = 2

and evaluate the crash probabilities at different forecasting horizons h = (1, 5, 10). The choice

of m is set a priori. According to Proposition 4.3, the only theoretical condition is that m ≥

1. To assess whether the choice of m has a practical impact on the predictability of crash

probability, we perform another simulation with m = 7 for the AR(2) process. The results of

this simulation is provided in Table 12 in Appendix A. This table shows results similar to those

in Table 1, suggesting that the choice of m has no significant effect on the predictability of crash

probabilities and that the theoretical condition appears to hold. However, as discussed in the

next section, when predicting the crash date, the choice of m does matter.

The left-hand side of Proposition 4.3 needs two types of conditioning. First we condition

on ∥Xt∥ to be large, and we choose Xt ≥ q with q is a theoretical quantile of the marginal

distribution of Xt, ranging from 0.90 to 0.9999 quantiles. Second we define the conditioning of

the small neighborhood B(V0):

B(V0) =
[
ϑ0dk0−m

∥dk0∥
− e,

ϑ0dk0−m

∥dk0∥
+ e

]
× · · · ×

[
ϑ0dk0

∥dk0∥
− e,

ϑ0dk0

∥dk0∥
+ e

]
.

Where ϑ0 = 1, as we investigate the crash probability of a ’positive’ bubble. Specifically, we

condition |Xt| on Xt ≥ q, where q is the upper quantile, and e is a very small neighborhood.

In practice, e is determined by the minimum Euclidean distance between ϑ0dk0
∥dk0 ∥ and Xt

∥Xt∥ . We

also set A = B(V0) × [−δ, δ], with δ = 0.2. This is equivalent to estimating the probability of a
10The length N of one simulated trajectory seems large because we are investigating the probability when

|Xt| is very large, greater than the 99.99% quantile. To do this, we need enough observations to ensure we have

sufficient data above this quantile.

20



crash (a decrease of more than 80%) at horizon h.11 For each simulated trajectory, we compute

the two following estimators, one for the probability on the left-hand side of Proposition 4.3

defined as

p̂q =

∑N−h
t=1 1({ (Xt−m,...,Xt)

∥Xt∥ ∈B(V0)
}

∩{
Xt+h
∥Xt∥ ≤δ}∩{Xt>q}

)
∑N−h

t=1 1({ (Xt−m,··· ,Xt)
∥Xt∥ ∈B(V0)

}
∩{Xt>q}

) (5.1)

and the other one for the probability on the right-hand side of Proposition 4.3 pq. The latter is

computed as follows:

pq =

∑N−h
t=1 1({ (Xt−m,··· ,Xt)

∥Xt∥ ∈B(V0)
}

∩{
dk0+h

∥dk0 ∥ ≤δ}∩{Xt>q}
)

∑N−h
i=1 1({ (Xt−m,··· ,Xt)

∥Xt∥ ∈B(V0)
}

∩{Xt>q}
) (5.2)

According to Proposition 4.3, these two probabilities have to converge to the same value, because

Xt/∥Xt∥ ∈ A, is equivalent to ϑ0dk0/∥dk0∥ ∈ A. To estimate the dk0 , and check whether

Xt/∥Xt∥ ∈ B(V0), we determine the sample of size m of the dk deterministic path which

Xt/∥Xt∥ is in B(V0). To do so, first, we compute Xt/∥Xt∥ for m = 2. Second, we evaluate the

Euclidian disctance between Xt/∥Xt∥ and ϑ0dk/∥dk∥ for k ∈ (k, k̄) where k = 30 and k̄ = 0

and we check whether some ϑ0dk/∥dk∥ belongs to a small neighborhood of Xt/∥Xt∥.Once we

have determined k0, we simply extend the deterministic path to k0+h and calculate dk0+h/|dk0 |.

Table 1 gathers the average of pq and p̂q empirical probabilities across the M simulations

along empirical 95% confidence. One notices that the empirical probabilities indeed come very

close to the theoretical ones as q increases. However, as h increases, there is a loss in accuracy,

and it tends to overestimate the crash probability.

Table 1: Comparison of theoretical and empirical crash probabilities at horizons h = 1, 5, 10 of

bubbles generated by the anticipative AR(2)

h = 1 h = 5 h = 10

p0.9\p̂0.9 46.362\17.247 (17.061-17.414) 99.946\52.369 (51.946-52.794) 100.000\69.239 (68.742-69.677)

p0.99\p̂0.99 35.476\27.413 (26.490-28.191) 99.825\73.396 (71.932-74.640) 100.000\90.438 (89.254-91.511)

p0.999\p̂0.999 30.093\29.490 (26.763-33.122) 99.415\77.712 (72.964-82.796) 100.000\94.708 (92.124-97.136)

p0.9999\p̂0.9999 30.155\30.141 (24.000-38.017) 98.311\79.247 (69.003-89.492) 100.000\95.782 (87.993-100.000)

Notes: The theoretical crash probabilities pq are computed using (5.2). Empirical average (Mean) and 95% confidence intervals

(95%-CI) of the estimated probabilities are computed using (5.1) on M = 100 simulated trajectories of N = 106 observations,

for q = qa several a-quantiles of the marginal distribution of Xt. These probabilities are reported in percent. We set m = 2.

The simulated process is the following: Xt = 0.7Xt+1 + 0.1Xt+2 + εt where εt
i.i.d.∼ S(1.5, 0, 0.5, 0)

11Determining this parameter can be challenging, as it raises the question of what drop size constitutes a

bubble. For this simulation exercise, we have selected a significant drop size. Further numerical results could

help in defining this parameter more accurately.
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Proposition 4.1 is more general than Proposition 4.3; the former includes any process,

whereas the latter only applies to processes with at least two leads (q > 2). The MAR(1,1)

process is not included in the latter proposition, as it does not have the 0-1 tail deterministic

conditional distribution, and it is subject to different types of uncertainty (see Remark 4.1).

It is important to highlight whether this distinction matters in practice for predicting crash

probabilities. To investigate this, we apply the same procedure as for the AR(2) process to the

following simulated process: Xt = 0.9Xt+1 + 0.1Xt−1 + εt, where εt
i.i.d.∼ S(1.5, 0, 0.5, 0). The

choice of 0.9 for the anticipative parameter is not arbitrary; we aim for a long and gradual

increase in the bubble. However, the results remain similar even when choosing a parameter

that models a faster increase in the bubble’s growth rate. Table 2 presents the average of pq and

p̂q empirical probabilities across the M simulations, along with the empirical 95% confidence

intervals.

Table 2: Comparison of theoretical and empirical crash probabilities at horizons h = 1, 5, 10 of

bubbles generated by the MAR(1,1)

h = 1 h = 5 h = 10

p0.9\p̂0.9 0.000\0.478 (0.441-0.518) 0.000\19.961 (19.563-20.414) 79.101\53.569 (52.96-54.266)

p0.99\p̂0.99 0.000\0.064 (0.017-0.126) 0.000\5.005 (4.181-5.728) 70.413\64.874 (63.214-66.255)

p0.999\p̂0.999 0.000\0.007 (0.000-0.109) 0.000\0.521 (0.000-1.559) 69.347\69.284 (64.843-72.694)

p0.9999\p̂0.9999 0.000\0.006 (0.000-0.010) 0.000\0.053 (0.000-0.567) 67.580\67.561 (53.115-75.074)

Notes: The theoretical crash probabilities pq are computed using (5.2). Empirical average (Mean) and 95% confidence intervals

(95%-CI) of the estimated probabilities are computed using (5.1) on M = 100 simulated trajectories of N = 106 observations,

for q = qa several a-quantiles of the marginal distribution of Xt. These probabilities are reported in percent. We set m=2. The

simulated process is the following Xt = 0.9Xt+1 + 0.1Xt−1 + εt, where εt
i.i.d.∼ S(1.5, 0, 0.5, 0)

Table 2 shows that we can accurately capture the probability of a crash for a short-term

forecast horizon (h = 1) compared to longer horizons (h > 1), except when considering the

asymptotic distribution of Xt, q > q0.999. This suggests that Proposition 4.1 is verified. It also

appears that, in practice, the uncertainty discussed in Remark 4.1 is manageable. One could

hypothesize that increasing the persistence in the lead part of the processes should improve

the accuracy of predicting crash probability, and/or introducing a persistence decrease in the

non-anticipative part of the process could make it more challenging to assess crash probability.

To explore this, we simulate and apply our procedure to two processes: the purely anticipative

AR(3), following the equation: Xt = 0.8Xt+1 + 0.2Xt+2 − 0.1Xt+3 + εt and the MAR(1,2),

following the equation: Xt = 0.7Xt+1 + 0.1Xt+2 + 0.4Xt−1 + εt, where εt
i.i.d.∼ S(1.5, 0, 0.5, 0).

Table 3 presents the results for the MAR(1,2), which show similar, and even better, outcomes

compared to those in Table 1.
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Table 3: Comparison of theoretical and empirical crash probabilities at horizons h = 1, 5, 10 of

bubbles generated by the MAR(1,2)

h = 1 h = 5 h = 10

p0.9\p̂0.9 9.997\10.429 (10.133-10.743) 96.264\59.71 (58.816-60.517) 100.000\82.535 (81.343-83.754)

p0.99\p̂0.99 8.915\9.066 (8.436-9.815) 89.724\66.83 (63.998-69.511) 99.998\90.299 (87.706-92.689)

p0.999\p̂0.999 8.522\8.534 (5.782-10.661) 76.974\67.486 (59.013-78.226) 100.000\91.695 (83.716-99.396)

p0.9999\p̂0.9999 7.815\7.815 (0.000-13.437) 71.505\68.23 (45.776-100.000) 100.000\92.863 (70.983-100.000)

Notes: The theoretical crash probabilities pq are computed using (5.2). Empirical average (Mean) and 95% confidence intervals

(95%-CI) of the estimated probabilities are computed using (5.1) on M = 100 simulated trajectories of N = 106 observations,

for q = qa several a-quantiles of the marginal distribution of Xt. These probabilities are reported in percent. We set m=2. The

simulated process is the following Xt = 0.7Xt+1 + 0.1Xt+2 + 0.4Xt−1 + εt, where εt
i.i.d.∼ S(1.5, 0, 0.5, 0)

Table 4 primarily confirms the results on the asymptotic convergence of probability. How-

ever, surprisingly, increasing persistence in the anticipative part of the process does not improve

the accuracy of predicting the crash probability rather, it has a small opposite effect.

Table 4: Comparison of theoretical and empirical crash probabilities at horizons h = 1, 5, 10 of

bubbles generated by the anticipative AR(3)

h = 1 h = 5 h = 10

p0.9\p̂0.9 24.300\8.599 (8.433-8.743) 91.947\34.573 (34.128-35.056) 98.791\54.792 (54.087-55.440)

p0.99\p̂0.99 16.321\13.740 (13.093-14.345) 85.883\50.585 (48.61-52.659) 98.962\75.168 (73.035-77.219)

p0.999\p̂0.999 14.821\14.612 (12.53-16.693) 68.756\53.400 (47.320-58.863) 98.823\78.857 (72.304-85.104)

p0.9999\p̂0.9999 15.323\15.287 (10.716-22.733) 57.840\54.813 (41.167-72.491) 97.982\79.757 (63.015-99.580)

Notes: The theoretical crash probabilities pq are computed using (5.2). Empirical average (Mean) and 95% confidence intervals

(95%-CI) of the estimated probabilities are computed using (5.1) on M = 100 simulated trajectories of N = 106 observations,

for q = qa several a-quantiles of the marginal distribution of Xt. These probabilities are reported in percent. We set m=3. The

simulated process is the following Xt = 0.8Xt+1 + 0.2Xt+2 − 0.1Xt+3 + εt, where εt
i.i.d.∼ S(1.5, 0, 0.5, 0)

5.3 Forecasting crash dates

One can also apply Proposition 4.1 to infer information on future paths from the observed

trajectory, as long as it deviates far enough from central values. We focus on the case where k

belongs to {−m, . . . ,−1} and document that in practice, for large values of x and sufficiently

persistence anticipative process, the approximation

Xt/∥Xt∥ ≈ ϑ(dk+m, . . . , dk+1, dk)/∥dk∥, Xt = (Xt−m, . . . , Xt−1, Xt),

can be used to derive the next crash date and then estimate the future path up to t+h. We also

discuss to what extent the sources of uncertainty listed in Remark 4.1 affect the performance
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of our procedure in the presence of finitely large realizations. As for a range of realizations,

we ignore to which piece of the moving average trajectory it corresponds, we pay particular

attention to the selection of k0 and the impact of m. ϑ0 is assumed to be known here as in

general it can be deduced from the data.

Our forecasting procedure proceeds in 4 steps. First, we compute Xt/∥Xt∥ for a given

m ≥ 1. Second, we evaluate ϑdk/∥dk∥ for k ∈ (k, k̄) where k = 30 and k̄ = 0. Third,

we check whether some ϑdk/∥dk∥ belong to a small neighborhood A of Xt/∥Xt∥. If k0

cannot be identified because several values k satisfy this condition, we reduce the neighbor-

hood until a unique k = k0 remains. At this stage, we structure Xt as in (3.5) and dk0 as

(dk+m, . . . , dk, dk−1, . . . , dk−h). The last step simply consists of using the deterministic trajec-

tory of dk0 to iterate up to dk−h = 0 and hence obtain the bubble burst date. From Proposition

4.3 we know that if Xt is anticipative enough, its future path will follow the one of dk0 with a

very high level of confidence such that

(Xt−m, . . . , Xt−1, Xt, Xt+1, . . . , Xt+h)/∥Xt∥ ≈ ϑ0(dk+m, . . . , dk+1, dk, dk−1, . . . , dk−h)/∥dk∥,

hence offering the possibility to predict Xt+1, . . . , Xt+h.

This procedure is likely to be sensible to the selection of m. We investigate this issue

by considering m = {1, 3, 5, 7, 9, 11}. We also anticipate that, how far we deviate from the

Gaussian distribution, in terms of tail index, is likely to affect the results, and hence we consider

α = {0.9, 1.2, 1.5, 1.8} (see Remark 4.1 (iii)). As in the previous section, we simulated three out

of the four different processes that we considered, and the associated results of each simulation

are reported in the corresponding tables: the purely anticipative AR(2) (or MAR(0,2)) process

in Table 6, the MAR(1,2) process in Table 7, and the purely anticipative AR(3) (or MAR(0,3))

process in Table 8. The MAR(1,1) process was ruled out because Proposition 4.3 does not

apply directly, as we do not obtain certainty in the path but rather some probabilities. Let

start by presenting the simulation procedure for the anticipative AR(2). Each simulated path is

governed by a SαS anticipative AR(2) of the following form: Xt = 0.7Xt+1 +0.1Xt+2 +εt where

εt
i.i.d.∼ S(α, 0, 0.1, 0). For a given artificial time series xt, we identify a positive bubble peak as

max(xt) and treat as unobserved the remaining values of the series and the ⌈N × 0.01⌉ periods

preceding the bubble burst. We then explore all these scenarios for N = {250, 500, 1000}

(i.e. k0 = {3, 5, 10}) and 1000 trajectories. In theory, N should not impact the prediction

performance but we use it here to control the quantile of the last in-sample observation. More

precisely, our simulation framework results in the quantiles reported in Table 5 and allows us

to investigate the impact of departing from the asymptotic theory (x → ∞). For instance, we

can see that for N = 1000, the last in-sample observation used to predict an extreme event
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that surge 10 periods ahead, actually corresponds to the quantile 0.91 when α = 1.5. In such

a configuration, the realizations of Xt are likely to be only moderately large compared to the

asymptotic requirements (x → ∞).

Table 5: Quantile of the last in-sample observation
N/α 0.9 1.2 1.5 1.8

250 0.99 0.99 0.99 0.94

500 0.98 0.98 0.94 0.89

1000 0.97 0.96 0.91 0.78

Accordingly, in the simulation results, we report the labels “High”, “Quite High”, “Mod-

erately High”, rather than the sample sizes. For each simulation, we compute the bias as the

difference between the predicted crash date and the true simulated date.

The results are reported in Table 6. First, the results shed light on the crucial role of limit

theory, as the predicted crash date is considerably more biased when the shape of the trajectory

is inferred from an observation that corresponds to a moderately high quantile. Second, for

a given m, the performance deteriorates as α increases, thereby involving quantiles far from

the asymptotic theory (e.g., qXt ≈ 0.78 when N = 1000 and α = 1.8) and introducing more

noise. Our theory states that when x → ∞, m = 1 can be sufficient. However, in practice,

the simulation study reveals that the optimal selection of m is not obvious, as it interacts in a

complex manner with the tail index α. For instance, when Xt is very high and the tail index

is close to 1, a shorter m improves the performance of the forecasting procedure. Conversely, if

the tail index is close to 2, it is slightly better to select a medium-range m. The same analysis

holds for Xt that is large or moderately large.

Table 7 presents the results for the MAR(1,2). We want to check if adding a causal part

impacts the estimation of the crash date. Theoretically, it should lead to no difference, as only

the persistence in the anticipative part matters in estimating the crash date. This is verified, as

Table 6 shows similar results except for the choice of m. For the MAR(1,2), choosing a lower m

is always better. We also apply the same procedure to an anticipative AR(3) process to check

if adding persistence in the anticipative part improves the estimation of the crash date. Table 8

showcases the results for this process. Overall, the bias is smaller in any case compared to the

anticipative AR(2). However, in comparison to AR(2) and even for the MAR(1,2), the choice

of m is not clear-cut. It seems better to choose a large or medium-range m when α is close to

2, and for small α, it is better to choose a small m.
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Table 6: Bias for the crash date predictor for the purely anticipative AR(2) process

High

α/m 1 3 5 7 9 11

0.9 0.1540 0.3590 0.5310 0.5570 0.6730 0.7280

1.2 0.5850 0.7950 0.8500 0.9880 0.9860 1.0040

1.5 1.0170 1.0510 1.1280 1.1500 1.2330 1.2470

1.8 1.2660 1.2480 1.3130 1.3040 1.3200 1.3570

Quite High

α/m 1 3 5 7 9 11

0.9 1.7670 2.0210 2.2130 2.3010 2.3880 2.4680

1.2 2.5120 2.6530 2.7960 2.8500 2.9580 2.9460

1.5 2.9550 3.0560 3.1160 3.1160 3.1470 3.1750

1.8 3.2970 3.2250 3.2760 3.3070 3.3310 3.2860

Moderately High

α/m 1 3 5 7 9 11

0.9 6.8500 7.1450 7.2460 7.3340 7.4360 7.5420

1.2 7.6960 7.8270 7.9320 7.9790 8.0530 8.0810

1.5 8.1690 8.1730 8.2160 8.2390 8.2910 8.2860

1.8 8.4230 8.3550 8.3640 8.3790 8.4210 8.4700

Notes: The simulated process is the following:Xt = 0.7Xt+1 + 0.1Xt+2 + εt, where εt
i.i.d.∼ S(α, 0, 0.5, 0).

High, Quite High, and Moderately High correspond to a number of simulated observations of 250, 500,

and 1000, respectively.

6 Forecasting climate anomalies

A growing body of literature highlights the impact of climate variables on economic performance

(Dell et al., 2014). A key variable for identifying this impact is the occurrence of El Niño (and,

correspondingly, La Niña) weather shocks. These shocks are known to affect various economic

indicators, including growth, inflation, energy markets, and agricultural commodity returns

(Brenner, 2002; Cashin et al., 2017; Makkonen et al., 2021). Providing a forecast of El Niño

(and La Niña) weather shocks is of primary importance, as it offers numerous societal benefits,

ranging from extreme weather warnings to agricultural planning (Alley et al., 2019). El Niño

(or La Niña) intensity is defined as a value constructed from the Southern Oscillation Index
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Table 7: Bias for the crash date predictor for the MAR(1,2) process

High

α/m 1 3 5 7 9 11

0.9 0.3170 0.5870 0.6650 0.7870 0.8420 0.8880

1.2 0.7240 0.9630 1.0490 1.1050 1.1620 1.1180

1.5 1.0880 1.2100 1.2760 1.2320 1.2530 1.2990

1.8 1.2670 1.3400 1.3860 1.3630 1.3720 1.3740

Quite High

α/m 1 3 5 7 9 11

0.9 1.9840 2.3310 2.5250 2.5570 2.5540 2.6780

1.2 2.6130 2.8560 2.9550 2.9940 3.0280 3.0480

1.5 3.0080 3.2010 3.2180 3.2230 3.3120 3.2940

1.8 3.3040 3.3480 3.3440 3.3550 3.3930 3.4100

Moderately High

α/m 1 3 5 7 9 11

0.9 7.1650 7.2600 7.5560 7.5900 7.7090 7.6910

1.2 7.8420 7.9810 8.1190 8.1320 8.1760 8.1810

1.5 8.1990 8.2750 8.2870 8.3690 8.3500 8.3910

1.8 8.4080 8.4180 8.4180 8.4300 8.4470 8.4670

Notes: The simulated process is the following:Xt = 0.7Xt+1 + 0.1Xt+2 + 0.4Xt−1 + εt, where εt
i.i.d.∼

S(α, 0, 0.5, 0). High, Quite High, and Moderately High correspond to a number of simulated observations

of 250, 500, and 1000, respectively.

(SOI).12

This section discusses the performance of our forecasting procedures in detecting the peak

and the end of an El Niño (and La Niña) shock, and assesses the probability of staying in

these episodes h periods ahead. We split the data into an in-sample period (from 01/1951 to

12/1991) and an out-of-sample period (from 01/1992 to 01/2024) to test the robustness of our

forecasting procedure. Figure 6 displays the data sample, where the shaded area corresponds to

the out-of-sample data. The alternation of boom and bust, which appears to be an identifiable

deterministic pattern, is clearly distinguishable.

Figure 6 shows that SOI values, range approximately from -4 to 2. Most observations
12Data and methodology for constructing the SOI are available at https://www.ncei.noaa.gov/access/

monitoring/enso/soi. The SOI is a monthly variable derived from air-pressure differentials in the South Pacific,

measured between Tahiti and Darwin.
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Figure 2: Southern Oscillation Index (SOI)
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each persisting for at least three periods.

Figure 3: Distribution of the Southern Oscillation Index (SOI)
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Table 8: Bias for the crash date predictor for the purely anticipative AR(3) process

High

α/m 1 3 5 7 9 11

0.9 -0.3180 -0.3170 -0.4670 -0.6250 -0.6740 -0.5570

1.2 -0.1440 -0.3650 -0.5310 -0.4950 -0.4850 -0.3820

1.5 0.3630 -0.1000 -0.2420 -0.2150 -0.2960 -0.1490

1.8 0.8220 0.2710 -0.0890 -0.1710 0.0480 0.0160

Quite High

α/m 1 3 5 7 9 11

0.9 0.2200 0.2790 0.4240 0.3490 0.4730 0.5830

1.2 0.9180 0.8680 0.9250 1.0030 1.0500 1.1030

1.5 1.8640 1.6100 1.4960 1.4720 1.5320 1.5520

1.8 2.6780 2.2010 1.8550 1.8870 1.9600 2.0040

Moderately High

α/m 1 3 5 7 9 11

0.9 3.7370 4.2240 4.4710 4.6080 4.7000 5.0470

1.2 5.5510 5.7180 5.7680 5.8700 5.9220 5.9730

1.5 6.7790 6.5850 6.5550 6.5830 6.6000 6.6310

1.8 7.7710 7.2760 7.0830 7.1390 7.1680 7.1380

Notes: The simulated process is the following:Xt = 0.8Xt+1 + 0.2Xt+2 − 0.1Xt+3 + εt, where εt
i.i.d.∼

S(α, 0, 0.5, 0). High, Quite High, and Moderately High correspond to a number of simulated observations

of 250, 500, and 1000, respectively.

are clustered around 0, reflecting the index’s central tendency, while fewer are found at the

extremes, underscoring the rarity of extreme El Niño (SOI below -1) or La Niña (SOI above

1) events. Notably, an SOI of -1 corresponds to the 10th quantile, while 1 is equal to the 80th

quantile. To assess the non-normality of the SOI, we compute the skewness (-0.2024) and the

kurtosis (3.4823), and conduct a Jarque-Bera test. The results, summarized in Table 13 in the

Appendix, yield a p-value below 0.05, strongly rejecting the null hypothesis of normality. This

deviation is likely due to the slight skewness and excess kurtosis

Estimating mix-causal processes is challenging, and only a few estimation procedures are

available. For the sake of robustness, we rely on two different methods: the semi-parametric

Generalized Covariance Estimator (see Gourieroux and Jasiak, 2023), referred to as GCoV,

and the approximate maximum likelihood method (AML), introduced by Lanne and Saikkonen

(2011). Both methods face limitations due to the assumption that the error term follows a
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S(α, β, σ, 0) distribution. For AML, Andrews et al. (2009) demonstrates that while asymptotic

results exist, the limit distribution is largely intractable because the rate of convergence depends

on the tail α parameter.13 Gourieroux and Jasiak (2023) shows that the consistency and asymp-

totic properties of the semi-parametric estimator require the existence of the first four moments

of the residuals, which is not the case for α-stable laws, as only the first 2α + 1 unconditional

moments exist. However, as pointed out in Remark 2 on p. 1318 of Gourieroux and Jasiak

(2023), if the error term has no finite fourth-order moment, the consistency and asymptotic

properties of the GCoV estimator are preserved if some nonlinear transformation of the error

terms exists. In both cases, we extend the procedure to accommodate an α-stable distribution.

However, a formal analysis of these extensions, along with their associated asymptotic theory,

is deferred to future research. To maintain a reasonable length for the paper, we report only the

GCoV results and include the AML results in the online appendix. Nonetheless, the retained

specification, a purely anticipative AR(2), and the coefficients estimated using AML are similar.

Let us begin by recalling the MAR(p, q) model from Lanne and Saikkonen (2011), which

imposes a multiplicative representation of the two-sided alpha-stable MA(∞) form in equation

(3.2).14 This representation corresponds to Corollary 3.2, where Θ = H = 1. It is referred to

as a mixed-causal autoregressive process, MAR(p, q), assuming an α-stable distributed error

term. This process is defined as follows:

Ψ(F )Φ(B)Xt = εt, εt
i.i.d.∼ S(α, β,σ, 0), (6.1)

where Φ(B) = 1 − ϕ1B − · · · − ϕqB
q, Ψ(F ) = 1 − ψ1F − · · · − ψpF

p, have their roots outside

the unit circle so that

Φ(z) ̸= 0 for |z| ≤ 1 and Ψ(z) ̸= 0 for |z| ≤ 1.

This assumption ensures stationarity in both the causal and noncausal components. A key

challenge in this context is the identification of p and q. One solution, proposed by Lanne and

Saikkonen (2011) and Hecq et al. (2017b, 2020), is to first select pap = p+ q by relying on the

ACF and PACF of the SOI in the training sample, and then confirm the choice using the BIC

criterion.15

13Bootstrap procedures are proposed in Andrews et al. (2009) and further extended in Cavaliere et al. (2017).

However, these procedures are applicable only to purely anticipative processes, not to mixed processes.
14In the approach of Gourieroux and Jasiak (2023), no such restriction is imposed. In the univariate case,

both representations are equivalent. However, in the multivariate case, certain conditions must be met for the

equivalence of the two representations (see Giancaterini, 2023).
15

pap corresponds to the number of lags in the all-pass representation of the MAR(p, q) model, which is known

to correspond exactly to p + q (see Fries and Zakoian, 2019).

30



Figure 4: ACF and PACF of the in-sample SOI Data
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Figure 4 displays the Autocorrelation Function (ACF) and Partial Autocorrelation Function

(PACF) for the in-sample SOI data. Based on the PACF, we set pap = p+q, which is equal to 2

in this case. We also apply standard information criteria, such as BIC, to validate this choice.16

Once pap is selected, we follow the procedure outlined by Lanne and Saikkonen (2011) and (see

Hecq et al., 2020) to select the best specification for the SOI. This is done by estimating all

the 2pap − 1 possible combinations for MAR(p, q) using the likelihood, along with the ACF

of both the residuals and the squared residuals.17 Theoretically, only the true specification

should result in the i.i.d. nature of the residuals. This is reflected in a clear ACF and PACF

for both the residuals and the squared residuals. Achieving this is the primary goal of the

GCoV estimator. Specifically, this estimator relies on the i.i.d. assumption for the errors as the

parameters of interest and minimizes a residual-based portmanteau statistic. It is a one-step

estimator that has been shown to be consistent, asymptotically normally distributed, and semi-

parametrically efficient. More precisely, the estimator minimizes a portmanteau-type objective

function involving the autocovariances of nonlinear transformations of model errors, viewed as

functions of the model parameters. If θ = (Φ,Ψ) ∈ Θ represents the set of parameters of our

MAR model from equation 6.1, where Θ is the entire parameter space, the GCoV estimator

minimizes the following portmanteau statistic:
16Table 14 in Appendix B.3 confirms the selection of 2.
17See again Table 14, in the Appendix B.3, which confirms the choice of purely anticipative AR(2)
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θ̂ = argmin
Θ

H̃∑
h=1

Tr
[
γ̂g(h; θ)γ̂g(0; θ)−1γ̂g(h; θ)′γ̂g(0; θ)−1

]
(6.2)

where H̃ is the highest selected lag, γ̂g(h; θ) is the sample autocovariance between g(εt) and

g(εt−h), with g(εt) = [g1(εt), · · · , gK(εt)], where εt, is the residuals obtained using equation

(6.1). Since only 2α+ 1 moments exist for the α-stable law, it is impossible to rely on nonlinear

transformations such as εk
t with k > 1 and k being an integer. This also violates the assumption

of the existence of fourth-order moments, as required by the GCoV approach, to be consistent

and asymptotically normally distributed. To address the issue of moment existence, as pointed

out in Remark 2 on p. 1318 of Gourieroux and Jasiak (2023), if εt has no finite fourth-order

moment, the consistency and asymptotic properties of the GCoV estimator are preserved if the

transformed errors gk(εt) have finite fourth-order moments. We choose the following nonlinear

transformation for the residuals: gk = log(|εt|)k, where k ∈ {0, . . . ,K}. Indeed, Corollary 3.6 in

Nolan (2021) ensures that gk, k ∈ {0, . . . ,K} exists even if εt does not have finite fourth-order

moments. With this choice of gk, we are able to compute the standard errors associated with

the parameters in θ using the formula in Corollary 1 of Gourieroux and Jasiak (2023). If θ0

represents the parameters estimated by GCoV, the standard errors can be computed as described

in Gourieroux and Jasiak (2023), requiring the first-order derivative of γ(h; θ0). We use finite

differences to approximate this first-order derivative. Proving and assessing the performance

of the GCoV approach for univariate and multivariate α-stable mixed-causal models is left for

future research. Recall that the aim of the GCoV approach is to target i.i.d. residuals.18 We

test all 2pap −1 possible combinations for MAR(r, s) with different combinations of H = {1, 2, 3}

and K = {1, 2, 3}. Subsequently, we test for the i.i.d.-ness of the residuals, focusing specifically

on the autocorrelations of both the residuals and the squared residuals. The only choice of

(r, s,K,H) leading to close i.i.d. residuals is the parameter set (0, 2, 2, 2). Figure 6, in Appendix

B.2 displays the ACF of the residuals, showing no significant autocorrelation, which is confirmed

by the results of the Ljung-Box test on the residuals, as reported in Table 9. Figure 6 also shows

the ACF of the squared residuals. A barely significant autocorrelation at lag one is observed,

leading to the rejection of the null hypothesis in the Ljung-Box test for the squared residuals (see

Table 9). However, we also implement the Portmanteau Test from Jasiak and Neyazi (2023),

which is a residual-based specification test for semiparametric models with i.i.d. errors. The

i.i.d. nature of the residuals is confirmed by the non-rejection of the null hypothesis for this

test (see Table 9).

Table 9 presents the estimated parameters for ψ1 and ψ2, which closely resemble those
18The residuals are extracted from the SOI data using the estimated parameters and the equation (6.1)
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obtained using the AML approach, as detailed in Table 15 in Appendix B.3.

Table 9: AR(2) Estimation for SOI, uisng GCov

ψ1 ψ2 α β σ

0.4224 0.2924 1.9754 -0.0216 0.4735

(0.0480) (0.0487) (0.0018) (1.6763) (0.0011)

Residuals test Stats CVα=5% p-value

LB-Test on εt (lag=5) 8.5836 7.8147 0.0354

LB-Test on ε2
t (lag=5) 17.142 7.8147 0.0007

Jasiak and Neyazi (2023)’s test 5.5933 12.5915 0.4702

JB-Test 21.261 5.9900 0.0000

Notes: Estimated parameters of the α-stable anticipative AR(2) process associated with the SOI

series for the period 01/1951–12/1991. Standard deviations are provided in parentheses. The

specification tests are as follows: the Ljung-Box test on residuals, the Ljung-Box test on the squared

residuals, the Portmanteau test of Jasiak and Neyazi (2023), and a non-Gaussianity test.

GCoV is a semi-parametric approach that does not rely on any distributional assump-

tions, unlike our approach, which assumes that εt is α-stable. First, the Jarque-Bera test in

Table 9 confirms that the residuals are indeed non-Gaussian. Next, we fit an α-stable distribu-

tion S(α, β, σ, 0) to the residuals using the characteristic function-based estimation for α-stable

distributions described in Nolan (2021). The estimated parameters are reported in Table 9.

These results are consistent with those obtained using the AML approach (see Table 15 in the

Appendix B.3). Figure 7, in Appendix B.2, confirms the good fit of the estimated α-stable

distribution. However, we encounter an identification issue with the β parameters, though this

is not significant. This is unsurprising, as β is inherently difficult to identify. This challenge

arises from the fact that it becomes nearly impossible to reliably estimate β when α is close to

2. As α approaches 2, the distribution increasingly resembles a Gaussian distribution, which

is symmetric. In this limit, the skewness parameter β has a negligible effect on the shape of

the distribution, making it practically unidentifiable due to the dominance of the symmetric

properties inherent in the Gaussian limit of α-stable laws.

A La Niña shock is defined as the SOI exceeding 1 for at least three consecutive periods.

We then estimate the probability of the SOI returning to central values after h periods, where

h = 3 and h = 5, using the procedure detailed in Section 5.2. We define the same neighborhood

B(V0) of Xt
∥Xt∥ and consider ∥Xt∥ to be large when Xt ≥ q, where first q = q0.90 and second

q = q0.95 correspond to the 90th and 95th percentiles of the theoretical marginal distribution

of Xt, estimated using the parameters from Table 9. Given that we rely on 492 in-sample

observations (out of a total of 877), higher quantiles are sparse and cannot be considered here.

We choose δ = 0.5. The results are reported in Table 10 and show a high empirical (average)
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probability of returning to central values 3 periods ahead. However, this probability is less

than unity, indicating that La Niña episodes can occur (or persist if the SOI was already above

1 for several periods). When h = 5, p̂0.95 = 84.6154, meaning that very persistent La Niña

occurrences are unlikely to appear.

Table 10: Comparison of theoretical and empirical SOI reversal probabilities
h = 1 h = 3 h = 5

In-sample p0.90\p̂0.90 32.0755\41.5094 69.8113\64.1509 86.7925 \67.9245

p0.95\p̂0.95 20.8333\54.1667 54.1667\75.0000 83.3333 \87.5000

Out-of-sample p0.90\p̂0.90 32.6733\47.5248 72.2772 \62.3762 93.0693\73.2673

p0.95\p̂0.95 32.6923\53.8462 63.4615 \67.3077 92.3077\84.6154

Notes: The theoretical reversal probabilities pq are computed using (5.2). Empirical average (Mean) and 95% confidence

intervals (95%-CI) of the estimated probabilities are computed using (5.1) on the in-sample period (from 01/1951 to 12/1991)

and on out-of-sample period (from 01/1992 to 01/2024) for several a-quantiles of the estimated theoretical marginal distribution

of the SOI. These probabilities are reported in percent. We set m=2.

The reversal probabilities are useful to determine the probability of eluding dramatic climatic

events such as strong and persistent La Niña or El Niño occurrences. In this context, forecasting

the reversal date, that is the end of La Niña or El Niño, is also of particular interest. We hence

take advantage of Proposition 4.3 to predict the reversal date of the El Niño occurrence that

presumably starts at the end of the in-sample period. As this last observation is below -1, we

admit that x is far from central values. Following the methodology of the simulation study (see

5.3), we determine k0 for various values of m ∈ [1, 10]. As α̂ ≈ 1.9 exhibits light tails, we might

encounter some difficulties in applying our pattern recognition procedure: far from the peak (m

large) we are more likely to observe values from the center of the distribution. On the other

hand, m = 1 might lead to imprecise results as few past information is used to determine the

piece of trajectory and the process is not strongly anticipative given the estimated coefficients.

Our findings offer some robustness in this particular case as for m = {1, 2} and m ∈ [5, 10] our

procedure always points toward k0 = 1. For m = 3 and m = 4 we find k0 = 5 and k0 = 3

respectively. We hence retain k0 = 1 and m = 10, therefore implying an imminent reversal

date as we are close to the last piece of the trajectory described by ϑ0dk0 , with ϑ0 = −1. The

selected piece of the trajectory is represented in Figure 5. We then deduce the reversal date

and we compute the future values of Xt up to Xt+h = 0, with h = k0 + 1, that is when the SOI

goes back to its central value. We find that El Niño should reverse just after February 1992,

reaching a peak at x̂t+1 = −4.60. When compared with the out-of-sample period, the reversal

date appeared to be very accurately predicted. However, the magnitude of the peak reached

during this El Niño occurrence is overestimated as xt+1 = −3.04.

To ensure the robustness of our approach, following the same procedure used to predict the
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Figure 5: El Niño reversal forecast
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reversal date in Figure 5, we predict all El Niño and La Niña anomalies in the out-of-sample

dataset (from 01/1992 to 01/2024). The results are summarized in Table 11. For an El Niño (or

La Niña) event, we start our forecasting procedure at the first date when the SOI is below -1

(or above 1) before the end date of an identified El Niño phenomenon, called the start date in

Table 11; the end date is when the SOI returns between -1 and 0 (or 1 and 0). We also forecast

the peak date, defined as the minimum (or maximum) value of the SOI before the start and end

dates. Table 11 shows that for all El Niño and La Niña occurrences (14) in the out-of-sample

dataset, our procedure leads to an average error of 0.42 months in finding the peak date and

0.57 months in finding the end date compared to the true peak and end dates. We also report

in Table 11 the selected k0 and m from our procedure.

Table 11: Forecasting out-of-sample El Niño and La Niña anomalies

Type of anomaly El Niño El Niño La Niña El Niño La Niña La Niña El Niño La Niña La Niña La Niña La Niña

Start date 12/1991 07/1994 11/2007 12/2009 07/2010 11/2010 07/2015 11/2021 02/2022 08/2022 11/2022

Peak date 01/1992 09/1994 02/2008 02/2010 09/2010 12/2010 10/2015 01/2021 03/2022 10/2022 12/2022

End date 04/1992 10/1994 03/2008 03/2010 11/2010 04/2011 11/2015 03/2021 05/2022 11/2022 02/2023

Forecasted Peak 01/1992 09/1994 02/2008 03/2010 08/2010 01/2011 09/2015 01/2021 04/2022 10/2022 01/2023

Forecasted End 02/1992 10/1994 03/2008 04/2010 09/2010 02/2011 10/2015 02/2021 05/2022 11/2022 02/2023

Peak forecast error 0 0 0 1 -1 1 -1 0 1 0 -1

End forecast error -2 0 0 1 -1 -2 -1 -1 0 0 0

k0 1 2 3 3 1 2 2 2 2 2 2

m 10 10 10 9 10 10 10 10 10 10 10
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7 Conclusion

For α-stable infinite moving averages, the conditional distribution of future paths, given the

observed past trajectory during extreme events, is derived using a novel spectral representation

of stable random vectors on unit cylinders with respect to seminorms. In contrast to conven-

tional norm-based representations, this approach yields a multivariate regularly varying tails

property that is well-suited for prediction purposes. However, not all stable random vectors

can be represented on seminorm unit cylinders. A representation theorem is provided, showing

that predictions are feasible if and only if the process is sufficiently “anticipative.” Finite-length

paths of α-stable moving averages, which themselves exhibit multivariate α-stable properties,

are incorporated into this framework. Our approach also reveals that, despite their appeal-

ing “causal” interpretation, non-anticipative processes inherently imply the unpredictability of

extreme events. In contrast, anticipative processes operate under the assumption that future

events exhibit early visible signs that hint at their forthcoming occurrence. These early signs

manifest as emerging trends and patterns that an observer can detect and use to infer poten-

tial future outcomes. In certain cases, we demonstrate that the trajectory leaves no room for

indeterminacy and can, in theory, be deduced with certainty, and in practice, with a very high

level of confidence. We use Monte Carlo simulations to illustrate two applications derived from

our theoretical results: forecasting crash probabilities and predicting crash dates. Additionally,

we discuss various sources of uncertainty that may arise in finite-sample and non-asymptotic

settings. The numerical analysis confirms that both procedures we implement are straight-

forward to use and perform well across a wide range of scenarios. To provide further insight

into the empirical relevance of the seminorm representation of α-stable moving averages, we

demonstrate its ability to accurately predict climate anomalies. Specifically, we estimate the

probabilities of occurrence for the so-called La Niña and El Niño episodes. We also precisely

detect, out-of-sample, the reversal date of these episodes.
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A Complementary results for the Monte-Carlo simulation

Table 12: Comparison of theoretical and empirical crash probabilities at horizons h = 1, 5, 10

of bubbles generated by the anticipative AR(2)

h = 1 h = 5 h = 10

p0.9\p̂0.9 51.149\20.777 (20.566-21.031) 99.959\56.494 (56.045-56.923) 100.000\73.029 (72.552-73.488)

p0.99\p̂0.99 38.023\27.945 (26.966-28.896) 99.856\74.154 (72.688-75.712) 100.000\91.18 (90.062-92.466)

p0.999\p̂0.999 30.888\29.826 (26.747-32.895) 99.457\77.736 (73.216-83.068) 100.000\94.492 (90.776-97.368)

p0.9999\p̂0.9999 30.076\30.042 (22.697-42.028) 98.379\78.115 (63.28-90.865) 100.000\94.371 (82.953-100.000)

Notes: The theoretical crash probabilities pq are computed using (5.2). Empirical average (Mean) and 95% confidence intervals

(95%-CI) of the estimated probabilities are computed using (5.1) on M = 100 simulated trajectories of N = 106 observations,

for q = qa several a-quantiles of the marginal distribution of Xt. These probabilities are reported in percent. We set m = 7.

The simulated process is the following: Xt = 0.7Xt+1 + 0.1Xt+2 + εt where εt
i.i.d.∼ S(1.5, 0, 0.5, 0)

B Complementary results for the empirical application

B.1 Distribution property of the SOI

Table 13: Descriptive Statistics and Jarque-Bera Test Results for SOI Data

Statistic Value

Skewness -0.2024

Kurtosis 3.4823

Jarque-Bera Test Statistic (X2) 14.4890

Degrees of Freedom (df) 2

p-value 0.0007141

B.2 GCov Estimation Residuals Analysis

In Figure 6, the left panel shows the ACF of the residuals computed using the GCoV approach,

confirming their lack of serial correlation, while the right panel presents the ACF of the squared

residuals, indicating only a barely significant autocorrelation at lag one. This confirms the good

accuracy of the anticipative AR(2) model.

Figure 7, helps to visually assess the fit of the α-stable model to the residuals. The histogram

and the density curve align well, it suggests that the model is appropriately capturing the

underlying distribution of the residuals.
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Figure 6: ACF of Residuals and Squared Residual using GCoV
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Figure 7: Histogram of residuals using GCoV
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Notes: The figure illustrates the histogram of residuals with an overlaid density curve. The red line represents

the density of an α-stable law with the parameters: α = 1.9754, β = −0.0216, σ = 0.4735.

B.3 AML estimation of AR(2)

This section, presents the results on in-sample SOI data using the AML estimation procedure

from, Lanne and Saikkonen (2011) and Hecq et al. (2020, 2017b). As in 6, we set pap = 2, and

we estimate all the possible 2pap)−1 combinaison of MAR(p, q). More precisely, the parameters

of all the MAR(p, q) are subsequently estimated using a modified version of the MARX package

suitable for α-stable laws (Hecq et al., 2020, 2017b). For the MAR(p, q) as in eq (6.1) in section

6, the ensemble of parameters to be estimate is θ = (Ψ,Φ, α, β, σ) ∈ Θ then the Lanne and
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Saikkonen (2011) AML estimator, is defined as:

θ̂ = argmax
Θ

T −q∑
t=p+1

lnf−1 [Ψ(F )Φ(B)Xt; (α, β, σ, 0)] (B.1)

where f(.; (α, β, σ, 0)) denotes the probability function of the εt.
19 Standard deviations are

estimated using finite differences gradient and Hessian for the parameters in the right space.

Table 14, according to the likelihood criteria, shows that the best specification for causal-non-

causal models is the anticipative AR(2)

(1 − ψ1F − ψ2F
2)Xt = εt, εt

i.i.d.∼ S(α, β,σ, 0)

Table 14: Identification of Non-Causal Processes for SOI

BIC MAR(2,0) MAR(1,1) MAR(0,2)

ppseudo Likelihood

2 -513.7138 -511.3617 -508.8777

Table 15 reports the estimation results for the anticipative AR(2) parameters and the as-

sociated parameters of the α-stable distribution for the error term. Additionally, we present

a set of descriptive statistics and validation tests on the residuals and the squared residuals.

From Table 15, the Ljung-Box (LB) tests indicate that all autocorrelation in the residuals of

the AR(2) model has been removed. This conclusion is further supported by the ACFs of the

residuals, shown in Figure 8. However, Figure 8 reveals a barely significant autocorrelation at

lag one in the squared residuals, which is confirmed by the rejection of the null hypothesis for

the Ljung-Box test on the squared residuals, as reported in Table 15.

The Jarque-Bera (JB) test in Table 15 indicates that the residuals are indeed non-Gaussian

(α < 2), this is consistent with an estimated α = 1.93 (1.90E − 4). However, we have an

estimated β of −0.99 (2.68E− 2) which is barely significant. This is not surprising as β is hard

to identify, explained by the fact that it is impossible to reliably identify the coefficient β when

α is too close to 2. This is because, as α gets close to 2, the distribution increasingly resembles

a Gaussian distribution, which is symmetric. In this limit, the skewness parameter β has a

diminishing effect on the shape of the distribution, rendering it practically unidentifiable due to

the dominance of the symmetric properties inherent in the Gaussian limit of α-stable laws. The

goodness of fit of the estimated parameters for the α-stable law is confirmed by the associated

estimated density and the histogram of the residuals shown in Figure 9.
19Lanne and Saikkonen (2011) shows that the AML approach is consistent if f admits a Lebesgue representation,

which is the case for the α-stable law.

43



Table 15: AR(2) AML estimation for SOI

ψ1 ψ2 α β σ

0.4476 0.2750 1.9390 -0.9970 0.4696

(0.0000) (0.0000) (0.0001) (0.0268) (0.0000)

Residuals test Stats CVα=5% p-value

LB-Test on εt (lag=5) 7.6878 7.8147 0.0529

LB-Test on ε2
t (lag=5) 16.641 7.8147 0.0008

JB-Test 20.6780 5.9900 0.0000

Notes: Estimated parameters of α-stable anticipative AR(2) process associated with the SOI series

for the period 01/1951 - 12/1991. Standard deviations are in parentheses.

In Figure 8, the left panel shows the ACF of the residuals computed using the AML approach,

confirming their lack of serial correlation, while the right panel presents the ACF of the squared

residuals, indicating only a barely significant autocorrelation at lag one. This confirms the good

accuracy of the anticipative AR(2) model.

Figure 8: ACF of Residuals and Squared Residual using AML
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Figure 9, helps to visually assess the fit of the α-stable model to the residuals. The histogram

and the density curve align well, it suggests that the model is appropriately capturing the

underlying distribution of the residuals.
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Figure 9: Histogram of residuals using AML
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Notes: The figure illustrates the histogram of residuals with an overlaid density curve. The red line represents

the density of an α-stable law with the parameters: α = 1.9390, β = −0.9970, σ = 0.4696.
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C Proofs

C.1 Proof of Proposition 2.1

Consider first the case where either α ̸= 1 or X is S1S. We only provide the proof for α ̸= 1 as

it is similar under both assumptions.

Assume that Γ(K∥·∥) = 0 and let us show that X admits a representation of the unit cylinder

C
∥·∥
d relative to the seminorm ∥ · ∥. The characteristic function of X writes for any u ∈ Rd,

with a = tg(πα/2),

φX(u) = exp
{

−
∫

Sd

(
|⟨u, s⟩|α − ia(⟨u, s⟩)<α>

)
Γ(ds) + i ⟨u,µ0⟩

}

= exp
{

−
∫

Sd\K∥·∥

(
|⟨u, s⟩|α − ia(⟨u, s⟩)<α>

)
Γ(ds) + i ⟨u,µ0⟩

}

= exp
{

−
∫

Sd\K∥·∥

(
|⟨u, s

∥s∥
⟩|α − ia(⟨u, s

∥s∥
⟩)<α>

)
∥s∥αΓ(ds) + i ⟨u,µ0⟩

}

= exp
{

−
∫

T∥·∥(Sd\K∥·∥)

(
|⟨u, s′⟩|α − ia(⟨u, s′⟩)<α>

)∥∥∥∥ s′

∥s′∥e

∥∥∥∥α

Γ ◦ T−1
∥·∥ (ds′) + i ⟨u,µ0⟩

}

= exp
{

−
∫

C
∥·∥
d

(
|⟨u, s⟩|α − ia(⟨u, s⟩)<α>

)
∥s∥−α

e Γ ◦ T−1
∥·∥ (ds)︸ ︷︷ ︸

Γ∥·∥(ds)

+i ⟨u,µ0⟩
}

where we used the change of variable s′ = T∥·∥(s) = s/∥s∥ between the third and fourth lines,

which yields the representation on C
∥·∥
d .

Reciprocally, assume that X is representable on C
∥·∥
d . By definition of the representability of

X on C
∥·∥
d , there exists a measure γ∥·∥ on C

∥·∥
d and a non-random vector m0

∥·∥ ∈ Rd such that

φX(u) = exp
{

−
∫

C
∥·∥
d

(
|⟨u, s⟩|α − ia(⟨u, s⟩)<α>

)
γ∥·∥(ds) + i ⟨u,m0

∥·∥⟩
}
.

With the change of variable s′ = T−1
∥·∥ (s) = s/∥s∥e,

φX(u) = exp
{

−
∫

C
∥·∥
d

(
|⟨u, s

∥s∥e
⟩|α − ia(⟨u, s

∥s∥e
⟩)<α>

)
∥s∥α

e γ
∥·∥(ds) + i ⟨u,m0

∥·∥⟩
}

= exp
{

−
∫

T −1
∥·∥ (C∥·∥

d
)

(
|⟨u, s′⟩|α − ia(⟨u, s′⟩)<α>

) ∥∥∥∥ s′

∥s′∥

∥∥∥∥α

e

γ∥·∥ ◦ T∥·∥(ds′) + i ⟨u,m0
∥·∥⟩
}

= exp
{

−
∫

Sd\K∥·∥

(
|⟨u, s⟩|α − ia(⟨u, s⟩)<α>

)
∥s∥−αγ∥·∥ ◦ T∥·∥(ds) + i ⟨u,m0

∥·∥⟩
}

= exp
{

−
∫

Sd\K∥·∥

(
|⟨u, s⟩|α − ia(⟨u, s⟩)<α>

)
γ(ds) + i ⟨u,m0

∥·∥⟩
}
,
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where γ(ds) := ∥s∥−αγ∥·∥ ◦ T∥·∥(ds). Letting now γ(A) := γ(A ∩ (Sd \K∥·∥)) for any Borel set

A of Sd, we have

φX(u) = exp
{

−
∫

Sd

(
|⟨u, s⟩|α − ia(⟨u, s⟩)<α>

)
γ(ds) + i ⟨u,m0

∥·∥⟩
}
.

By the unicity of the spectral representation of X on Sd, we necessarily have (Γ,µ0) = (γ,m0
∥·∥).

Thus, γ and Γ have to coincide, and in particular

Γ(K∥·∥) = γ(K∥·∥) = γ(K∥·∥ ∩ (Sd \K∥·∥)) = γ(∅) = 0.

Given that Γ = γ and Γ(K∥·∥) = 0, we can follow the initial steps of the proof to show that

γ∥·∥ = Γ∥·∥.

Consider now the case where α = 1 and X is not symmetric. Assume first that∫
Sd

∣∣∣ ln ∥s∥
∣∣∣Γ(ds) < +∞, that is, Γ(K∥·∥) = 0 and

∫
Sd\K∥·∥

∣∣∣ ln ∥s∥
∣∣∣Γ(ds) < +∞. With a = 2/π,

φX(u) = exp
{

−
∫

Sd

(
|⟨u, s⟩| + ia⟨u, s⟩ ln |⟨u, s⟩|

)
Γ(ds) + i ⟨u,µ0⟩

}

= exp
{

−
∫

Sd\K∥·∥

(
|⟨u, s

∥s∥
⟩| + ia⟨u, s

∥s∥
⟩ ln |⟨u, s

∥s∥
⟩|
)

∥s∥Γ(ds)

+ i ⟨u,µ0⟩ − ia

∫
Sd\K∥·∥

⟨u, s⟩ ln ∥s∥Γ(ds)
}
.

We have
∫

Sd\K∥·∥⟨u, s⟩ ln ∥s∥Γ(ds) =
∑d

i=1 ui
∫

Sd\K∥·∥ si ln ∥s∥Γ(ds) = ⟨u, µ̃⟩, and thus,

i ⟨u,µ0⟩ − ia

∫
Sd\K∥·∥

⟨u, s⟩ ln ∥s∥Γ(ds) = i⟨u,µ0
∥·∥⟩.

The condition
∫

Sd\K∥·∥

∣∣∣ ln ∥s∥
∣∣∣Γ(ds) < +∞, ensures that |µ0

∥·∥| < +∞. Again with the change

of variable s′ = T∥·∥(s) = s/∥s∥, we get

φX(u) = exp
{

−
∫

T∥·∥(Sd\K∥·∥)

(
|⟨u, s′⟩| + ia⟨u, s′⟩ ln |⟨u, s′⟩|

)∥∥∥∥ s′

∥s′∥e

∥∥∥∥α

Γ ◦ T−1
∥·∥ (ds′) + i⟨u,µ0

∥·∥⟩
}

= exp
{

−
∫

C
∥·∥
d

(
|⟨u, s⟩| + ia⟨u, s⟩ ln |⟨u, s⟩|

)
∥s∥−α

e Γ ◦ T−1
∥·∥ (ds)︸ ︷︷ ︸

Γ∥·∥(ds)

+i⟨u,µ0
∥·∥⟩
}

Reciprocally, assume there exists a measure γ∥·∥ on C
∥·∥
d satisfying (2.4) and a non-random

vector m0
∥·∥ ∈ Rd such that

φX(u) = exp
{

−
∫

C
∥·∥
d

(
|⟨u, s⟩| + ia⟨u, s⟩ ln |⟨u, s⟩|

)
γ∥·∥(ds) + i ⟨u,m0

∥·∥⟩
}
.
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First, we can see that

φX(u) = exp
{

−
∫

C
∥·∥
d

[(
|⟨u, s

∥s∥e
⟩| + ia⟨u, s

∥s∥e
⟩ ln |⟨u, s

∥s∥e
⟩|
)
∥s∥e + ia⟨u, s⟩ ln ∥s∥e

]
γ∥·∥(ds)

+ i ⟨u,m0
∥·∥⟩
}
.

We will later show the following result:

Lemma C.1 Let γ∥·∥ a Borel measure on C
∥·∥
d satisfying (2.4). Then,∫

C
∥·∥
d

∥s∥e

∣∣∣ ln ∥s∥e

∣∣∣γ∥·∥(ds) < +∞. (C.1)

Assuming Lemma C.1 holds, then by the Cauchy-Schwarz inequality, we have∫
C

∥·∥
d

|⟨u, s⟩|
∣∣∣ ln ∥s∥e

∣∣∣γ∥·∥(ds) < +∞, and thus

φX(u) = exp
{

−
∫

C
∥·∥
d

(
|⟨u, s

∥s∥e
⟩| + ia⟨u, s

∥s∥e
⟩ ln |⟨u, s

∥s∥e
⟩|
)
∥s∥eγ

∥·∥(ds)

+ i ⟨u,m0
∥·∥⟩ − ia

∫
C

∥·∥
d

⟨u, s⟩ ln ∥s∥eγ
∥·∥(ds)

}
,

= exp
{

−
∫

Sd\K∥·∥

(
|⟨u, s′⟩| + ia⟨u, s′⟩ ln |⟨u, s′⟩|

)
γ(ds′)

+ i ⟨u,m0
∥·∥⟩ − ia

∫
Sd\K∥·∥

⟨u, s′⟩ ln ∥s′∥γ(ds′)
}
,

where we used the change of variable s′ = T−1
∥·∥ (s) = s/∥s∥e, and γ(ds) := ∥s∥−1γ∥·∥ ◦ T∥·∥(ds).

Letting then γ(A) := γ(A ∩ (Sd \ K∥·∥)) for any Borel set A of Sd and m̃ := (m̃i) with

m̃i =
∫

Sd\K∥·∥ si ln ∥s∥γ(ds), j = 1, . . . , d, we get

φX(u) = exp
{

−
∫

Sd

(
|⟨u, s⟩| + ia⟨u, s⟩ ln |⟨u, s⟩|

)
γ(ds) + i ⟨u,m0

∥·∥ − am̃⟩
}
,

and X admits the pair (γ,m0
∥·∥ −am̃) for spectral representation on the Euclidean unit sphere.

The unicity of the spectral representation of X on Sd implies that (Γ,µ0) = (γ,m0
∥·∥ − am̃).

Thus, γ and Γ have to coincide, and in particular

Γ(K∥·∥) = γ(K∥·∥) = γ(K∥·∥ ∩ (Sd \K∥·∥)) = γ(∅) = 0,

m̃i =
∫

Sd\K∥·∥
si ln ∥s∥Γ(ds), i = 1, . . . , d.

Last, as
∫

C
∥·∥
d

∥s∥e

∣∣∣ ln ∥s∥e

∣∣∣γ∥·∥(ds) < +∞ (Lemma C.1) and Γ(K∥·∥) = 0, we have by a change
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of variable ∫
C

∥·∥
d

∥s∥e

∣∣∣ ln ∥s∥e

∣∣∣γ∥·∥(ds) =
∫

Sd\K∥·∥

∣∣∣ ln ∥s∥
∣∣∣∥s∥−1γ∥·∥ ◦ T∥·∥(ds)

=
∫

Sd\K∥·∥

∣∣∣ ln ∥s∥
∣∣∣γ(ds)

=
∫

Sd

∣∣∣ ln ∥s∥
∣∣∣Γ(ds)

< +∞,

which concludes the proof of Proposition 2.1.

Proof of Lemma C.1

Notice that there exists a positive real number b such that for all s ∈ C
∥·∥
d , ∥s∥e ≥ b because

∥s∥ = 1. Letting M > 0, we have for all u ∈ Rd∫
C

∥·∥
d

∥s∥e

∣∣∣ ln ∥s∥e

∣∣∣γ∥·∥(ds) =
∫

C
∥·∥
d

∩{b≤∥s∥e≤M}
+
∫

C
∥·∥
d

∩{∥s∥e>M}
:= I1 + I2.

We will show that both I1 and I2 are finite. Focus first on I2. From (2.4), we know that for all

u ∈ Rd∫
C

∥·∥
d

|⟨u, s⟩|
∣∣∣ ln |⟨u, s⟩|

∣∣∣γ∥·∥(ds) =
∫

C
∥·∥
d

∩{b≤∥s∥e≤M}
+
∫

C
∥·∥
d

∩{∥s∥e>M}
< +∞. (C.2)

and thus, in particular∫
{s′∈C

∥·∥
d

: ∥s′∥e>M}
|⟨u, s⟩|

∣∣∣ ln |⟨u, s⟩|
∣∣∣γ∥·∥(ds)

=
∫

{s′∈C
∥·∥
d

: ∥s′∥e>M}
|⟨u, s⟩|

∣∣∣ ln ∥s∥e + ln |⟨u, s

∥s∥e
⟩|
∣∣∣γ∥·∥(ds) < +∞.

(C.3)

By the triangular inequality, for all u ∈ Rd,∫
{s′∈C

∥·∥
d

: ∥s′∥e>M}
|⟨u, s⟩|

∣∣∣ ln ∥s∥e + ln |⟨u, s

∥s∥e
⟩|
∣∣∣γ∥·∥(ds)

=
∫

{s′∈C
∥·∥
d

: ∥s′∥e>M}
|⟨u, s⟩|

∣∣∣ ln ∥s∥e

∣∣∣∣∣∣∣1 + ln |⟨u, s/∥s∥e⟩|
ln ∥s∥e

∣∣∣∣γ∥·∥(ds)

≥
∫

{s′∈C
∥·∥
d

: ∥s′∥e>M}
|⟨u, s⟩|

∣∣∣ ln ∥s∥e

∣∣∣∣∣∣∣∣1 −
∣∣∣∣ ln |⟨u, s/∥s∥e⟩|

ln ∥s∥e

∣∣∣∣
∣∣∣∣∣γ∥·∥(ds)

(C.4)

Let us now partition the space Rd into subsets R1, . . . , Rd such that, for any i = 1, . . . , d and

any s = (s1, . . . , sd) ∈ Ri, sup
j

|sj | = |si|.
20 We have by (C.3)-(C.4) that for any i = 1, . . . , d,

20Strictly speaking, (R1, . . . , Rd) is not a partition of Rd as the Ri’s may intersect because of ties in the

components of vectors. This will not affect the proof.
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any u ∈ Rd,

∫
{s′∈C

∥·∥
d

: ∥s′∥e>M}∩Ri

|⟨u, s⟩|
∣∣∣ ln ∥s∥e

∣∣∣∣∣∣∣∣1 −
∣∣∣∣ ln |⟨u, s/∥s∥e⟩|

ln ∥s∥e

∣∣∣∣
∣∣∣∣∣γ∥·∥(ds) < +∞.

Denoting (e1, . . . , ed) the canonical orthonormal basis of Rd, evaluate now the above at u = ei.

We get that

∫
{s′∈C

∥·∥
d

: ∥s′∥e>M}∩Ri

|⟨ei, s⟩|
∣∣∣ ln ∥s∥e

∣∣∣∣∣∣∣∣1 −
∣∣∣∣ ln |⟨ei, s/∥s∥e⟩|

ln ∥s∥e

∣∣∣∣
∣∣∣∣∣γ∥·∥(ds) < +∞. (C.5)

Let us show that s 7−→ ln |⟨ei, s/∥s∥e⟩| is a bounded function for s ∈ {s′ ∈ C
∥·∥
d : ∥s′∥e >

M} ∩ Ri. Ad absurdum, if it is not bounded, then for any A > 0, there exists s ∈ {s′ ∈ C
∥·∥
d :

∥s′∥e > M} ∩Ri such that ∣∣∣ ln |⟨ei, s/∥s∥e⟩|
∣∣∣ > A.

Taking the sequence An = n for any n ≥ 1, we get that there exists a sequence (sn), sn ∈ {s′ ∈

C
∥·∥
d : ∥s′∥e > M} ∩Ri such that

∣∣∣ ln |⟨ei, sn/∥sn∥e⟩|
∣∣∣ > n.

Thus, for all n ≥ 1

0 ≤ |⟨ei, sn/∥sn∥e⟩| ≤ e−n.

and

|⟨ei, sn/∥sn∥e⟩| −→
n→+∞

0.

Consider now the decomposition of sn/∥sn∥e in the orthonormal basis (e1, . . . , ed),

sn/∥sn∥e =
d∑

j=1
⟨ej , sn/∥sn∥e⟩ej .

As sn ∈ Ri for all n ≥ 1, we also have that sn/∥sn∥e ∈ Ri for all n ≥ 1, and thus, for any

j = 1, . . . , d

0 ≤ |⟨ej , sn/∥sn∥e⟩| ≤ |⟨ei, sn/∥sn∥e⟩| −→
n→+∞

0.

Hence, sn/∥sn∥e −→
n→+∞

0, which is impossible since
∥∥∥sn/∥sn∥e

∥∥∥
e

= 1 for all n ≥ 1. The function

s 7−→ ln |⟨ei, s/∥s∥e⟩| is thus bounded on {s ∈ C
∥·∥
d : ∥s∥e > M}∩Ri, say

∣∣∣ ln |⟨ei, s/∥s∥e⟩|
∣∣∣ ≤ A

for some A > 0. Provided M is taken large enough (e.g., M > 2A), we will have in (C.5)∣∣∣∣∣1 −
∣∣∣∣ ln |⟨ei, s/∥s∥e⟩|

ln ∥s∥e

∣∣∣∣
∣∣∣∣∣ = 1 −

∣∣∣∣ ln |⟨ei, s/∥s∥e⟩|
ln ∥s∥e

∣∣∣∣ ≥ 1 − A

M
> 0,
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which thus yields for all i = 1, . . . , d∫
{s′∈C

∥·∥
d

: ∥s′∥e>M}∩Ri

|⟨ei, s⟩|
∣∣∣ ln ∥s∥e

∣∣∣γ∥·∥(ds) < +∞.

As |⟨ei, s⟩| ≥ ∥s∥ee
−A, we further get that∫

{s′∈C
∥·∥
d

: ∥s′∥e>M}∩Ri

∥s∥e

∣∣∣ ln ∥s∥e

∣∣∣γ∥·∥(ds) < +∞,

and because
⋃

i=1,...,d
Ri = Rd,

I2 =
∫

{s′∈C
∥·∥
d

: ∥s′∥e>M}
∥s∥e

∣∣∣ ln ∥s∥e

∣∣∣γ∥·∥(ds)

≤
d∑

i=1

∫
{s′∈C

∥·∥
d

: ∥s′∥e>M}∩Ri

∥s∥e

∣∣∣ ln ∥s∥e

∣∣∣γ∥·∥(ds) < +∞.

Let us now show that I1 is finite. Assuming for a moment that

γ∥·∥
(
{s′ ∈ C

∥·∥
d : b ≤ ∥s′∥e ≤ M}

)
< +∞,

we get

I1 =
∫

{s′∈C
∥·∥
d

: b≤∥s′∥e≤M}
∥s∥e

∣∣∣ ln ∥s∥e

∣∣∣γ∥·∥(ds)

≤
(

max
x∈[b,M ]

x| ln x|
)
γ∥·∥

(
{s′ ∈ C

∥·∥
d : b ≤ ∥s′∥e ≤ M}

)
,

because x 7−→ x| ln x| is a bounded function on [b,M ], and thus I1 < +∞. We now show that

γ∥·∥ is indeed finite on the set {s′ ∈ C
∥·∥
d : b ≤ ∥s′∥e ≤ M}.

Proceeding as in the case of I2, it can be obtained that for i = 1, . . . , d, the function s 7−→

ln |⟨ei, s/∥s∥e⟩| is bounded on the set {s′ ∈ C
∥·∥
d : b ≤ ∥s′∥e ≤ M} ∩ Ri. Say, again, that∣∣∣ ln |⟨ei, s/∥s∥e⟩|

∣∣∣ ≤ A for some A > 0. Then, |⟨ei, s⟩| ≥ ∥s∥ee
−A, and for any λ > 2b−1eA, we

have

|⟨λei, s⟩| ≥ 2,

for any i = 1, . . . , d, s ∈ {s′ ∈ C
∥·∥
d : b ≤ ∥s′∥e ≤ M} ∩Ri. From (C.2), we have for any u ∈ Rd

∫
{s′∈C

∥·∥
d

: b≤∥s′∥e≤M}
|⟨u, s⟩|

∣∣∣ ln |⟨u, s⟩|
∣∣∣γ∥·∥(ds) < +∞,

and thus, for any u ∈ Rd,∫
{s′∈C

∥·∥
d

: b≤∥s′∥e≤M}∩Ri

|⟨u, s⟩|
∣∣∣ ln |⟨u, s⟩|

∣∣∣γ∥·∥(ds) < +∞,
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for any i = 1, . . . , d. Evaluating the above in particular at u = λei, for any λ > 2b−1eA, we get∫
{s′∈C

∥·∥
d

: b≤∥s′∥e≤M}∩Ri

|⟨λei, s⟩|
∣∣∣ ln |⟨λei, s⟩|

∣∣∣γ∥·∥(ds) < +∞.

Noticing that x 7−→ x| ln x| is increasing on [1,+∞) and that |⟨λei, s⟩| ≥ 2 for any s in the

domain of integration, we have |⟨u, s⟩|
∣∣∣ ln |⟨u, s⟩|

∣∣∣ ≥ 2 ln 2, and

∫
{s′∈C

∥·∥
d

: b≤∥s′∥e≤M}∩Ri

γ∥·∥(ds) < +∞,

for any i = 1, . . . , d. Hence,

∫
{s′∈C

∥·∥
d

: b≤∥s′∥e≤M}
γ∥·∥(ds) ≤

d∑
i=1

∫
{s′∈C

∥·∥
d

: b≤∥s′∥e≤M}∩Ri

γ∥·∥(ds) < +∞,

and γ∥·∥
(
{s′ ∈ C

∥·∥
d : b ≤ ∥s′∥e ≤ M}

)
is finite. 2

C.2 Proof of Proposition 2.2

The proposition is an immediate consequence of Bayes formula and of the following result,

which is an adaptation of Theorem 4.4.8 by Samorodnitsky and Taqqu (1994) Samorodnitsky

and Taqqu (1994) to seminorms.

Proposition C.1 Let X = (X1, . . . , Xd) be an α-stable random vector and let ∥ · ∥ be a semi-

norm on Rd such that X is representable on C
∥·∥
d . Then, for every Borel set A ⊆ C

∥·∥
d with

Γ∥·∥(∂A) = 0,

lim
x→+∞

xαP
(
∥X∥ > x,

X

∥X∥
∈ A

)
= CαΓ∥·∥(A), (C.6)

with Cα = 1 − α

Γ(2 − α) cos(πα/2) if α ̸= 1, and C1 = 2/π.

Proof.

We follow the proof of Theorem 4.4.8 by Samorodnitsky and Taqqu (1994). The main hurdle

is to show that, with ∥ · ∥ a seminorm, K∥·∥ = {s ∈ Sd : ∥s∥ = 0}, and Γ∥·∥(K∥·∥) = 0, we have

the series representation of X, (X1, . . . , Xd) d= (Z1, . . . , Zd) where

Zk = (CαΓ∥·∥(C∥·∥
d ))1/α

∞∑
i=1

[Γ−1/α
i S

(k)
i − bi,k(α)], k = 1, . . . , d, (C.7)

with Si = (S(1)
i , . . . , S

(d)
i ), i ≥ 1, are i.i.d. C

∥·∥
d -valued random vectors with common law

Γ∥·∥/Γ∥·∥(C∥·∥
d ) and the bi,k(α)’s are constants.

By Proposition 2.1, we know that X admits a characteristic function of the form (2.1).

This allows to restate the integral representation Theorem 3.5.6 in Samorodnitsky and Taqqu
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(1994) on the seminorm unit cylinder as follows: with the measurable space (E, E) =

(C∥·∥
d ,Borelσ-algebra onC∥·∥

d ), let M be an α-stable random measure on (E, E) with control

measure m = Γ∥·∥, skewness intensity β( · ) ≡ 1 (see Definition 3.3.1 in Samorodnitsky and

Taqqu (1994) for details). Letting also fj : C∥·∥
d −→ R defined by fj

(
(s1, . . . , sd)

)
= sj ,

j = 1, . . . , d, then

X
d=
(∫

C
∥·∥
d

f1(s)M(ds), . . . ,
∫

C
∥·∥
d

fd(s)M(ds)
)

+ µ∥·∥.

This representation can be checked directly by comparing the characteristic functions of the left-

hand and right-hand sides. We can now apply Theorem 3.10.1 in Samorodnitsky and Taqqu

(1994) to the above integral representation with (E, E ,m) the measure space as described before,

and m̂ = Γ∥·∥/Γ∥·∥(C∥·∥
d ). This establishes (C.7). The rest of the proof is similar to that of

Theorem 4.4.8 in Samorodnitsky and Taqqu (1994). We rely on the triangle inequality property

of seminorms and the fact that any norm is finer than any seminorm in finite dimension.21
2

C.3 Proof of Theorem 3.1

From Proposition 2.1, we know that a necessary condition for the representability of Xt on

C
∥·∥
m+h+1 is Γ(K∥·∥) = 0, where K∥·∥ = {s ∈ Sm+h+1 : ∥s∥ = 0}. This condition is also sufficient

when either α ̸= 1 or α = 1, β = 0. Using the fact that Γ only charges discrete atoms on

C
∥·∥
m+h+1,

Γ(K∥·∥) = 0 ⇐⇒ {s ∈ Sm+h+1 : Γ({s}) > 0} ∩K∥·∥ = ∅

⇐⇒ ∀s ∈ Sm+h+1,
[
Γ({s}) > 0 =⇒ ∥s∥ > 0

]
⇐⇒ ∀k ∈ Z,

[
∥dk∥e > 0 =⇒ ∥dk∥ > 0

]
⇐⇒ ∀k ∈ Z,

[
∥dk∥ = 0 =⇒ ∥dk∥e = 0

]
⇐⇒ ∀k ∈ Z,

[
∥dk∥ = 0 =⇒ dk = 0

]
⇐⇒ ∀k ∈ Z,

[
(dk+m, . . . , dk) = 0 =⇒ (dk+m, . . . , dk−h) = 0

]
,

by (3.1). Now assume that the following holds:

∀k ∈ Z,
[
(dk+m, . . . , dk) = 0 =⇒ (dk+m, . . . , dk−h) = 0

]
. (C.8)

Then, if for some particular k0 ∈ Z, we have

(dk0+m, . . . , dk0) = 0.

21We say that a norm N is finer than a seminorm Ns if there is a positive constant C such that Ns(x) ≤ CN(x)

for any x ∈ Rd.
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It implies that

(dk0+m, . . . , dk0−h) = 0,

and especially, as we assume h ≥ 1,

(d(k0−1)+m, . . . , dk0−1) = 0.

Invoking (C.8), we deduce by recurrence that for any n ≥ 0,

(d(k0−n)+m, . . . , dk0−n) = 0.

Therefore, (C.8) implies

∀k ∈ Z,
[
(dk+m, . . . , dk) = 0 =⇒ ∀ℓ ≤ k − 1, dℓ = 0

]
The reciprocal is clearly true. This establishes that (3.7) is a necessary and sufficient condition

for Xt to be representable on C
∥·∥
d in the cases where either α ̸= 1, or α = 1, β = 0.

In the case α = 1, β ̸= 0, Proposition 2.1 states that the necessary and sufficient condition

for representability reads
∫

Sd

∣∣∣ ln ∥s∥
∣∣∣Γ(ds) < +∞. That is

Γ(K∥·∥) = 0 and
∫

Sd\K∥·∥

∣∣∣ ln ∥s∥
∣∣∣Γ(ds) < +∞.

Substituting Γ by its expression in (3.6), the above condition holds if and only if (3.7) is true

and

σ
∑

ϑ∈S1

∑
k∈Z

wϑ∥dk∥e

∣∣∣∣∣ ln
∥∥∥∥ ϑdk

∥dk∥e

∥∥∥∥
∣∣∣∣∣ < +∞,

the latter being equivalent to

∑
k∈Z

∥dk∥e

∣∣∣∣∣ ln ∥dk∥
∥dk∥e

∣∣∣∣∣ < +∞.

C.4 Proof of Proposition 3.1

By Definition 3.1, (Xt) is past-representable if and only if there exists m ≥ 0, h ≥ 1 such that

the vector (Xt−m, . . . , Xt, Xt+1, . . . , Xt+h) is representable on C
∥·∥
m+h+1. Consider first point

(ι)(a), that is, the case α ̸= 1, (α, β) = (1, 0). By Theorem 3.1,

(Xt) is past-representable ⇐⇒ There exist m ≥ 0, h ≥ 1, such that (3.7) holds

⇐⇒ ∃m ≥ 0, ∀k ∈ Z,
[
dk+m = . . . = dk = 0 =⇒ ∀ℓ ≤ k − 1, dℓ = 0

]
.
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Thus,

(Xt) not past-representable ⇐⇒ ∀m ≥ 0, ∃k ∈ Z, dk+m = . . . = dk = 0 and ∃ℓ ≤ k − 1, dℓ ̸= 0

⇐⇒ ∀m ≥ 0,∃k ∈ Z, dk+m = . . . = dk = 0 and dk−1 ̸= 0

⇐⇒ ∀m ≥ 1,∃k ∈ Z, dk+m = . . . = dk+1 = 0 and dk ̸= 0

⇐⇒ sup{m ≥ 1 : ∃k ∈ Z, dk+m = . . . = dk+1 = 0, dk ̸= 0} = +∞,

hence (3.10).

Regarding the last statement of point (ι)(a), assume first that m0 < +∞ and m ≥ m0. Property

(3.7) necessarily holds with m0. Indeed, if it did not, there would exist k ∈ Z such that

dk+m0 = . . . = dk = 0, and dℓ ̸= 0, for some ℓ ≤ k − 1,

and we would have found a sequence of consecutive zero values of length at least m0+1 preceded

by a non-zero value, contradicting the fact that

m0 = sup{m ≥ 1 : ∃ k ∈ Z, dk+m = . . . = dk+1 = 0, and dk ̸= 0}.

As (3.7) holds with m0, it holds a fortiori for any m′ ≥ m0. Thus, Xt =

(Xt−m, . . . , Xt, Xt+1, . . . , Xt+h) is representable for any m′ ≥ m0, h ≥ 1 by Theorem 3.1, and

(Xt) is in particular (m,h)-past-representable.

Reciprocally let m ≥ 0, h ≥ 1 and assume that (Xt) is (m,h)-past-representable. The process

(Xt) is thus in particular past-representable, which as we have shown previously, implies that

m0 < +∞. Ad absurdum, suppose now that 0 ≤ m < m0 < +∞. If m0 = 0, there is nothing to

do. Otherwise if m0 ≥ 1, by definition, there exists a k ∈ Z such that

dk+m0 = . . . = dk+1 = 0, and dk ̸= 0. (C.9)

Because (Xt) is (m,h)-past-representable, we have by Theorem 3.1 that (3.7) holds with m.

As m < m0 and dk+m0 = . . . = dk+1 = 0, we thus have that dℓ = 0 for all ℓ ≤ k + 1, and in

particular dk = 0, hence the contradiction. We conclude that m ≥ m0.

Consider now point (ι)(b), i.e., the case α = 1 and β ̸= 0. From Theorem 3.1,

(Xt) is past-representable ⇐⇒ There exist m ≥ 0, h ≥ 1, such that (3.7) and (3.8) hold

From the previous proof, we moreover have that

∃ m ≥ 0, such that (3.7) holds ⇐⇒ m0 < +∞ ⇐⇒


m0 < +∞

∀ m′ ≥ m0, (3.7) holds

∀ m′ < m0, (3.7) does not hold
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Hence

∃ m ≥ 0, h ≥ 1, such that (3.7) and (3.8) hold

⇐⇒



m0 < +∞

∀ m′ ≥ m0, (3.7) holds

∀ m′ < m0, (3.7) does not hold

∃ m ≥ 0, h ≥ 1, such that (3.7) and (3.8) hold.

The latter in particular implies m0 < +∞ and the existence of m ≥ m0, h ≥ 1 such that (3.8)

holds. Reciprocally, m0 < +∞

∃ m ≥ m0, h ≥ 1, such that (3.8) holds

=⇒


m0 < +∞

∀ m′ ≥ m0, (3.7) holds

∃ m ≥ m0, h ≥ 1, such that (3.8) holds,

which in particular implies that there exists m ≥ m0, h ≥ 1 such that both (3.7) and (3.8)

hold. Hence the past-representability of (Xt).

In view of Definition 3.1, point (ιι) is a direct consequence of the second part of Proposition

2.1.

C.5 Proof of Corollary 3.1

Letting k0 be the greatest integer such that dk0 ̸= 0 (such an index exists by (3.3)), then

immediately, for any m ≥ 1, dk0+m = . . . = dk0+1 = 0 and therefore m0 = +∞.

C.6 Proof of Corollary 3.2

We first show that deg(Ψ) ≥ 1 if and only if m0 < +∞.

Clearly, if deg(Ψ) = 0, then Xt =
∑k0

k=−∞ dkεt+k for some k0 in Z and m0 = +∞.

Reciprocally, assume deg(Ψ) = p ≥ 1. Let us first show that (3.10) holds.

Denote Ψ(F )Φ(B) =
∑p

i=−q φiF
i and Θ(F )H(B) =

∑s
k=−r θiF

i, for any non-negative degrees

q = deg(Φ), r = deg(H), s = deg(Θ). From the recursive equation satisfied by (Xt), we have
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that
p∑

i=−q

φiXt+i =
s∑

k=−r

θkεt+k

⇐⇒
p∑

i=−q

φi

∑
k∈Z

dkεt+k+i =
s∑

k=−r

θkεt+k

⇐⇒
∑
k∈Z

( p∑
i=−q

φidk−i

)
εt+k =

s∑
k=−r

θkεt+k. (C.10)

Proceeding by identification using the uniqueness of representation of heavy-tailed moving av-

erages (see Gouriéroux and Zakoian (2015)), we get that for |k| > max(r, s),
p∑

i=−q

φidk−i = 0. (C.11)

Ad absurdum, if (Xt) is not past-representable, then by Proposition 3.1

sup{m ≥ 1 : ∃k ∈ Z, dk+m = . . . = dk+1 = 0, dk ̸= 0} = +∞.

Thus, there exists a sequence {mn : n ≥ 0}, mn ≥ 1, limn→+∞ = +∞, satisfying: for any

n ≥ 0, there is an index k ∈ Z such that

dk−p ̸= 0 and dk−p+1 = dk−p+2 = . . . = dk+mn = 0.

We can therefore construct a sequence (kn) such that the above relation holds for all n ≥ 0.

This sequence of integers in Z is either bounded or unbounded. We will show that both cases

lead to a contradiction.

First case: sup{|kn| : n ≥ 0} = +∞

There are two subsequences such that mg(n) −→ +∞ and |kg(n)| −→ +∞. For some n large

enough such that (C.11) holds and mg(n) ≥ p+ q, we have both

p∑
i=−q

φidkg(n)−i = 0.

and

dkg(n)−p ̸= 0, dkg(n)−p+1 = . . . = dkg(n)+q = 0.

Hence,

φpdkg(n)−p = 0,

which is impossible given that dkg(n)−p ̸= 0 and φp ̸= 0. Indeed, denoting

Ψ(z) = 1 + ψ1z + . . .+ ψpz
p, ψp ̸= 0 because deg(Ψ) = p, it can be shown that φp = ψp.
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Second case: sup{|kn| : n ≥ 0} < +∞

Given that (kn) is a bounded sequence, there exists by the Bolzano-Weierstrass theorem a

convergent subsquence (kg(n)). As (kg(n)) takes only discrete values, it necessarily holds that

(kg(n)) reaches its limit at a finite integer n0 ≥ 1, that is, for all n ≥ n0, kg(n) = limn→+∞ kg(n) :=

k̄ ∈ Z. Thus, for all n ≥ n0

dk̄ ̸= 0, and dk̄+mg(n)
= 0,

and as mg(n) → +∞, we deduce that

dk̄ ̸= 0, and dk̄+ℓ = 0, for all ℓ ≥ 1.

The process (Xt) hence admit a moving average representation of the form

Xt =
k̄∑

k=−∞
dkεt+k, t ∈ Z. (C.12)

However, we also have by partial fraction decomposition

Xt = Θ(F )H(B)
Ψ(F )Φ(B) εt

= Θ(F )H(B) Bp

BpΨ(F )Φ(B)εt

= Θ(F )H(B)Bp

[
b1(B)
BpΨ(F ) + b2(B)

Φ(B)

]
εt

= Θ(F )H(B)
[
b1(B)
Ψ(F ) + Bpb2(B)

Φ(B)

]
εt,

for some polynomials b1 and b2 such that 0 ≤ deg(b1) ≤ p − 1, 0 ≤ deg(b2) ≤ q − 1 and

Φ(B)b1(B) +Bpb2(B)Ψ(F ) = 1. We can write in general

Θ(F )H(B)b1(B)
Ψ(F ) =

+∞∑
k=−ℓ1

ckεt+k,

Θ(F )H(B)Bpb2(B)
Φ(B) =

ℓ2∑
k=−∞

ekεt+k,

for some sequences of coefficients (ck), (ek), and where ℓ1 is the degree of the largest order

monomial in B of Θ(F )H(B)b1(B) (recall that F = B−1) and ℓ2 is the degree of the largest

monomial in F of BpΘ(F )H(B)b2(B). By (C.12), we deduce by identification that there is

some ℓ̄ ∈ Z such that ck = 0 for all k ≥ ℓ̄+ 1 and

Θ(F )H(B)b1(B)
Ψ(F ) =

ℓ̄∑
k=−ℓ1

ckF
k.

Necessarily, ℓ̄ ≥ ℓ1, otherwise Θ(F )H(B)b1(B)Ψ−1(F ) = 0 which is impossible as all the poly-

nomials involved have non-negative degrees. Thus, we deduce that there exist two polynomials
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P and Q of non-negative degrees such that

Θ(z−1)H(z)b1(z)
Ψ(z−1) =

ℓ̄∑
k=−ℓ1

ckz
k := P (z−1) +Q(z), z ∈ C.,

which yields

Θ(z−1)H(z)b1(z) = Ψ(z−1)(P (z−1) +Q(z)), z ∈ C. (C.13)

As deg(Ψ) = p and Ψ(z) = 0 if and only if |z| > 1, we know that there are p complex numbers

z1, . . . , zp such that 0 < |zi| < 1 and Ψ(z−1
i ) = 0 for i = 1, . . . , p. Evaluating (C.13) at the zi’s,

we get that

Θ(z−1
i )b1(zi) = 0, for i = 1, . . . , p,

because H has no roots inside the unit circle and P and Q are of finite degrees. From the fact

that deg(b1) ≤ p− 1, we also know that for some zi0 , b(zi0) ̸= 0 which finally yields

Θ(z−1
i0

) = 0.

We therefore obtain that Ψ and Θ have a common root, which is ruled out by assumption,

hence the contradiction. The sequence (kn) can thus be neither bounded nor unbounded, which

is absurd. We conclude that

m0 = sup{m ≥ 1 : ∃k ∈ Z, dk+m = . . . = dk+1 = 0, dk ̸= 0} < +∞.

Hence the equivalence between (ιι) and (ιιι).

Let us now show that whenever m0 < +∞, then (3.8) holds for any m ≥ m0.

As m0 < +∞, we have that for any m ≥ m0 and h ≥ 1, ∥dk∥ > 0 as soon as dk ̸= 0,

for all k ∈ Z (recall dk = (dk+m, . . . , dk, dk+1, . . . , dk−h)). For ARMA processes, the non-zero

coefficients dk of the moving average necessarily decay geometrically (times a monomial) as

k → ±∞. To fix ideas, say dk ∼
k→±∞

akbλk, for constants a ̸= 0, b a non-negative integer, and

0 < |λ| < 1, which may change according to whether k → +∞ or k → −∞ (if deg(Φ) = 0, then

d−k = 0 for k ≥ 0 large enough, however, since we assume deg(Ψ) ≥ 1, it always holds that

|dk| ∼
k→+∞

akbλk, for the non-zero terms dk). Hence,

dk ∼
k→±∞

akbλkd∗,
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for some constant vector d∗ such that ∥d∗∥ > 0 (which may change according to whether

k → +∞ or k → −∞). We then have that

∥dk∥
∥dk∥e

−→
k→±∞

∥d∗∥
∥d∗∥e

> 0,

and

∥dk∥e

∣∣∣∣ ln (∥dk∥/∥dk∥e

)∣∣∣∣ ∼
k→±∞

const kbλk.

Therefore, for any m ≥ m0, h ≥ 1,∑
k∈Z

∥dk∥e

∣∣∣∣ ln (∥dk∥/∥dk∥e

)∣∣∣∣ < +∞

The equivalence between (ι) and (ιιι) is now clear: on the one hand, if m0 < +∞,

then (3.8) holds for all m ≥ m0, h ≥ 1, which yields the (m,h)-past-representability of

(Xt−m, . . . , Xt, Xt+1, . . . , Xt+h) for any m ≥ m0, h ≥ 1, by Theorem 3.1. In particular, (Xt) is

past-representable. On the other hand, assuming (Xt) is past-representable, then necessarily

m0 < +∞.

Regarding the last statement, it follows from the above proof that the condition m0 < +∞

and m ≥ m0 is sufficient for (m,h)-past-representability. It is also necessary, as (3.7) never

holds with m < m0 (a fortiori, with m < m0 = +∞), concluding the proof.

C.7 Proof of Proposition 4.1

By Proposition 2.2

P∥·∥
x (Xt, A|B) −→

x→+∞

Γ∥·∥(A ∩B(V ))
Γ∥·∥(B(V ))

.

The conclusion follows by considering the points of B(V ) and A ∩ B(V ) that are charged by

the spectral measure Γ∥·∥ in (4.2).

C.8 Proof of Lemma 4.1

By Proposition 3.1, we have

Γ∥·∥ =
∑

ϑ∈S1

∑
k∈Z

∥dk∥αδ{ ϑdk
∥dk∥

},
with dk = (ρk+m1{k+m≥0}, . . . , ρ

k−h1{k−h≥0}) and k ∈ Z. Thus,

dk =


0, if k ≤ −m− 1,

(ρk+m, . . . , ρ, 1, 0, . . . , 0), if −m ≤ k ≤ h,

ρk−hdh, if k ≥ h.
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Therefore,

Γ∥·∥ =
∑

ϑ∈S1

[
h−1∑

k=−m

∥dk∥αδ{ ϑdk
∥dk∥

} +
+∞∑
k=h

|ρ|α(k−h)∥dh∥αδ{ ϑρk−hdh
|ρ|k−h∥dh∥

}].
Moreover,

∑
ϑ∈S1

+∞∑
k=h

|ρ|α(k−h)∥dh∥αδ{
sign(ρ)k−h ϑdh

∥dh∥

}
=
∑

ϑ∈S1

∥dh∥α 1
2

[ +∞∑
k=h

|ρ|α(k−h) + ϑβ
+∞∑
k=h

(ρ<α>)k−h

]
δ{ ϑdh

∥dh∥

}
=
∑

ϑ∈S1

1
1 − |ρ|α

∥dh∥αw̄ϑδ{ ϑ dh
∥dh∥

}.
Finally, noticing that for k = −m and dk = (1, 0, . . . , 0),

Γ∥·∥ =
∑

ϑ∈S1

[
wϑ

h−1∑
k=−m

∥dk∥αδ{ ϑdk

∥dk∥

} + w̄ϑ

1 − |ρ|α
∥dh∥αδ{ ϑdh

∥dh∥

}]

=
∑

ϑ∈S1

[
wϑ

(
δ{(ϑ,0,...,0)} +

h−1∑
k=−m+1

∥dk∥αδ{ ϑdk

∥dk∥

})+ w̄ϑ

1 − |ρ|α
∥dh∥αδ{ ϑdh

∥dh∥

}]

=
∑

ϑ∈S1

[
wϑδ{(ϑ,0,...,0)} +

(
wϑ

h−1∑
k=−m+1

∥dk∥αδ{ ϑdk

∥dk∥

} + w̄ϑ

1 − |ρ|α
∥dh∥αδ{ ϑdh

∥dh∥

})].
C.9 Proof of Proposition 4.2

Lemma C.2 Let Γ∥·∥ be the spectral measure given in Lemma 4.1 and assume that the ρ is

positive.

Letting (ϑ0, k0) ∈ I, consider

I0 :=
{
ϑ′dk′

∥dk′∥
: ϑ′f(dk′)

∥dk′∥
= ϑ0f(dk0)

∥dk0∥
for (ϑ′, k′) ∈ I

}
.

For m ≥ 1, and 0 ≤ k0 ≤ h, then

I0 =
{
ϑ0dk′

∥dk′∥
: 0 ≤ k′ ≤ h

}
.

For m ≥ 1, and −m ≤ k0 ≤ −1, then

I0 =



{
ϑ0dk0

∥dk0∥

}
, if −m+ 1 ≤ k0 ≤ −1

{
ϑ0d0,k0

∥d0,k0∥

}
= {(ϑ0, 0, . . . , 0)} , if k0 = −m.

For m = 0, then

I0 =
{
ϑ0dk′

∥dk′∥
: k′ ∈ {1, . . . , h} ∪ {(0, 0)}

}
.
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Proof.

Case m ≥ 1 and k0 ∈ {0, . . . , h}

If k′ ∈ {−m, . . . ,−1}, the (m+1)th component of f(dk′) is zero, whereas the (m+1)th component

of f(dk0) is ρk0 ̸= 0. Necessarily, ϑ′f(dk′)/∥dk′∥ ≠ ϑ0f(dk0)/∥dk0∥ and

I0 =
{
ϑ′dk′

∥dk′∥
: ϑ′f(dk′)

∥dk′∥
= ϑ0f(dk0)

∥dk0∥
for (ϑ′, k′) ∈ {−1,+1} × {0, . . . , h}

}
.

Now, with k′ ∈ {0, . . . , h}, we have that

f(dk′) = (ρk′+m, . . . , ρk′+1, ρk′),

f(dk0) = (ρk0+m, . . . , ρk0+1, ρk0),

and by (3.1) we also have that

∥dk′∥ = ∥(ρk′+m, . . . , ρk′+1, ρk′
,

h︷ ︸︸ ︷
0, . . . , 0)∥,

∥dk0∥ = ∥(ρk0+m, . . . , ρk0+1, ρk0 , 0, . . . , 0︸ ︷︷ ︸
h

)∥.

Thus,

ϑ′f(dk′)
∥dk′∥

= ϑ0f(dk0)
∥dk0∥

⇐⇒ ϑ′ρk′
f (d0)

|ρ|k′∥d0∥
= ϑ0ρ

k0f (d0)
|ρ|k0∥d0∥

⇐⇒ ϑ′ρℓ

∥d0∥
= ϑ0ρ

ℓ

∥d0∥
, ℓ = 0, . . . ,m

⇐⇒ ϑ′ϑ0
∥d0∥
∥d0∥

=
(
ρ

ρ

)ℓ

, ℓ = 0, . . . ,m

⇐⇒ ϑ′ϑ0 = 1

⇐⇒ ϑ′ = ϑ0,

because ρ ̸= 0 is assumed.

Case m ≥ 1 and k0 ∈ {−m, . . . , −1}

By comparing the place of the first zero component, it is easy to see that

ϑ′f(dk′)
∥dk′∥

= ϑ0f(dk0)
∥dk0∥

=⇒ k′ = k0.

f(dk′) = (

m+1︷ ︸︸ ︷
ρk′+m, . . . , ρ, 1, 0, . . . , 0,

h︷ ︸︸ ︷
0, . . . , 0),

f(dk0) = (ρk0+m, . . . , ρ, 1, 0, . . . , 0︸ ︷︷ ︸
m+1

, 0, . . . , 0︸ ︷︷ ︸
h

),
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and we also have that

∥dk′∥ = ∥(

m+1︷ ︸︸ ︷
ρk′+m, . . . , ρ, 1, 0, . . . , 0,

h︷ ︸︸ ︷
0, . . . , 0)∥,

∥dk0∥ = ∥(ρk0+m, . . . , ρ, 1, 0, . . . , 0︸ ︷︷ ︸
m+1

, 0, . . . , 0︸ ︷︷ ︸
h

)∥.

As k′ = k0 ≤ −1,

ϑ′f(dk′)
∥dk′∥

= ϑ0f(dk0)
∥dk0∥

⇐⇒ ϑ′ρℓ

∥dk0∥
= ϑ0ρ

ℓ

∥dk0∥
, ℓ = 0, . . . ,m+ k0, and k′ = k0

⇐⇒ ϑ′ϑ0
∥dk0∥
∥dk0∥

=
(
ρ

ρ

)ℓ

, ℓ = 0, . . . ,m+ k0, and k′ = k0.

Now if −m+ 1 ≤ k0 ≤ −1,

ϑ′ϑ0
∥dk0∥
∥dk0∥

=
(
ρ

ρ

)ℓ

, ℓ = 0, 1, . . . ,m+ k0, and k′ = k0

⇐⇒ ϑ′ = ϑ0 and k′ = k0.

If k0 = −m, given that (ϑ0, k0) ∈ I = S1 ×
(
{−m, . . . ,−1, 0, 1, . . . , h} ∪ {(0,−m)}

)
, and as

k′ = k0 = −m, we have that dk0 = d0,−m = (1, 0, . . . , 0). Hence

ϑ′ϑ0
∥dk0∥
∥dk0∥

=
(
ρ

ρ

)ℓ

, ℓ = 0, and k′ = k0 = −m ,

⇐⇒ ϑ′ = ϑ0 and k′ = k0 = −m

Case m = 0

If k0 ∈ {1, . . . , h} then f(dk0) = ρk0 and by (3.1), ∥dk0∥ = |ρ|k0 . Thus, ϑ0f(dk0)/∥dk0∥ = ϑ0. If

k0 = −m = 0, then f(dk0) = 1 and ϑ0f(dk0)/∥dk0∥ = ϑ0. The same holds for (ϑ′, k′) ∈ I and

we obtain that

ϑ′f(dk′)
∥dk′∥

= ϑ0f(dk0)
∥dk0∥

⇐⇒ ϑ′ = ϑ0.

2

Let us now prove Proposition 4.2. By Proposition 4.1,

P∥·∥
x

(
Xt, Aϑ,k

∣∣∣B(V0)
)

−→
x→∞

Γ∥·∥
({

ϑ′dk′

∥dk′∥
∈ Aϑ,k : ϑ′f(d,k′)

∥dk′∥
∈ V0

})

Γ∥·∥

({
ϑ′dk′

∥dk′∥
∈ C

∥·∥
m+h+1 : ϑ′f(dk′)

∥dk′∥
∈ V0

}) . (C.14)

Focusing on the denominator, we have by (4.6)

Γ∥·∥
({

ϑ′dk′

∥dk′∥
∈ C

∥·∥
m+h+1 : ϑ′f(dk′)

∥dk′∥
∈ V0

})
= Γ∥·∥

({
ϑ′dk′

∥dk′∥
∈ C

∥·∥
m+h+1 : ϑ′f(dk′)

∥dk′∥
= ϑ0f(dk0)

∥dk0∥

})

63



We will now distinguish the cases arising from the application of Lemma C.2. Recall that we

assume for this proposition that the ρ is positive. Thus, sign(ρ) = 1 and β̄ = β
1 − |ρ|α

1 − ρ<α>
= β

and w̄ϑ = wϑ in (4.5) for ϑ ∈ {−1,+1}.

Case m ≥ 1 and 0 ≤ k0 ≤ h

By Lemma C.2,

Γ∥·∥
({

ϑ′dk′

∥dk′∥
∈ C

∥·∥
m+h+1 : ϑ′f(dk′)

∥dk′∥
= ϑ0f(dk0)

∥dk0∥

})

= Γ∥·∥
({

ϑ0dk′

∥dk′∥
: 0 ≤ k′ ≤ h

})

=
[
wϑ0

h−1∑
k′=0

∥dk′∥α + w̄ϑ0

1 − |ρ|α
∥dh∥α

]

By (3.1), for k′ ∈ {0, 1, . . . , h}

∥dk′∥ = ∥(ρk′+m, . . . , ρk′+1, ρk′
, 0, . . . , 0︸ ︷︷ ︸

h

)∥

= |ρ|k′−h∥(ρm+h, . . . , ρh+1, ρh, 0, . . . , 0︸ ︷︷ ︸
h

)∥

= |ρ|k′−h∥dh∥.

Thus,

Γ∥·∥
({

ϑ′dk′

∥dk′∥
∈ C

∥·∥
m+h+1 : ϑ′f(dk′)

∥dk′∥
= ϑ0f(dk0)

∥dk0∥

})
= wϑ0∥dh∥α

[
h−1∑
k′=0

ρα(k′−h) + 1
1 − |ρ|α

]

= wϑ0∥dh∥α |ρ|−αh

1 − |ρ|α
.

Similarly for the numerator in (C.14), by (4.7),

Γ∥·∥
({

ϑ′dk′

∥dk′∥
∈ Aϑ,k : ϑ′f(dk′)

∥dk′∥
∈ V0

})

= Γ∥·∥
({

ϑ0dk′

∥dk′∥
∈ Aϑ,k : 0 ≤ k′ ≤ h

})

=


Γ∥·∥

({
ϑ0dk

∥dk∥

})
, if ϑ = ϑ0,

Γ∥·∥(∅), if ϑ ̸= ϑ0,

=


wϑ0∥dh∥α|ρ|α(k−h)δ{ϑ0}(ϑ), if 0 ≤ k ≤ h− 1,

wϑ0∥dh∥α 1
1 − |ρ|α

δ{ϑ0}(ϑ), if k = h.
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The conclusion follows.

Case m ≥ 1 and −m ≤ k0 ≤ −1

We have by Lemma C.2

Γ∥·∥
({

ϑ′dk′

∥dk′∥
∈ C

∥·∥
m+h+1 : ϑ′f(dk′)

∥dk′∥
= ϑ0f(dk0)

∥dk0∥

})
= Γ∥·∥

({
ϑ0dk0

∥dk0∥

})
.

If −m+ 1 ≤ k0 ≤ −1,

Γ∥·∥
({

ϑ0dk0

∥dk0∥

})
= wϑ0∥dk0∥α,

and

Γ∥·∥
({

ϑ′dk′

∥dk′∥
∈ Aϑ,k : ϑ′f(dk′)

∥dk′∥
∈ V0

})

= Γ∥·∥
(
Aϑ,k ∩

{
ϑ0dk0

∥dk0∥

})

=


Γ∥·∥

({
ϑ0dk0

∥dk0∥

})
, if ϑ = ϑ0, and k = k0,

Γ∥·∥(∅), if ϑ ̸= ϑ0 or k ̸= k0,

= wϑ0∥dk0∥αδ{ϑ0}(ϑ)δ{k0}(k).

If k0 = −m, then dk0 = d0,−m = (1, 0, . . . , 0), and

Γ∥·∥
({

ϑ0dk0

∥dk0∥

})
= Γ∥·∥

(
{ϑ0(1, 0, . . . , 0)}

)
= wϑ0 ,

and

Γ∥·∥
({

ϑ′dk′

∥dk′∥
∈ Aϑ,k : ϑ′f(dk′)

∥dk′∥
∈ V0

})

= Γ∥·∥
(
Aϑ,k ∩

{
ϑ0dk0

∥dk0∥

})

=

 Γ∥·∥
(
Aϑ,k ∩ {ϑ0(1, 0, . . . , 0)}

)
, if ϑ = ϑ0, and k = k0 = −m,

Γ∥·∥(∅), if ϑ ̸= ϑ0 or k ̸= k0,

= wϑ0δ{ϑ0}(ϑ)δ{k0}(k).
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The conclusion follows as previously.

Case m = 0

By Lemma C.2, as the ρ is positive

Γ∥·∥
({

ϑ′dk′

∥dk′∥
∈ C

∥·∥
m+h+1 : ϑ′f(dk′)

∥dk′∥
= ϑ0f(dk0)

∥dk0∥

})

= Γ∥·∥
({

ϑ0dk′

∥dk′∥
∈ C

∥·∥
m+h+1 : k′ ∈ {0, . . . , h} ∪ {(0, 0)}

})

Given that ∥dk′∥ = |ρ|k′ , for any 1 ≤ k′ ≤ h,

Γ∥·∥
({

ϑ′dk′

∥dk′∥
∈ C

∥·∥
m+h+1 : ϑ′f(dk′)

∥dk′∥
= ϑ0f(dk0)

∥dk0∥

})

= wϑ0 + wϑ0

[
h−1∑
k′=1

∥dk′∥α + ∥dh∥α

1 − |ρ|α

]

= wϑ0

[
1 +

h−1∑
k′=1

|ρ|αk′ + |ρ|αh

1 − |ρ|α

]

= wϑ0

[
1 − |ρ|αh

1 − |ρ|α
+ |ρ|αh

1 − |ρ|α

]

= wϑ0
1

1 − |ρ|α
.

Similarly, by (4.7),

Γ∥·∥
({

ϑ′dk′

∥dk′∥
∈ Aϑ,k : ϑ′f(dk′)

∥dk′∥
∈ V0

})

= Γ∥·∥
(
Aϑ,k ∩

{
ϑ0dk′

∥dk′∥
∈ C

∥·∥
m+h+1 : k′ ∈ {0, . . . , h} ∪ {(0, 0)}

})

=


Γ∥·∥

({
ϑ0dk

∥dk∥

})
, if ϑ = ϑ0,

Γ∥·∥(∅), if ϑ ̸= ϑ0,

=


wjϑ0δ{ϑ0}(ϑ), if k = 0,

wϑ0 |ρ|αkδ{ϑ0}(ϑ), if 1 ≤ k ≤ h− 1,

wϑ0
|ρ|αh

1 − |ρ|α
δ{ϑ0}(ϑ), if k = h.

The conclusion follows.
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C.10 Proof of Proposition 4.3

Lemma C.3 Let Xt be the α-stable anticipative AR(2) (resp. fractionally integrated AR) as

in (4.8) (resp. (4.10)). With f as in (4.1), and for any m ≥ 1, h ≥ 0,

∀k, ℓ ≥ −m, ∀ϑ1, ϑ2 ∈ S1,

[
f(ϑ1dk)

∥dk∥
= f(ϑ2dℓ)

∥dℓ∥
=⇒ k = ℓ and ϑ1 = ϑ2

]
.

Proof.

The result is clear for both processes for −m ≤ k, ℓ ≤ −1. For k, ℓ ≥ 0,

f(ϑ1dk)
∥dk∥

= f(ϑ2dℓ)
∥dℓ∥

⇐⇒
[
∀ i = 0, . . . ,m, ϑ1dk+i

∥dk∥
= ϑ2dℓ+i

∥dℓ∥

]
⇐⇒ dk

dℓ
= dk+1
dℓ+1

= . . . = ϑ1ϑ2
∥dk∥
∥dℓ∥

. (C.15)

The last statement in particular implies that dk

dℓ
= dk+1
dℓ+1

.

For the anticipative AR(2), if λ1 ̸= λ2, we then have

dk

dℓ
= dk+1
dℓ+1

⇐⇒ λk+1
1 − λk+1

2
λℓ+1

1 − λℓ+1
2

= λk+2
1 − λk+2

2
λℓ+2

1 − λℓ+2
2

⇐⇒ λk−ℓ
1 = λk−ℓ

2

⇐⇒ k = ℓ.

This case λ1 = λ2 = λ is similar. For the anticipative fractionally integrated AR, given that

Γ(z + 1) = zΓ(z) for any z ∈ C, we have

dk

dℓ
= dk+1
dℓ+1

⇐⇒ Γ(k + d)Γ(ℓ+ 1)
Γ(ℓ+ d)Γ(k + 1) = Γ(k + d+ 1)Γ(ℓ+ 2)

Γ(ℓ+ d+ 1)Γ(k + 2)

⇐⇒ Γ(ℓ+ d+ 1)Γ(k + 2)
Γ(ℓ+ d)Γ(k + 1) = Γ(k + d+ 1)Γ(ℓ+ 2)

Γ(k + d)Γ(ℓ+ 1)

⇐⇒ (k − ℓ)(d− 1) = 0

⇐⇒ k = ℓ.

Therefore, in all cases,

dk

dℓ
= dk+1
dℓ+1

= . . . = ϑ1ϑ2
∥dk∥
∥dℓ∥

=⇒ k = ℓ and ϑ1ϑ2 = 1.

2

Let us now prove Proposition 4.3. The spectral measure of Xt writes

Γ∥·∥ = σα
∑

ϑ∈S1

∑
k∈Z

wϑ∥dk∥αδ{ ϑdk
∥dk∥

},
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where the sequences (dk) are given respectively by (4.9) and (4.11) for the anticipative AR(2)

and fractionally integrated processes. By Proposition 2.2,

P∥·∥
x

(
Xt, A

∣∣∣B(V0)
)

−→
x→∞

Γ∥·∥(A ∩B(V0))
Γ∥·∥(B(V0))

.

On the one hand, we have by definition of B(V0), V0 and Lemma C.3,

Γ∥·∥(B(V0)) = Γ∥·∥
({

ϑdk

∥dk∥
∈ B(V0) : (ϑ, k) ∈ {−1,+1} × Z

})

= Γ∥·∥
({

ϑdk

∥dk∥
∈ C

∥·∥
m+h+1 : ϑf(dk)

∥dk∥
∈ V0, (ϑ, k) ∈ {−1,+1} × Z

})

= Γ∥·∥
({

ϑdk

∥dk∥
∈ C

∥·∥
m+h+1 : ϑf(dk)

∥dk∥
= ϑ0f(dk0)

∥dk0∥
, (ϑ, k) ∈ {−1,+1} × Z

})

= Γ∥·∥
({

ϑ0dk0

∥dk0∥

})
.

Similarly, it is easily shown that

Γ∥·∥(A ∩B(V0)) = Γ∥·∥
(
A ∩

{
ϑ0dk0

∥dk0∥

})
.

The conclusion follows.
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