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associated with reduced GHG emissions. However, we find that all indicators 
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and comparability of EPS measures across sectors and national contexts. 
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Executive summary 

 

As countries worldwide strive to combat climate change, measuring the effectiveness of 
environmental policies has become crucial. Policymakers and researchers increasinlgy rely on 
Environmental Policy Stringency (EPS) indicators to assess the impact of climate policy mixes on 
reducing greenhouse gas (GHG) emissions. However, widely used EPS indicators, such as the 
OECD index, may overlook critical sectoral and national differences, raising concerns about their 
reliability and effectiveness as policy assessment tools. 

This study introduces new sectoral EPS indicators, incorporating country-year specifications 
based on the Climate Actions and Policies Measurement Framework (CAPMF) database. By 
testing two key assumptions—the Proxy assumption (which assumes EPS is a neutral and 
robust policy measure over time and across countries) and the Effectiveness assumption 
(which assumes higher EPS leads to lower emissions). This research evaluates the reliability of 
EPS indicators and their influence on GHG emissions. Using advanced econometric techniques, 
including two-way fixed effects regression and a Shift-Share Instrumental Variable (SSIV) 
approach, we analyze how different EPS construction methods affect econometric results. 

Key Findings 

1. EPS indicators are not fully neutral: The way EPS is constructed significantly impacts 
econometric results, suggesting that aggregation choices influence policy effectiveness 
assessments. 

2. EPS is generally effective at reducing emissions: Stricter environmental policies are 
associated with lower GHG emissions, particularly in the transport and industry sectors. 
However, their effectiveness in the electricity and building sectors varies depending on 
measurement choices. 

3. Sectoral coordination is key: Policy mixes covering multiple sectors simultaneously, 
particularly the transport, electricity, and building sectors, enhance emission reduction 
effectiveness. 

4. EPS indicators exhibit regional and temporal instability: The lack of enforcement 
considerations in EPS construction may contribute to inconsistencies across time and 
regions. 

5. No single EPS measure is sufficient: A combination of methodologies is needed to 
provide a comprehensive and reliable assessment of policy stringency and effectiveness. 

Policy Recommendations 

• Adopt a multi-indicator approach: Relying on a single EPS measure can be misleading. 
Policymakers should use multiple indicators to gain a more accurate picture of 
environmental policy effectiveness. 

• Incorporate enforcement criteria: Developing EPS indicators that include policy 
enforcement levels would improve their reliability and reduce regional and temporal 
inconsistencies. 

• Enhance sectoral coordination: Climate policies should be designed with cross-sectoral 
complementarities in mind, particularly integrating transport, electricity, and building sector 
policies to maximize emission reductions. 

This study underscores the complexity of measuring climate policy stringency and highlights the 

importance of refining existing indicators to better inform policy decisions. By improving the 

accuracy and sectoral specificity of EPS indicators, policymakers can design more effective 

strategies to reduce emissions and accelerate the transition to a low-carbon economy. 

. 



1 Introduction
As the need to transition to a low-carbon economy grows more urgent, countries around the world
are adopting a wide range of climate policy instruments targeting different emission sources and
sectors. For instance, to achieve carbon neutrality, the European Union is developing a broad policy
framework covering all emission sectors, including cap-and-trade mechanisms to manage emissions
from transportation and buildings. The rising importance of environmental policies has sparked
debates about their impact on both economic growth and climate goals. Consequently, there is
a strong need to develop reliable measures of environmental policy stringency (EPS) (Brunel and
Levinson, 2016; Galeotti et al., 2020), recognizing that a fast transition must also be an effective
one. A solid indicator for EPS is essential to support meaningful comparisons across and within
countries, although building such a tool poses significant challenges.

A booming literature is dedicated to formulating indicators quantifying Environmental Policy Strin-
gency, defined as "an elevated, explicit or implicit, cost associated with polluting or environmentally
deleterious behaviors" by Botta and Koźluk (2014, p.14), and on analyzing their impact on emission
levels. One of the most prevalent among these indicators is the one created by the OECD (Kruse
et al., 2022). However, this composite indicator overlooks the concept of policy interaction within
the mix, instead considering the aggregated effects of isolated individual instruments. Furthermore,
it tends to focus on energy sector policies, neglecting the intricate challenges posed by diffuse emis-
sion sectors due to their link with end consumers and their limited price elasticities. Finally, the
OECD indicator employs a fixed equal aggregation approach that applies the same criteria across
all countries, disregarding national specificities. While this methodology may appear more agnostic,
it can bias the stringency score, assigning higher scores to policy mixes with a diverse set of in-
struments across sectors while undervaluing policy mixes focused on specific sectors or instruments.

This study aims to gain deeper insights into the measurement of the stringency of policy mixes. We
contribute to the literature by, first, providing new Environmental Policy Stringy (EPS) indicators
encompassing country-year specificities as well as sectoral coverage of climate policies. Second,
we explore how EPS construction choices affect econometric results on the effect of policy mix
on GHG reduction. By doing so, our analysis aims at testing two assumptions often implied and
yet not confirmed by previous econometrical analysis. Firstly, EPS indicators are good proxies of
environmental policy stringency, allowing for pertinent comparison between countries and years.
We call it the Proxy assumption. Second, they are associated to the effectiveness of a policy mix in
reducing emission. We call it the Effectiveness assumption.

To accomplish this, we use the Climate Actions and Policies Measurement Framework (CAPMF)
database (Nachtigall et al., 2022) to construct four distinct metrics: EPS_OECD, EPS_GHG,
EPS_GDP and EPS_BOD. Each indicator offers a unique perspective by varying the weighting
approach. While the first one, following the OECD methodology, uses uniform equal sectoral
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weighting, the three others apply country-specific weighting. EPS_GHG and EPS_GDP adjust
weights based on greenhouse gas emissions and GDP contribution respectively. EPS_BOD has
the most flexible weighting through the Benefits-of-the-Doubt method. These variations allow us
to capture the nuances of policy rigor across sectors and reflect both economic and environmental
contexts. Then, we measure the influence of these indicators on emission levels using two-way fixed
effects panel regression. In order to examine the influence of regulations within each emission sector
and the interplay between regulatory frameworks across sectors, we employ national and sectoral
emissions data. To ascertain causality in the relationship, we use a Shift-Share Instrumental Variable
(SSIV). This instrument allows to better understand the effect of global shock in policy regulations
on national policy mixes.

To address the shortcomings of relying on a single indicator, our Proxy assumption analysis re-
veals significant differences in results obtained with varying EPS indicators. Additionally, While
EPS_OECD struggles with precision, and EPS_BOD suffers from high multicollinearity, EPS_GDP
demonstrates greater stability and explanatory power for the effects of EPS on GHG emissions.
However, all indicators suffers regional and temporal instability, likely due to the absence of the
enforcement criteria in the scoring methodology. These findings highlight the limitations of indi-
vidual measures and suggest that a combination of methodologies provides a more balanced and
comprehensive assessment of environmental policy impacts. Our findings support the Effectiveness
assumption, indicating that stricter EPS is generally associated with reduced emissions, particularly
in the transport and industry sectors. However, EPS effects are not always consistent among EPS
indicators, in particular in the building and electricity sectors. These findings underscore the need
for an integrated approach to accurately capture the complexities of climate policy stringency across
different sectors and contexts. Notably, the results highlight synergies between sectoral climate pol-
icy coverage, with the simultaneous presence of policies in the electricity, building and transport
sectors being significantly associated with emission reductions whatever the EPS indicator used.

Our study contributes to the literature on Environmental Policy Stringency (EPS) by refining
the construction of policy indicators and addressing existing limitations in regional and temporal
comparisons. While prior studies on EPS index and GHG reduction yield varied findings on its
relations with emissions reduction, our approach enhances the methodological framework by inte-
grating sector-specific considerations and alternative aggregation techniques. In line with recent
studies using the CAPMF framework, we emphasize the importance of policy mix effects. Our
findings reinforce the notion that stringent policies are more effective when designed with cross-
sectoral complementarities in mind, particularly between the transport and electricity or building
sectors. By highlighting the role of sectoral synergies in emissions reduction, our study offers both
methodological advancements for researchers and practical insights for policymakers, underscoring
the need for coordinated and comprehensive climate policy design.

The paper is organized as follows. In Section 2, we provide the background and motivation for our
analysis by reviewing the literature on Environmental Policy Stringency (EPS). Section 3 outlines
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the construction of each EPS indicator and details our empirical strategy, including the use of a
two-way fixed effects model and a Shift-Share Instrumental Variable (SSIV) approach. In Section
4, we present the results, structuring the analysis around the two key assumptions—the proxy and
Effectiveness assumptions—each examined separately. Finally, Section 5 provides our conclusions
and discusses implications for future research.

2 Environmental Policy Stringency: A Literature Re-
view

The growing importance of environmental policies has given rise to debates concerning their impact
on both economic development and climate protection. Consequently, there is a compelling need to
develop rigorous measures of environmental policy stringency (EPS) (Brunel and Levinson, 2016;
Galeotti et al., 2020) defined as "a higher, explicit or implicit, cost of polluting or environmentally
harmful behavior" by Botta and Koźluk (2014, p.14). A solid indicator to assess this EPS is essential
to facilitate empirical comparisons between and within countries.

In his literature review about induced innovation, Popp (2019) notes a growing trend in interna-
tional and cross-country comparisons. Their objective is to validate research findings across diverse
contexts and, consequently, formulate more universally applicable policy recommendations. Fur-
thermore, these measures allow for the examination of spillover effects between countries, enabling
analyses of how one country’s regulatory actions influence variables such as green innovation in
other nations (Dechezleprêtre and Glachant, 2014). With regard to within-country analyses, they
allow comparisons between different policy instruments or policy mixes that can be relevant in the
ongoing debate opposing market-based instruments and command-and-control approaches (Li and
Ramanathan, 2018; Ren et al., 2018; Zhu et al., 2021).

As emphasized by Botta and Koźluk (2014), the quality of empirical studies assessing environmental
policy effectiveness largely depends on the accuracy of the chosen proxy. The complexity of the
task extends beyond data collection challenges (Brunel and Levinson, 2013). The primary obstacle
lies in obtaining measures allowing "all thing being equal" comparison. Brunel and Levinson (2013)
identifies four major obstacles to measuring environmental policy stringency, which are frequently
referenced in environmental policy literature (Herman and Shenk, 2021), namely:

1. Multi-dimensionality: Environmental policy stringency encompasses multiple facets, includ-
ing diverse aspects of stringency and environmental pollution, as well as varying sectoral
coverage.

2. Simultaneity: Policy stringency, which impacts pollution levels, may simultaneously be influ-
enced by current pollution levels.
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3. Industrial Composition: Ricardo’s concept of "comparative advantage" implies variations in
policy stringency based on a country’s industrial composition.

4. Capital Vintage: Regulatory requirements may differ for new capital investments compared
to existing ones, leading to variations in policy stringency.

2.1 How to measure Environmental Policy Stringency?

2.1.1 Typology of instruments and their limitations

We adopt here the classification of Galeotti et al. (2020) who have sorted out the different measures of
environmental policy stringency into four category of indicators. This is similar to the classification
proposed by Brunel and Levinson (2013) but with the merging of private and public investments
into one category.

• Pollution Abatement Effort: This category includes two major types of instruments.
Firstly, the Pollution Abatement Cost Effort (PACE), which has been used in the primary
studies of the field (Popp, 2019), represents the private sector’s efforts. Secondly, research
and development (R&D) support, such as investments in renewable energy, as employed by
Dechezleprêtre and Glachant (2014), reflects the public sector’s actions. Criticisms of these
measures include issues related to causality and difficulties in measurement, especially in cases
of market failures.

• Direct Assessment of Regulations: This category has been widely used in literature. For
instance, Bel and Joseph (2018) use oversupply of allowances in the EU Emissions Trading
System (EU-ETS) and changes in EU-ETS regulations as proxies, demonstrating correlations
with patenting activity and policy stringency. Additionally, Hille et al. (2020) compare the
effectiveness of various instruments in supporting renewable energy, highlighting public R&D
support’s significant impact on solar-panel patenting. While efficient for specific regulations,
this category faces challenges when applied to a broader range of policy instruments. Finding
suitable proxies can be problematic.

• Output-Based or Emission-Based Indices: Researchers have relied on energy consump-
tion or emission levels to gauge policy stringency. However, this approach confronts causality
issues. Brunel and Levinson (2013) enhance this approach by creating an indicator based on
the discrepancy between predicted and actual emission levels, which is used in the comparison
of environmental policy stringency (EPS) indicators by Galeotti et al. (2020). This indicator
shares similarities with the one devised by Sauter (2014). Building on the methodology out-
lined by OECD (2008), the authors developed a carbon emissions performance indicator per
sector, based on GDP and emissions shares of the application sector.
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• Composite Indicators: Researchers have devised composite indicators, such as the "Re-
gional Environmental Regulation" indicator by Jiang et al. (2018), which combines public
R&D support and an index of current regulatory practices in China or the Environmental
Policy Stringency Index from OECD. These composite indicators, however, may raise concerns
about objectivity and completeness, a topic explored further in the subsequent subsection.

Several authors have underscored the limitations of existing indicators (Brunel and Levinson, 2016;
Galeotti et al., 2020; Herman and Shenk, 2021). In a 2014 study, Sauter (2014) criticized previous
policy stringency indicators used in the literature, contending that they lacked a rigorous construc-
tion methodology. Herman and Shenk (2021) suggested employing Principal Component Analysis
(PCA) and machine learning techniques for more precise indicators. This is precisely what Galeotti
et al. (2020) accomplished in their work. They employed these four categories of environmental
policy stringency measures to construct 13 different indicators, subsequently evaluating their ac-
curacy through PCA. Their findings revealed disparities among indicators, occasionally yielding
contradictory results. However, they demonstrated greater convergence between composite indices
and emissions-based indicators, while others exhibited less reliability. Specifically, their research
indicated a confirmation of the Porter hypothesis and a significant relationship between energy ef-
ficiency and composite indices or emissions-based indicators. Brunel and Levinson (2016) founded
equivalent results in their study on correlation between EPS instrument. They argue that an effec-
tive indicator should possess qualities such as ease of computation, accessibility to yearly data, and
cardinality, which enables comparative studies.

2.1.2 From the EPS index to the CAPMF Database

This analysis focus especially on OECD’s work to score policy stringency.The development of policy
stringency measurement by the OECD began with the Environmental Policy Stringency (EPS)
index, an annual national rating system that ranges from 0 (indicating the absence of climate
policy) to 6 (representing the highest stringency among observations). It covers specifically climate
and air pollution mitigation measures. It was first designed by Botta and Koźluk (2014), then
readjusted by Kruse et al. (2022). This composite score is built by aggregating the scores associated
with the different policies considered. To encompass the multidimensionality inherent to climate
regulation, the EPS Index adopts a specific policy categorization framework. In fact, the first version
followed the taxonomy of Serres et al. (2010), emphasizing that an efficient policy mix should be
balanced between Command and Control (CAC) tools and the Market Based Instrument (MBI).
With extension by Kruse et al. (2022), the categorization was tripartite with the inclusion of the
"Technology Support Policies". In each of these subcategories, 13 types of policies were categorized
within which individual policies and instruments are scored and aggregated with equal weighting.

While this EPS index lacks sectors representation, with a focus on energy policies, an enlarged
database was constructed. Called Climate Actions and Policies Measurement Framework (CAPMF)
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and presented by Nachtigall et al. (2022), it is an extended version of the scoring framework taking
account of policies covering around 85% of national emissions. While the EPS index only cov-
ers "Market-Based instrument" (MBI), "Non-Market-Based instruments" (NMBI) and "Technology
Support", the CAPMF covers three blocks: sectoral, cross-sectoral, and international policies. In
this customizable dataset, the coverage of sectoral policies was extended to four distinct sectors
(Electricity, Industry, Buildings, and Transport), for which the score is an aggregation of the score
obtained for the MBIs (i.e., tax and certificates), and NMBIs (i.e., performance standard). Even-
tually, 130 policy variables grouped into 56 policy instruments are scored in the index. To score
them on a common scale, an empirical approach has been used, using data from 1990 to 2020 for
50 countries. Each policy score for a particular country is determined on the basis of its relative
stringency within the overall distribution of policy levels observed. Specifically, policies that fall
between the 90th and 100th percentiles (representing the highest level of stringency for the given
policy) receive a score of 10. The absence of a policy is assigned a score of 0, while intermediate
scores are determined by thresholds of the percentiles of observations.

In total, the CAPMF enables straightforward country-specific scoring. Its ease of use makes it
particularly valuable for both within-country and cross-country analyses. In particular, the tool is
easily accessible on the OECD data explorer1. Through a user-friendly interface, the aggregation of
scores can be customized to fit specific research needs. Researchers have the flexibility to selectively
include or exclude variables or policies, thus creating new composite indices tailored to their research
objectives.

2.2 EPS scores and policy mix effectiveness
Numerous studies have examined the relationship between the Environmental Policy Stringency
(EPS) index from OECD and its influence on emissions reduction–for a non-exclusive literature
review, see Albulescu et al. (2022). If the econometric approaches used can differ from a study to
another, they mainly used the same EPS index which is the first one provided by the OECD and
yet obtained variety of results.

The prevailing consensus in a majority of these studies underscores a significant and advantageous
association between EPS and carbon emissions. For instance, de Angelis et al. (2019), through a
comprehensive analysis distinguishing Market-Based Instruments from Non-Market-Based Instru-
ments within EPS, have underscored the latter’s more substantial influence on reducing carbon
emissions. Additionally, they have highlighted variations in the strength of this relationship be-
tween European and non-European countries, with European nations benefiting more from EPS.
Similarly, Sezgin et al. (2021), employing a cointegration model including carbon emissions, EPS,
and Human Development, have revealed a significant decrease in carbon emissions correlated with
EPS for G7 and BRICS economies.

1Last visited 24/01/24.
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Although these two studies have elucidated a straightforward relationship between EPS and carbon
emissions, the majority of studies reveal a non-linear relationship. Ahmed and Ahmed (2018), in
their analysis of EPS within the Chinese context, have identified a beneficial relation between EPS
and carbon emissions reduction. However, they have also acknowledged a slight adverse impact on
economic productivity. Expanding the scope, Wolde-Rufael and Mulat-Weldemeskel (2021), uti-
lizing panel cointegration techniques, have elucidated a compelling inverted U-shaped relationship
between environmental policy stringency and CO2 emissions in BRIICTS countries. Their findings
imply that stringent environmental policies lead to improved environmental quality beyond a cer-
tain threshold, suggesting that the effects of EPS may require time to materialize. This complex
relationship has been reaffirmed by Albulescu et al. (2022), who, through a quantile fixed-effect
panel data approach, have demonstrated an asymmetric relationship between carbon emissions and
EPS. Specifically, they contend that the efficacy of policy stringency hinges on country’s initial
pollution levels.

On a broader scale, Chu and Tran (2022) have demonstrated the heterogeneous impact of EPS
on ecological footprint. Employing panel quantile regression, they have identified a divergent re-
lationship between EPS and ecological footprint depending on quantile threshold and the type of
activity. While EPS has a positive effect on consumption ecological footprint below the 80th quan-
tile, it yields negative and extreme effects for higher quantiles. In contrast, a favorable relationship
between the EPS index and production footprint has been established.

However, to the best of our knowledge, three studies have reported contradictory results compared
to those mentioned above. Yirong (2022), employing a non-linear AutoRegressive Distributed Lag
(ARDL) approach, have reported mixed results for highly polluted countries. They have observed
that an increase in EPS leads to long-term reductions in carbon emissions. Surprisingly, they have
also noted that negative shocks to EPS have beneficial long-term effects on carbon emissions. In
a more categorical way, Alexandersson (2020); Demiral et al. (2021) have demonstrated either a
lack of a significant relationship or a detrimental one. Alexandersson (2020), utilizing panel data,
did not detect a substantial impact of higher policy stringency on carbon emissions. Nevertheless,
they observed effects on fuel consumption and prices. Notably, all regressions were conducted
concurrently with fuel prices, fuel consumption, and EPS, potentially raising concerns of endogeneity
and multicollinearity. Demiral et al. (2021), employing panel data regression, reported no discernible
effect of stronger EPS on carbon emissions. Paradoxically, they found that higher EPS levels were
associated with a significant increase in carbon emissions across the entire sample and for middle-
income countries.

Four studies specifically analyzing the effect of policy mix on GHG emissions using the CAPMF
framework are closely related to our analysis and present more consistent findings. First, Nachti-
gall et al. (2024) demonstrate through a two-way fixed effects regression that the CAPMF score
is associated with a reduction in both GHG and carbon emissions. However, while they aggregate
the 56 policy scores into a general mean, they neither focus on sectoral coverage nor distinguish be-
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tween different sectors. Additionally, they do not explore alternative methods of score aggregation.
Second, the cluster analysis by D’Arcangelo et al. (2024) confirms this negative relation between
the CAPMF score and emissions while introducing the concept of synergies within climate policy
mixes. Their findings indicate that the link between CAPMF and GHG emissions is stronger for
mitigation strategies incorporating a diverse set of policy instruments. The study by Stechemesser
et al. (2024) further supports the greater effectiveness of policy mixes over individual policies. Us-
ing a two-way fixed effects difference-in-differences approach, they agnostically identify emissions
reductions associated with effective policies and policy mixes. While their results highlight the
transport sector as having the highest potential for policy complementarity, their analysis remains
confined within individual emissive sectors without considering potential synergies across sectors.
Finally, Steinebach et al. (2024) review various climate policy databases and conclude that while
all indicators consistently show an increase in policy activity over time, they diverge in their assess-
ment of stringency levels. By comparing the stringency indicator from CAPMF with that of the
CLIMAPP dataset, they argue that capturing the nuanced effects of policy mix stringency within
a single indicator is challenging, reinforcing the findings of our study.

3 Method and Data
Our study makes several contributions to the existing literature regarding the relationship between
Environmental Policy Stringency (EPS) and greenhouse gas emissions, addressing three key aspects.
Firstly, we calculate four different sector-based indicators, allowing us to compare the effect of
construction choices on empirical results, using panel data regressions. Secondly, we take into
account the effect of the regulatory coverage of national economic sectors in our indicator, in order
to analyze their impact on the effectiveness of the rigor of the policy mix as a whole. Thirdly, we use
the updated EPS scores from the Climate Actions and Policies Measurement Framework database
presented by Nachtigall et al. (2022), which allows for a comprehensive panel data analysis covering
five additional years regarding to previous studies (2015-2020) and a total of 50 countries.2

3.1 Sectoral EPS indicators
Using the OECD CAPMF database we constructed four distinct sectoral EPS indicators, namely
EPS_OECD, EPS_GHG, EPS_GDP and EPS_BOD. Since the focus of this study is the sectoral
decomposition of climate regulation within the national climate policy mix, we concentrate on sector-
specific policies. Cross-sectoral policies3 (such as targets and governance) and international policies

2The database includes OECD members and candidates as well as remaining G20 countries, excluding
the United States.

3To account for policy instruments classified as "Cross-sectoral policies" that are in fact sector-specific, we
reclassified them according to the appropriate sector and type. For instance, bans and phase-outs of fossil
fuel extraction have been reclassified as non-market-based instruments in the energy production sector. As
such, the electricity sector in our study is more representative of energy sector as a whole (including hydrogen

8



are not considered in our analysis. With these indicators, our primary objective is to compare
the effects of construction choices on the results, and secondarily, to address the imperfections of
previous EPS indices.

Indeed, this sector-based approach addresses two main imperfections of the EPS index. First, it
allows for a broader scope of analysis. A fundamental aspect of the first EPS index revolves around
regulations within the energy sector, as explained in the initial version by Botta and Koźluk (2014).
Although the subsequent version by Kruse et al. (2022) expanded its coverage slightly, the index re-
mains predominantly focused on energy policies. As a result, it omits key sectors, particularly those
with diffuse emissions, which often require specific regulations.4 To achieve efficient decarboniza-
tion of the economy, efforts must be made across all sectors, as they are inherently complementary.
Decarbonizing electricity production alone, for example, is insufficient to decarbonize the transport
sector if there are no incentives to switch to electric transportation.

Second, our approach addresses biases in the aggregation of scores. In the OECD’s EPS index, the
total score is not adjusted to reflect the specific characteristics of each country. This can result in
biased outcomes that favor countries whose policy mix aligns closely with the OECD methodology,
while potentially underestimating the efforts of other countries. To explore if this scoring method-
ology can affect econometric results, we construct four distinct indicators with varying aggregation
methods.

To ensure meaningful comparisons, we follow the "all else being equal" approach in constructing
these indicators. This approach ensures that the indicators share common characteristics. First,
they are all based on the same OECD rating of climate policies and actions. Second, they cover
the same sectors: power generation, industry, buildings, and transport. Finally, they adhere to a
consistent hierarchical structure, similar to that proposed by the OECD, where the total indicator is
divided into the four sectors of activity, each further subdivided equally between market-based and
non-market-based instruments. From this common foundation, only one element—the weighting
method—varies across the indicators, enabling a targeted assessment of the impact of different
scoring approaches.

3.1.1 Construction of EPS_OECD, EPS_GHG and EPS_GDP

To create EPS_OECD, as no aggregated score is proposed by the CAPMF database, we followed
the methodology employed by the OECD for their EPS index, meaning an equitable decomposition
of weights between each module, i.e. across each sector (with a weight of 1/4). Within each sector,
we further divided the weight equally between market-based instruments (MBI) and non-market-
based instruments (NMBI). The aggregation of policies’ scores within each type (MBI and NMBI)
was achieved by computing the average of their respective scores. This EPS is a baseline type.

production for instance) but we kept the electricity terminology for coherence with the original dataset.
4Such as those covered by the Effort Sharing Regulation in Europe, for instance.
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EPS_GHG shares similarities with EPS_OECD but introduces a key modification related to sector
weighting. Instead of equal weights for all sectors, we associated the final score of each sector with
its greenhouse gas (GHG) emissions proportion within the national mix for each country annually.
This adjustment allows us to emphasize the impact of GHG-intensive sectors on the overall EPS
score.

EPS_GDP follows a similar structure to EPS_GHG but replaces the GHG proportion with the
share of each sector’s contribution to the Gross Domestic Product (GDP). To achieve this, we uti-
lized proxies for certain sectors, specifically "Real estate activities" and "Distributive trade, repairs;
transport; accommodation, food service," as classified in the OECD’s GDP framework. An illus-
tration of the structure of our indicators is presented in figure 1, showing the EPS_GDP structure
and the proxies used.

Figure 1: EPS_GDP Structure

3.1.2 Construction of EPS_BOD

For the construction of the EPS_BOD indicator, we employ the Benefits of the Doubt (BOD)
method, which comes from the Data Envelopment Analysis literature (see Cherchye et al. (2007)
for a comprehensive review and method specifics). The fundamental idea behind the BOD method
is to account for the inherent specificities of each country during score construction. While the
other three indicators equally score all policies inside each type (market-base or non-market-based
instrument) within each sector, the BOD method acknowledges that different strategies may be
necessary based on country-specific factors. For instance, some countries may choose to implement
a carbon tax instead of a cap-and-trade to mitigate industrial emissions. As so, the core assumption

10



of the BOD method is that each country’s government is best positioned to understand its unique
needs and construct effective policies. Therefore, if a country allocates more effort to a particular
instrument, it is likely because it is more effective.

To achieve this, the BOD method maximizes the score for each country and each year subject
to known constraints. Specifically, we maintained constraints ensuring that each sector has equal
weight and that each type (MBI and NMBI) has also equal weight (following the ’all else being equal’
method), leading to a maximum weight of 1/8 for each type. Naturally, weights cannot be negative.
To prevent a country with only one policy in place from obtaining an aberrant score, we introduced
a dispersion constraint within the EPS_BOD score. This constraint ensures that extreme scores are
avoided, promoting a more balanced assessment. Therefore, during the maximization process, we
additionally consider the minimization of weight variance within a type, multiplied by an argument
α. Through sensitivity tests conducted with the data, we calibrated the value of α to achieve the
most meaningful EPS score (as detailed in Appendix A). Specifically, we set α “ 100 and solve the
following program:

For a country (c P r1, ns), a sector (s P r1, 4s), and a type (t P r1, 2s), where (pc,s,t,i, i P r1, ms)
represents the i-th policy, and the set of weights is denoted as (wc,s,t “ twc,s,t,1, wc,s,t,mu)

EPS_BODc “
ÿ

s

ÿ

t

Sc,s,t

Sc,s,t “
ÿ

i

wc,s,t,i pc,s,t,i

wc,s,t “ arg max
wc,s,t

Sc,s,t ´ αVARpSc,s,tq

s.t.

1. Positivity constraint:
wc,s,t,i ě 0 @ c, s, t, i

2. Distribution constraint:
ÿ

i

wc,s,t,i ď
1
8 @ c, s, t

3.1.3 Graphical comparison of the indicators

The four indicators share a similar upward trend, with similar variations, such as the pronounced
increase in 2007, as outlined in Figure 2. EPS_BOD has naturally higher total values, related
to the maximization of scores for each country. However, as presented in Figure 3, the sectoral
decomposition is distinct among the indicators. Notably, we observe that the building sector has
a higher score for the BOD indicator than for the other three, indicating that countries make
more pronounced and less distributed policy choices in this sector. Additionally, we notice that
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the electricity sector’s score is highly sensitive to the indicator’s construction choices. It plays a
significant role in greenhouse gas emissions, which increases its weight in EPS_GHG, even though
it does not constitute a major input, leading to a decrease in its weight in EPS_GDP.

Figure 2: Comparison of the EPS total score
Legend: These curves represent the averaged EPS score for every countries, per year. In blue, the score of

EPS_OECD; in red the GHG one, in green the GDP one and in purple the BOD one.

Figure 3: Comparison of the EPS sectoral decomposition
Legend: In red, the building value of the EPS score; in blue, the electricity one; in yellow, the industry

one; and in green, the transport one.
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3.2 Empirical strategy and data

3.2.1 A data-driven exploration of the Proxy and Effectiveness assumptions

EPS indicators are increasingly used in the literature to assess the effectiveness of policy mixes over
time and across countries. However, the underlying Proxy and Effectiveness assumptions remain
difficult to test.

The Proxy assumption posits that the chosen indicator serves as a reliable proxy for the stringency
of climate policy mixes, enabling meaningful comparisons across countries and time. To function as
a good proxy, the indicator should be unbiased and stable, reflecting only the constant stringency
of a policy mix. However, just as real monetary values are unsuitable for temporal and regional
comparisons—-where constant or Purchasing Power Parity-adjusted values are preferred—-a uni-
form EPS measure that ignores country-year specificities may introduce bias.

The Effectiveness assumption asserts that policy stringency is genuinely associated with the ef-
fectiveness of policy mixes, implying a causal relationship between EPS and emission reductions.
However, validating this assumption is challenging due to endogeneity and omitted variable bias.
This challenge becomes even more pronounced if results are sensitive to EPS measurement choices
or if the chosen indicator suffers regional or temporal instability.

Given these concerns, this study examines how different EPS measurement choices influence GHG
estimations based on these indicators. More specifically, we assess how these variations affect both
the Proxy and Effectiveness assumptions.

3.2.2 An unbalanced panel database

We utilize data from the Organization for Economic Co-operation and Development (OECD) for
policy scores, greenhouse gas (GHG) emissions (measured in thousands of tonnes of CO2 equivalent),
Gross Domestic Product (GDP) (expressed in million constant 2015 US dollars at constant exchange
rates), and population figures. Additionally, we incorporate data from the World Bank to capture
urban growth dynamics and the share of agriculture, fishery and forestry used for the Instrument
Variable.

To ensure consistent observations across all models, we reduced the dataset to match the smallest
subset, as the number of observations for EPS based on GDP and GHG is lower than for the other
two indicators.5 For the purpose of our analysis, logarithm values are used for GHG, GDP and POP,
as illustrated by Figures 4 and 5. Our final unbalanced panel database encompasses 45 countries,
spanning annual observations from 1990 to 2020. Tables 1 and 2 provide descriptive statistics of
our data sample.

5This is because calculating them requires a sectoral breakdown of GHG emissions or GDP by year and
country, for which there is less data available.
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Figure 4: Trends of GHG and control variables
Legend: These curves represent the averaged logarithmic values for every countries, per year.

Table 1: Summary Statistics for Key Variables
Variable Count Mean Std. Dev. Min 50% Max
ln_GDP (106 USD2015) 1119 12.50 1.55 8.80 12.56 15.34
ln_POP (Count) 1119 16.27 1.51 12.50 16.15 21.01
urban_growth (percentage) 1119 0.83 1.02 -3.45 0.78 5.09
ln(GHG) (103 CO2eq) 1119 11.61 1.52 7.52 11.32 14.86
EPS_BOD (0-10 score) 1119 2.69 2.20 0.00 2.07 7.87
EPS_OECD (0-10 score) 1119 2.02 1.70 0.00 1.50 6.23
EPS_GHG (0-10 score) 1119 1.88 1.65 0.00 1.39 6.24
EPS_GDP (0-10 score) 1119 2.08 1.75 0.00 1.51 6.75

In our study, we address the issue of missing data, resulting in an unbalanced dataset. While
non-balanced datasets are not inherently problematic for panel econometric studies, the key con-
sideration lies in the randomness of the missing data. Notably, we observe that the missing data
predominantly occur during the years 1990 to 1995 and primarily affect countries with less ad-
vanced climate protection measures. To ensure the robustness of our results, we conducted tests on
balanced subsets of the dataset. Specifically, we created three distinct subsets: a subset capturing
the maximum number of years; another subset maximizing country representation; a third subset
capturing the maximum number of observations using the Python package from Joly (2024). The
results of these tests are consistent with those obtained from the unbalanced dataset6, confirming
the representativeness of our panel.

6While the values and significance of the coefficients differ slightly, the signs remain the same. These
differences are attributed to the reduction in the number of observations.
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Figure 5: Trends of GHG and its sectoral decomposition
Legend: These curves represent the averaged logarithmic values for every countries, per year.

3.2.3 Estimation Strategy: a two-way fixed effects model

First, tests for heteroskedasticity (White Test, Breusch-Pagan Test) and autocorrelation (Durbin-
Watson test) were conducted, ruling out the pooled data hypothesis. Next, a generalized Hausman
test identified the Fixed Effect modeling as the best fit. AIC and BIC analysis confirm this result
and specifically identified the two-way fixed effects model was identified as the best fit. Finally,
after testing for heteroskedasticity, autocorrelation, and cross-sectional dependence, the Clustered
covariance estimator was selected (see Appendix B.1 for a detailed description of this part and tests
results).

Let lnpGHGcyq be the natural logarithm of greenhouse gas emissions for country c and year y. The
model can be expressed as follows:

lnpGHGcyq “ β0 ` β1Xcy ` β2Ycy ` αc ` γy ` εcy

where:

• Xcy is the vector of exogenous control variables, including:

– lnpGDPcyq: the natural logarithm of GDP,

– lnpGDPcyq2: the natural logarithm of GDP squared to account for non-linearity of GDP
relation to emissions,

– lnpPOPcyq: the natural logarithm of population size,

– urban_growthcy: the urban growth rate.
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Table 2: Summary Statistics for Sectoral Decomposition of EPS by Model
Variable Count Mean Std. Dev. Min 50% Max

BOD Model
EPS_BOD_building 1119 0.80 0.61 0.00 0.67 2.32
EPS_BOD_elec 1119 0.62 0.52 0.00 0.48 2.09
EPS_BOD_indus 1119 0.52 0.63 0.00 0.24 2.18
EPS_BOD_transport 1119 0.76 0.56 0.00 0.70 2.33

OECD Model
EPS_OECD_building 1119 0.64 0.48 0.00 0.55 1.72
EPS_OECD_elec 1119 0.38 0.37 0.00 0.27 1.48
EPS_OECD_indus 1119 0.47 0.57 0.00 0.16 1.90
EPS_OECD_transport 1119 0.53 0.40 0.00 0.50 1.74

GHG Model
EPS_GHG_building 1119 0.35 0.33 0.00 0.26 1.94
EPS_GHG_elec 1119 0.53 0.57 0.00 0.30 2.60
EPS_GHG_indus 1119 0.44 0.58 0.00 0.14 3.01
EPS_GHG_transport 1119 0.56 0.49 0.00 0.45 2.19

GDP Model
EPS_GDP_building 1119 0.51 0.44 0.00 0.39 1.96
EPS_GDP_elec 1119 0.15 0.21 0.00 0.08 1.92
EPS_GDP_indus 1119 0.60 0.82 0.00 0.18 5.49
EPS_GDP_transport 1119 0.82 0.62 0.00 0.77 2.65

• Ycy is the vector of exogenous explanatory variables, such as EPS_OECDcy.

• αc and γy represent the entity-specific and time-specific fixed effects, respectively.

• εcy is the error term.

If the main model considers the absolute values of the variables, additional tests have been con-
ducted using per capita values and GHG/GDP ratios. These tests confirm the results obtained
with absolute values. Furthermore, tests using the logarithm of EPS+1 have also been performed,
confirming the results. Other model specifications, while confirming the findings, exhibit lower sig-
nificance and are therefore included in the appendix. For detailed results, see Appendix B.4 for per
capita values, B.5 for emissions per GDP, and B.7.3 for the logarithm of EPS+1.

Given the intricate nexus between greenhouse gas emissions (GHG) and environmental policies,
rigorous consideration of endogeneity is essential. More specifically, plausible endogeneity of the
explanatory variables, the EPS indicators, arises due to simultaneity. Specifically, governments may
implement climate regulations in response to the current state of their emissions, potentially biasing
the results. This bias can manifest in two ways: first, if a reduction in emissions makes it easier for
governments to introduce climate policies due to increased social acceptability, leading to a form
of "greenwashing"; second, if high emissions levels compel governments to adopt stricter climate
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policies to mitigate their adverse effects. To address these concerns and ensure the robustness of
the results, two strategies are employed, as detailed in Appendix B.3.

The first approach involves lagging the explanatory variable, which helps mitigate simultaneity by
ensuring that past values of EPS influence current policy decisions rather than the other way around.
The results of this lagging test confirm the robustness of the model, reinforcing the validity of the
findings (see Appendix B.3.1). However, to further strengthen causal inference, an instrumental
variable (IV) approach is implemented.

For this purpose, a shift-share instrumental variable (SSIV) approach is utilized, focusing on the
shift component, as detailed in the Appendix B.3.2. The chosen shift is the global shock on the
EPS indicator, operationalized using the leave-one-out mean. Several factors justify this choice.
Firstly, from an economic perspective, the global state of climate policies can significantly influence
national policy decisions, either through trade competitiveness pressures or public opinion dynamics
concerning governance. Secondly, the construction of the EPS scores supports this approach, as
each country’s policy score is calculated relative to other observations. As a result, an increase in
the global mean EPS score tends to lower a given country’s relative score, which is confirmed by
the first-stage regression results.

4 Empirical Results

4.1 Decoding Policy Stringency: The Proxy assumption
To evaluate the effectiveness of Environmental Policy Stringency (EPS) indicators as tools for policy
assessment, we introduce the "Proxy assumption." This assumption tests whether an EPS indicator
reliably serves as an unbiased, consistent measure of policy stringency across different countries
and time periods. A robust proxy should meet two criteria: (1) it should provide a comparable
measure of policy rigor regardless of country-specific conditions, and (2) it should maintain temporal
stability, ensuring that scores reflect true policy variations rather than changes in the indicator’s
sensitivity over time.

Our analysis particularly examines the baseline EPS_OECD indicator, developed following the
OECD methodology for their EPS index, which is widely used for cross-national and longitudinal
comparisons. While the EPS_OECD is a cornerstone in assessing policy stringency, its standard-
ized construction may introduce biases that do not account for unique national characteristics or
evolving policy contexts. Consequently, we challenge the EPS_OECD by comparing it against
three alternative indicators—EPS_BOD, EPS_GHG, and EPS_GDP—that modify the original
methodology to address potential limitations in capturing policy effectiveness consistently across
different countries and time periods.

The EPS_BOD, for example, adapts the EPS by allowing more flexibility based on each country’s
specific economic and environmental needs, which could potentially reduce the one-size-fits-all bias
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inherent in EPS_OECD. Similarly, EPS_GHG and EPS_GDP weight policy stringency based
on each country’s greenhouse gas emissions profile and economic output, respectively, providing a
sector-sensitive approach that may better capture differences in policy impact across varied national
contexts.

Through this comparison, we aim to determine whether the EPS_OECD and its alternatives—EPS_BOD,
EPS_GHG, and EPS_GDP—are equally valid as unbiased proxies, or if their designs introduce
discrepancies that could alter policy analysis. This exploration reveals not only the strengths and
weaknesses of each indicator but also highlights the broader implications of selecting an EPS measure
that best aligns with the empirical objectives of cross-national and inter-temporal policy studies.

4.1.1 Precision or Overlap? Tracking measurement choices effects

While our four EPS indicators generally yield similar results at the total score level, differences
emerge in coefficients and significance levels, as shown in Table 3. For instance, EPS_BOD shows
a lower coefficient and significance, likely due to its inherently higher values. These results are con-
firmed by the SSIV results (Tables B.8 and B.9), showing a slightly smaller coefficient for EPS_BOD.

Table 3: Total EPS Effects on GHG Emissions
EPS_OECD EPS_BOD EPS_GHG EPS_GDP

Dep. Variable ln(GHG)
Cov. Est Clustered
No. Observations 1152
R2 (Within) 0.4359 0.0487 0.3522 0.4667
R2 (Overall) 0.9170 0.9047 0.9161 0.9187
Log-likelihood 1263.6 1228.3 1253.8 1284.0
F-statistic 248.05 220.58 240.26 264.75
const 2.3136 0.8602 1.9494 2.7117

(1.5069) (0.5425) (1.2771) (1.8444)
ln(GDP) -0.4454*** -0.2922* -0.4330*** -0.4263***

(-3.4578) (-2.2033) (-3.3965) (-3.4048)
ln(GDP)2 0.0421*** 0.0371*** 0.0413*** 0.0419***

(7.7665) (6.6155) (7.6714) (7.9063)
ln(POP) 0.5151*** 0.5333*** 0.5345*** 0.4790***

(7.9075) (7.8432) (8.1759) (7.5818)
urban_growth -0.0457*** -0.0476*** -0.0461*** -0.0470***

(-6.8966) (-6.8159) (-6.7643) (-7.1460)
EPS -0.0750*** -0.0378*** -0.0676*** -0.0765***

(-10.514) (-7.1395) (-9.7377) (-12.314)
signif. code 0.001 ’***’ 0.01 ’**’ 0.05 ’*’

The VIF tests, as shown in Table B.3 from the Appendix B.2, reveal a quite logical multicollinearity
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in ln(GDP)and ln(GDP)2 across all models, with VIF values exceeding 20. The correlation analysis
(See appendix, Table B.5) further supports this, highlighting high correlations between ln(GDP)and
ln(POP)with ln(GHG)(0.918 and 0.950, respectively). This underscores the predictive influence of
these economic variables on emissions and points to potential multicollinearity concerns, partic-
ularly in EPS_BOD and EPS_OECD, where EPS variables moderately correlate with economic
indicators like ln(GDP)(0.2–0.35). This overlap suggests that these indicators may partially reflect
economic conditions rather than strictly capturing environmental policy stringency. However, there
is no multicollinearity issue in other variable, especially in EPS ones, with VIF values below 2.
Interestingly, despite the construction of EPS_GHG and EPS_GDP to account for emissions and
economic output respectively, they show the lowest multicollinearity levels. This observation sug-
gests that these indicators may offer a more distinct representation of policy stringency with less
overlap from economic variables, indicating potential robustness as proxy indicators.

At the sectoral level of emissions or regulation, distinction between EPS is even clearer. At the level
of total national emissions, the regression analysis across the four models reveals varying impacts of
sectoral regulation on emission reduction, suggesting distinct narratives depending on the indicator
used. As presented in Table 4, regulatory stringency in the building sector shows inconsistent effects
on emissions: the EPS_OECD and EPS_BOD indicators does not yield neither significant nor
negative coefficients, while the EPS_GHG and EPS_GDP indicators exhibit a strong, significant
negative relationship with emissions. This trend holds in models with interaction terms, as seen
in Table 8. These discrepancies raise questions about their origins: whether they stem from a
more accurate representation of regulatory stringency in the EPS_GHG and EPS_GDP indicators
(evidenced by higher R2, log-likelihood, and F-statistics) or whether they are misleading due to
multicollinearity issues.

The Variance Inflation Factor (VIF) test supports the robustness of the EPS_GHG and EPS_GDP
models, highlighting higher multicollinearity in the EPS_BOD and EPS_OECD models. This
is specially true for EPS_building and EPS_elec, indicating potential interdependencies among
sector-specific predictors. In contrast, EPS_GHG and EPS_GDP models exhibit lower VIF val-
ues, suggesting that these indicators better isolate the impacts of sector-specific instruments with
minimal overlap. Specifically, EPS_GDP allow for clearer attribution of each sector’s contribu-
tion to overall emissions, likely due to their design to capture national characteristics. Correlation
analysis (Appendix B.2, Table B.6) further underscores this finding, showing moderate correlations
between EPS sector metrics and ln_GDP and ln_POP within EPS_BOD and EPS_OECD models,
particularly for the building and electricity sectors. This suggests that EPS_BOD and EPS_OECD
may capture socioeconomic trends alongside policy stringency, while EPS_GHG and EPS_GDP
maintain a more targeted focus on policy effects.

When breaking down the analysis by emission sectors, the results confirm that the EPS_BOD indi-
cator is the least suitable, while EPS_GDP and EPS_GHG demonstrate the strongest explanatory
power. For the overall effect of EPS, the EPS_GDP indicator shows the most substantial impact
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Table 4: Sectoral EPS Effects on GHG Emissions
EPS_OECD EPS_BOD EPS_GHG EPS_GDP

Dep. Variable ln(GHG)
Cov. Est Clustered
No. Observations 1119
R2 (Within) 0.4315 0.0470 0.4415 0.4879
R2 (Overall) 0.9224 0.9086 0.9300 0.9289
Log-likelihood 1228.9 1209.0 1240.5 1244.8
F-statistic 154.04 144.12 160.01 162.21
const 2.6795 0.6129 0.6378 2.7743

(1.7408) (0.3718) (0.4109) (1.8869)
ln(GDP) -0.4934*** -0.2958* -0.2647* -0.3634**

(-3.8606) (-2.1963) (-2.0789) (-2.9162)
ln(GDP)2 0.0438*** 0.0364*** 0.0325*** 0.0387***

(8.1390) (6.4081) (6.0315) (7.2756)
ln(POP) 0.5118*** 0.5558*** 0.5718*** 0.4573***

(7.5738) (7.8163) (8.3257) (6.7293)
urban_growth -0.0482*** -0.0525*** -0.0391*** -0.0492***

(-7.0423) (-7.0958) (-6.0421) (-7.4979)
EPS_building 0.0241 0.0764*** -0.1395*** -0.0950***

(1.0546) (4.0007) (-7.9003) (-5.6734)
EPS_elec -0.0779** -0.0366* -0.0353** 0.0149

(-3.1460) (-1.9754) (-2.9959) (0.6580)
EPS_indus -0.1302*** -0.1243*** -0.0168 -0.0765***

(-7.7360) (-7.9372) (-1.2799) (-9.7827)
EPS_transport -0.1115*** -0.0576** -0.1351*** -0.0826***

(-4.6648) (-2.7776) (-7.7816) (-5.4661)
signif. code 0.001 ’***’ 0.01 ’**’ 0.05 ’*’

on emissions in the building, electricity, and transport sectors. Meanwhile, for industrial emissions,
EPS_OECD performs slightly better, closely followed by EPS_GHG and EPS_GDP. When ex-
amining the sector-specific effects of EPS, both EPS_GHG and EPS_GDP emerge as the most
significant indicators across all emission sectors.

These divergences highlight the importance of selecting the appropriate EPS indicator depending on
the sector and policy context, while no single indicator fully captures inter-country or inter-temporal
variations in policy effectiveness. Overall, the EPS_BOD is the less reliable indicator. While
EPS_OECD provides valuable insights, its multicollinearity with economic variables highlights
limitations as standalone proxy. Conversely, the lower multicollinearity levels in and EPS_GDP
models as well as their precision imply this indicator may serve as stronger proxy particularly
when aiming to isolate the effect of policy stringency from economic influences across sectors and
countries.
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4.1.2 A Cross-Country Stable Indicator? An Analysis of Developed vs. Devel-
oping Countries

In order to analyze the cross-country stability of the Environmental Policy Stringency (EPS) indi-
cator, the dataset was divided into two subsets: developed and developing countries. This division
allows for a comparative analysis of the impact of EPS on greenhouse gas (GHG) emissions across
different economic contexts.

Table 5: Total EPS Effects on GHG Emissions (Developed vs Developing Countries)
EPS_OECD EPS_BOD EPS_GHG EPS_GDP

Dep. Variable ln(GHG)
Cov. Est Clustered

Developed countries (714 obs.)
R2 (Within) 0.2585 -0.9936 -0.0665 0.3502
R2 (Overall) 0.9067 0.9104 0.9172 0.8838
Robust F-statistic 69.961 53.353 64.155 83.806
EPS -0.0620*** -0.0139* -0.0466*** -0.0681***

(-5.7625) (-2.0557) (-4.4559) (-7.6352)
Developing countries (438 obs.)

R2 (Within) 0.5086 0.3971 0.4853 0.5575
R2 (Overall) 0.9357 0.9354 0.9363 0.9375
Robust F-statistic 113.35 100.86 105.93 121.60
EPS -0.0376*** -0.0170* -0.0356*** -0.0452***

(-3.5111) (-2.1370) (-3.5488) (-4.9237)
Signif. codes 0.001 ’***’ 0.01 ’**’ 0.05 ’*’

Note: Results come from a two-way fixed effects OLS with control variables, including ln(GDP), ln(GDP)2,
ln(POP) and urban growth.

The results on national emissions, presented in Table 5, reveal a slight degree of cross-country
instability, as the effect of EPS varies between developed and developing countries. A stable EPS
score would imply consistent effects on emissions across countries. One possible explanation for
this observed instability is the disparity in the number of observations between the two subsets:
developed countries have 714 observations, compared to 438 for developing countries. Notably, in
the developed countries subset, the models exhibit lower significance (F-statistics and R-squared)
levels across all specifications.

Developed countries demonstrate a stronger impact of policy stringency across the EPS_OECD,
EPS_GHG, and EPS_GDP indicators.7 The coefficients for developed countries are consistently
larger in magnitude and significance. This pattern holds when decomposing emissions per GDP

7The EPS_BOD indicator does not yield statistically significant results across any specification, suggesting
its limited explanatory power in emission reduction efforts. Thus, we focus on the other indicators.
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(Table B.17) and per capita (Table B.13). Interestingly, EPS_GDP demonstrates again the best
adjustment, with both higher significance and lower instability.

This regional instability across all indicators may be attributed to several factors. First, it could
stem from the construction of the proxy, which is based on a de jure measure of stringency rather
than a de facto one. EPS scores reflect enacted policies, regardless of implementation or enforcement
levels. If policy enforcement is weaker in developing countries, this could explain the lower observed
effect. Second, the lag in climate policies adoption in developing countries may play a role. Since
these countries have adopted policies more recently, their effects may not yet be fully realized.

4.1.3 Temporal Stability of the Indicator: An Analysis Across Time Periods

To assess the temporal stability of the Environmental Policy Stringency (EPS) indicator, the dataset
was divided into three distinct time periods: 1991-2000 (Period 1), 2001-2010 (Period 2), and 2011-
2020 (Period 3). he selection of these periods is based on observed variations in policy adoption,
with the first period characterized by a slow increase in policy measures, the second period by a
moderate expansion, and the third period by a high intensity of policy adoption. This decomposition
allows for a comparative analysis of the impact of EPS over time.

Table 6: Time-period Decomposition, Effect of Total EPS on GHG emissions
EPS_OECD EPS_BOD EPS_GHG EPS_GDP

Period 1 (1991-2000) - 293 obs
R2 (Within) -0.3946 -0.3085 -0.3387 -0.4154
Robust F-statistic 34.18 34.39 34.28 34.17
EPS -0.0036 -0.0117 -0.0003 -0.0106

(-0.1340) (-0.6929) (-0.0110) (-0.4643)
Period 2 (2001-2010) - 416 obs

R2 (Within) 0.0366 -0.0303 0.0536 0.0560
Robust F-statistic 63.08 62.10 64.15 64.37
EPS -0.0468*** -0.0284*** -0.0469*** -0.0481***

(-4.3961) (-4.1823) (-4.8513) (-4.8498)
Period 3 (2011-2020) - 429 obs

R2 (Within) 0.0722 -0.2465 0.1748 -0.0375
Robust F-statistic 22.22 20.38 24.45 21.56
EPS -0.0301** 0.0016 -0.0407*** -0.0204*

(-2.5525) (0.2093) (-3.3879) (-2.4409)

Note: Results come from a two-way fixed effects OLS with control variables, including ln(GDP), ln(GDP)2,
ln(POP) and urban growth.

The results, presented in Table 6, indicate notable variations in the impact of EPS across different
time periods. In the first period (1991-2000), the EPS indicators show low statistical significance
across all emission specifications, with coefficients close to zero and t-values indicating no significant
relationship. This suggests that during the early years, environmental policy measures had limited
influence on emissions reduction.
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In contrast, the second period (2001-2010) reveals a substantial increase in the explanatory power
of the EPS indicators. The coefficients for EPS_OECD, EPS_GHG, and EPS_GDP become
statistically negative. This trend, confirmed with per capita and GDP emissions, indicates that
environmental policies implemented during the early 2000s had a meaningful impact on emissions
reduction.

However, the results for the most recent period (2011-2020) suggest a small decline in the significance
and magnitude of the EPS indicators. Despite these fluctuations, the overall pattern across different
specifications of emissions-GHG emissions per unit of GDP (Table B.18), and GHG emissions per
capita (Table B.14)- remains consistent. This suggests potential shifts in policy effectiveness or
external factors influencing emissions trends.

Overall, the results highlight that while the EPS indicator demonstrated a notable impact in the
mid-2000s, its influence appears to have diminished in recent years. These findings suggest that
policy effectiveness may not be constant over time and could depend on evolving economic and
regulatory conditions. Further investigation into potential structural changes or policy adaptations
is warranted to better understand the factors influencing the temporal stability of the EPS indicator.

4.2 Effectiveness assumption

4.2.1 A negative impact of total EPS on GHG

Results on total national emissions remain stable across the four models, supporting the Ef-
fectiveness assumption, as shown in Table 3. First, regarding control variables, our findings align
with existing literature. The results confirm the non-linearity of the relationship between GHG
emissions and GDP, while highlighting the positive effect of population size and the negative effect
of the urbanization rate.

Second, across all four EPS indicators—EPS_OECD, EPS_BOD, EPS_GHG, and EPS_GDP—a
significant and negative relationship is observed between EPS and greenhouse gas emissions,8 with
EPS coefficients ranging from -0.038 (EPS_BOD) to -0.077 (EPS_GDP). This relationship holds
consistently across all specifications (GHG/cap, GHG/GDP), even when statistical significance
weakens in certain models. Notably, although the logarithmic specifications exhibit lower within-
group significance, the coefficients remain significant and suggest an overall elasticity of GHG to
EPS between -0.5 and -0.12. These results are perfectly in line with the literature. For instance,
Nachtigall et al. (2024) find a 12% reduction of GHG and carbon emissions associated to their
CAPMF score.

Third, this relationship appears to be causal, as evidenced by results obtained using lagged variables
(see Appendix B.3.1) and the Shift-Share Instrumental Variable (SSIV). Indeed, findings remain

8Measured using its natural logarithm, ln(GHG).
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robust even when applying a Bartik Instrument, as detailed in Appendix B.3.2,9 reinforcing the
negative effect of total EPS on GHG across various indicators.

Results on sectoral emissions further support the Effectiveness assumption (see Appendix B.6).
Similar effects of EPS across the four indicators are observed for all sectoral emissions, with coeffi-
cients ranging from -0.10 to -0.06 for EPS_GDP. However, while the within R-squared is significant
for three sectors, it is not significant for emissions in the building sector. Additionally, EPS has a
stronger effect in the electricity sector. To better understand this sectoral differences, we explore
the effects of sectoral EPS is the next part.

4.2.2 Sectoral EPS Effects on GHG Emissions

To deepen our understanding of the relation between EPS and policy mix effectiveness, we decom-
pose sectoral effects across building, electricity, industry, and transport sectors. Table 4 shows that
results vary across sectors. Notably, the effect of EPS score for transport and industry are the most
significant, both in terms of statistical significance and coefficient magnitude. EPS in the electricity
sector has a small yet negative coefficient for most of the types of EPS, however, it is insignificant
for EPS_GDP. In contrast, the effect of the building sector score is not statistically significant
for EPS_OECD while associated to a negative coefficient for EPS_GHG and EPS_GDP. Poten-
tial explanations include inadequate regulations, rebound effects, low price elasticity, or behavioral
factors.

While a clear causal relationship exists between EPS indicators and GHG emissions at the national
level, results for sectoral emissions reveal a more nuanced picture, as detailed in Table 7.10

Table 7: Summary of Sectoral EPS effects on Sectoral GHG across model
GHG_building GHG_elec GHG_indus GHG_transport

EPS_building + +/- +/- -
EPS_elec / +/- - -
EPS_indus - - - -
EPS_transport - - - -

Note: This table shows the signs of EPS coefficients, from two-way fixed effects OLS on the logarithm of
secotral emissions with control variables, including ln(GDP), ln(GDP)2, ln(POP) and urban growth.

Results are summarized across the four EPS type: +/- means that the coefficient is changing from positive
to negative or insignificant depending on the EPS’ type.

Results on emissions from the industrial and transport sectors strongly support the Effectiveness
assumption, showing significant negative coefficients across all EPS indicators, both in terms of

9Robust F-statistics exceed 48 in the first-stage and 119 in the second-stage, confirming the strength
of the IV. However, we acknowledge a potential endogeneity issue with the instrument, as suggested by
the autocorrelation test from van Kippersluis and Rietveld (2018), while Borusiak’s IV test confirms the
instrument’s temporal instability.

10Detailed tables summarizing these sectoral results can be found in Appendix B.6.
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sectoral coverage and indicator’s type. At the sectoral level of policy stringency, EPS_indus and
EPS_transport are associated with emission reductions across all sectors, reinforcing the idea of
potential regulatory synergies between sectors.

However, results for the building and electricity sectors are more nuanced. First, within the building
sector, the EPS_building indicator is positively correlated with emissions, whereas EPS_transport
and EPS_indus exhibit negative correlations. However, this result should be interpreted with
caution due to low within-group R-squared and F-statistic (approximately 30), indicating limited
explanatory power of the model in this sector. This aligns with findings on total national emissions,
where EPS_building is not statistically significant.

Second, while EPS for the electricity sector is negatively correlated with emissions (or insignificant)
across all emitting sectors, the relations within the electricity sector itself is less stable. EPS_OECD
exhibits a negative coefficient, whereas EPS_GDP shows a positive one. Since EPS_GDP is the
best-adjusted proxy, it may be considered more reliable in this context. However, the discrepancy
between EPS_OECD and EPS_BOD may stem from the regional instability of EPS_elec. As
detailed in Table B.24 in the appendix, the EPS score in this sector has a significant effect only in
developed countries, while it remains insignificant in developing ones.

4.2.3 A strong effect of sectoral policy interactions on GHG emissions

Building on the previous section, we hypothesize potential interactions between policies across
different sectors. To better understand these dynamics, we test the effect of interactions between
EPS from various sectors on total national emissions.

Following a general-to-specific approach, we initially included all possible interaction terms and then
progressively removed the insignificant ones to enhance the F-statistic and improve the model’s log-
likelihood. This analysis is based on EPS_GDP for two key reasons. First, models incorporating
other EPS types exhibit high multicollinearity.11 Second, EPS_GDP is the best-adjusted EPS
measure for this data-driven analysis. The final model, derived through this process, is detailed in
Table 8.12

Including interaction terms between sectoral policy scores improves the consistency of results across
EPS indicators and enhances the overall significance of the models. We find that these interaction
terms largely absorb the effects of individual EPS scores, except for EPS_indus, which remains the
only sectoral EPS with a standalone effect even when interaction terms are included. Its impact is
notably strong, both in terms of coefficient magnitude and statistical significance.

However, this model also reveals that the stringency of policies targeting the electricity sector has
mixed effects on emission levels. Its interaction with EPS_transport exhibits a negative offset-

11VIF tables can be found in Appendix B.7.2
12While the model includes insignificant standalone EPS, robustness tests without these variables yields

the same results. We let these variables in the model to assure statistical coherence.
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Table 8: Sectoral EPS Effects on GHG Emissions with Interaction Terms
EPS_OECD EPS_BOD EPS_GHG EPS_GDP

Dep. Variable ln(GHG)
Cov. Est Clustered
No. Observations 1119
R-Squared (Within) 0.4762 0.1170 0.4480 0.4904
F-statistic 133.21 118.24 140.00 143.28
EPS_building -0.0426 0.0339 -0.0878** 0.0326

(-1.4803) (1.1030) (-2.6000) (1.1280)
EPS_elec 0.1112** 0.0964** 0.0387* 0.0479

(2.8445) (2.7152) (1.9898) (0.8119)
EPS_transport 0.0124 0.0430 0.0290 0.0054

(0.4145) (1.4475) (1.1906) (0.3223)
EPS_indus -0.1588*** -0.1870*** -0.0487** -0.1033***

(-7.6148) (-5.8820) (-2.5406) (-10.719)
Average effect -0.0765 -0.0725 -0.0183 -0.0670
EPS(Elec*Indus) 0.0809*** 0.0700** 0.0420** 0.1856***

(2.8874) (2.5762) (2.3266) (4.1428)
Average effect 0.0315 0.0273 0.0137 0.0333
EPS(Elec*Transport) -0.3167*** -0.1783*** -0.1629*** -0.1842***

(-7.1652) (-4.7306) (-7.1064) (-4.9505)
Average effect -0.0753 -0.0800 -0.0467 -0.0322
EPS(Building*Transport) 0.0478 0.0384 -0.0507* -0.0939***

(1.5667) (1.6188) (-1.8671) (-5.5326)
Average effect 0.0049 0.0358 -0.0332 -0.0527
signif. code 0.001 ’***’ 0.01 ’**’ 0.05 ’*’

Note: Results come from two-way fixed effects OLS with control variables, including ln(GDP), ln(GDP)2,
ln(POP) and urban growth.

ting effect, highlighting the importance of integrated sectoral policy approaches. Conversely, its
interaction with EPS_indus yields small but positive and significant coefficients.

Finally, the results underscore the strong potential of transport policies to complement other sectoral
regulations. Specifically, when combined with electricity or building EPS, the interaction term
coefficient is significant and negative (except for EPS_BOD, the least reliable indicator). This
finding aligns with Stechemesser et al. (2024), who identified the transport sector’s high potential
for policy complementarity, while also extending the analysis to cross-sectoral synergies.
In conclusion, the Effectiveness assumption holds across most sectors, especially in industry and
transport, where either total or sectoral EPS results indicate significant emissions reductions with
increased policy stringency. However, in the building and electricity sectors, the Effectiveness
assumption appears less robust, underscoring first the importance of considering the broader policy
mix and second the need of robust proxy.
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5 Conclusion
As nations worldwide endeavor to mitigate climate change, there is a growing need to assess the
effectiveness of environmental policies. This study seeks to contribute to this effort by examining
the development of comprehensive Environmental Policy Stringency (EPS) indicators. Specifically,
it aims to address two key research questions: firstly, how can robust EPS indicators be constructed
to encompass the nuanced complexities of sectoral climate policy mixes? And secondly, how mea-
surement choices effects empirical results regarding climate policy mixes effectiveness?

Leveraging the OECD Climate Actions and Policies Measurement Framework database, we devised
four distinct metrics—EPS_OECD, EPS_BOD, EPS_GHG, and EPS_GDP—to evaluate the rigor
of environmental policies across different sectors. Using a two-way fixed effects panel regression
model combined with a Shift-Share Instrumental Variable (SSIV) approach, we were able to conduct
a nuanced analysis of policy effectiveness, accounting for both time-invariant factors specific to each
country and sector as well as broader temporal trends. This methodology enabled us to isolate the
impacts of regulatory stringency within each sector while also examining interactions across sectors,
providing insight into how policies covering one sector may influence outcomes in another.

The analysis of the Proxy assumption reveals significant differences in the reliability of EPS in-
dicators as tools for assessing policy stringency. The EPS_OECD indicator, which follows the
methodology of the widely used OECD EPS Index, does not fully account for national differences
and exhibits variability over time, suggesting it may be less effective as a consistent proxy. While the
standardized construction of the OECD indicator lacks precision, the Benefits-of-the-Doubt (BOD)
method, by contrast, demonstrates multicollinearity issues with national trends. In comparison,
EPS_GDP shows greater stability and lower multicollinearity, making it a more robust indica-
tor for regional and temporal comparisons. However, at the sectoral level, while results confirm
that EPS_GDP provides stronger adjustments than EPS_BOD, EPS_GHG, and EPS_OECD,
the discrepancies between these indicators suggest that using a combination of measures may be
necessary to better capture the nuanced effects of policy mixes. Additionally, although EPS_GDP
appears more stable overall, all indicators suffer from regional and temporal instability, likely due
to differences in the enforcement of policies across countries and over time.

Our results largely support the Effectiveness assumption at the total EPS level, confirming that
increased EPS is associated with reduced GHG emissions. This negative relationship holds across
all four EPS indicators. However, at sectoral level our study underscores a significant effect of
measurement choices on EPS relation to GHG. In transport and industry sectors, sector-specific
EPS scores significantly impact emissions reductions regardless of the chosen indicator. However,
in building and electricity sectors, EPS effects are less consistent among indicators, likely due to
rebound effects, low price elasticity, and complex sectoral interactions. Additionally, policy effec-
tiveness appears to strengthen with sectoral coordination, as evidenced by the significant interaction
between EPS_transport and EPS_elec or EPS_building. These findings suggest that while EPS
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indicators generally support emissions reduction, this relation depends on the chosen indicator and
varies by sector, underscoring the need for integrated policy approaches and tailored proxies that
account for national and sectoral specificities.

No single indicator is perfect on its own. As this analysis has shown, capturing the full complexity of
climate policy mixes within a single measure is challenging and may result in misleading conclusions.
In particular, our different types of sectoral EPS appear to lack temporal and regional stability.
Further research could focus on adding an enforcement dimension to see if it helps coping with
this issue. In the meantime, we recommend using a panel of methodologies, as demonstrated
in this study, to offset the limitations of individual indicators and provide a more balanced and
comprehensive view of environmental policy stringency.
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Appendix

A The choice of the dispersion parameter for EPS_BOD
In this part, we use the complete dataset for EPS_BOD, rather than the shortened database used
in the EPS comparison, to achieve the best parameter adjustment.

Table A.1: Effect of the variance on the total EPS_BOD
BOD_10var BOD_50var BOD_100var

Dep. Variable ln(GHG)
No. Observations 1308 1308 1308
R2 (Within) -0.6575 -0.1209 0.0487
Log-likelihood 1199.5 1216.8 1228.3
F-statistic 199.37 212.01 220.58
const -2.6399 -0.8789 0.8602

(-1.7010) (-0.5698) (0.5425)
ln(GDP) 0.0863 -0.0710 -0.2922*

(0.6504) (-0.5458) (-2.2033)
ln(GDP)2 0.0226*** 0.0291*** 0.0371***

(4.0046) (5.2601) (6.6155)
ln(POP) 0.5952*** 0.5480*** 0.5333***

(8.7237) (8.1315) (7.8432)
urban_growth -0.0518*** -0.0493*** -0.0476***

(-7.1216) (-6.9844) (-6.8159)
EPS -0.0109** -0.0293*** -0.0378***

(-2.7367) (-5.8227) (-7.1395)

As shown in Table A.1, the BOD indicator with the best adjustment is obtained for α “ 100. With
this specification of the argument, the model demonstrates both a better general significancy and
significancy of the parameter EPS.

B Econometrics tests

B.1 Diagnostic Tests and Model Selection
Based on the results of diagnostic tests, selecting the appropriate model specification is essential for
ensuring the robustness and reliability of the regression analysis. Here, we present the test results
for EPS_OECD with sectoral decomposition, which are representative of the findings for other
indicators, with and without sectoral decomposition.
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First, the White and Breusch-Pagan tests were conducted to assess heteroskedasticity and contem-
poraneous correlation in the pooled OLS regression. The significant LM-Stat values of 407 and 28,
with corresponding p-values of approximately 2e-65 and 2e-4, indicate the presence of both het-
eroskedasticity and contemporaneous correlation in the model. Additionally, the Durbin-Watson
test statistic of 2.20 suggests a small negative autocorrelation in the residuals of the pooled OLS
model.

Next, the Hausman test was used to compare the fixed effects (FE) and random effects (RE)
models to address potential endogeneity. The test produced a chi-squared statistic of 106 with 9
degrees of freedom resulting in a p-value of approximately 1e-18. These results indicate that we
can reject the hypothesis that there is no correlation between the exogenous variables and the error
terms. This confirm the economic intuition of a correlation between time trends and the exogenous
variables, which was confirmed by the correlation matrix and the Variance Inflation Factor (VIF)
test, revealing moderate multicollinearity. AIC and BIC analyses were performed, confirming that
the two-way fixed effects model was the best fit for our data, as shown in Table B.2.

Finally, additional tests were conducted on the FE model for heteroskedasticity, autocorrelation,
and cross-sectional dependence. The Breusch-Pagan test confirmed heteroskedasticity (p-value =
3e-13), while the Breusch-Godfrey test identified autocorrelation (p-value = 1e-9). However, Pe-
saran’s test for cross-sectional dependence was not significant (p-value = 0.7). To address both
heteroskedasticity and autocorrelation, the Clustered covariance estimator was applied. Tests were
perform on the model with Discroll-Kraay estimator, confirming that the clustered estimator was
the most conservatory.

Table B.2: Model Comparison
RE FE FE FE

Entity Time Entity/Time
Dep. Variable ln(GHG)
No. Observations 1152
Cov. Est. Clustered
R2 0.7758 0.5385 0.9409 0.5462
R2 (Within) 0.5380 0.5385 0.1821 0.4298
R2 (Between) 0.9382 0.9331 0.9489 0.9312
R2 (Overall) 0.9300 0.9256 0.9402 0.9186
AIC -2311.02 -2359.89 982.82 -2533.31
BIC -2265.58 -2314.45 1028.26 -2487.86

Note: Results come from a two-way fixed effects OLS with control variables, including ln(GDP), ln(GDP)2,
ln(POP) and urban growth, and sectoral decomposition of EPS_OECD as explanatory variables.
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B.2 Multicolinearity tests

Table B.3: VIF Comparison Across Models
Variable EPS_OECD EPS_BOD EPS_GHG EPS_GDP
ln(GDP) 21.61 21.94 22.02 20.99
ln(GDP)2 22.68 23.20 22.95 22.14
ln(POP) 1.20 1.21 1.19 1.21
urban_growth 1.05 1.06 1.06 1.05
EPS 1.17 1.20 1.18 1.14

The primary concerns are moderate multicollinearity in ln(GDP)and ln(GDP)2 across all models.
However, this quite logical multicollinearity in these control variable does not affect the reliability
of other variables of the model. Indeed, with the presence of ln(GDP)2 confidence intervals of
coefficients for variable,s excluding the GPD ones, are actually reduced. Furthermore, at this level
of aggregation for EPS variables, we note no multicollinearity issue for all type of EPS. This results
is confirmed with the sectoral decomposition, as detailed in table B.4

Table B.4: VIF Comparison Across Sectoral Models
Variable EPS_OECD EPS_BOD EPS_GHG EPS_GDP
ln(GDP) 22.30 23.45 24.33 21.49
ln(GDP)2 23.65 24.26 25.61 22.94
ln(POP) 1.24 1.23 1.23 1.31
urban_growth 1.11 1.10 1.11 1.10
EPS_building 1.91 2.48 1.24 1.42
EPS_elec 1.84 2.21 1.21 1.24
EPS_indus 1.74 2.07 1.29 1.22
EPS_transport 1.51 1.73 1.21 1.33

With the sectoral decomposition of EPS variables, it appears more clearly that EPS_GDP has the
lowest issues with multicollinearity. Indeed, if all VIF values are lower than 5 for EPS variables,
they are the lowest for EPS_GDP, suggesting a better adjustment of this indicator.

Table B.5: Correlation Table of Control, Endogenous, and EPS Variables
ln(GHG) EPS_OECD EPS_BOD EPS_GHG EPS_GDP

ln(GDP) 0.908 0.271 0.276 0.272 0.256
ln(POP) 0.950 0.098 0.102 0.095 0.0819
urban_growth 0.052 -0.028 -0.051 -0.032 -0.049
ln(GHG) 1 0.100 0.107 0.094 0.085

High correlations between ln(GDP)and ln(POP)with ln(GHG)(0.908 and 0.950) underscore their

34



strong predictive influence on emissions. In contrast, urban_growth shows limited direct correlation
(0.052) with ln_GHG.
EPS variables, aggregated or sectoral, show moderate correlations with GDP variables (0.2–0.35).
This suggests that while EPS metrics capture emissions standards, they may overlap with economic
variables, as demonstrated with the VIF test. Interestingly, EPS_GDP is the one with the lowest
correlation with both GDP and GHG variables while EPS_BOD has the highest correlation with
both of these variables.

Table B.6: Correlation of EPS Variables with Control and Endogenous Variables
EPS_building EPS_elec EPS_indus EPS_transport

EPS_OCDE
EPS_Building 1.0000 0.8535 0.8724 0.8325
EPS_Elec 0.8535 1.0000 0.8494 0.8001
EPS_Indus 0.8724 0.8494 1.0000 0.7124
EPS_Transport 0.8325 0.8001 0.7124 1.0000

EPS_BOD
EPS_Building 1.0000 0.9049 0.8990 0.8907
EPS_Elec 0.9049 1.0000 0.8804 0.8749
EPS_Indus 0.8990 0.8804 1.0000 0.8035
EPS_Transport 0.8907 0.8749 0.8035 1.0000

EPS_GHG
EPS_Building 1.0000 0.4899 0.6848 0.6681
EPS_Elec 0.4899 1.0000 0.6412 0.4413
EPS_Indus 0.6848 0.6412 1.0000 0.6465
EPS_Transport 0.6681 0.4413 0.6465 1.0000

EPS_GDP
EPS_Building 1.0000 0.5131 0.6293 0.7339
EPS_Elec 0.5131 1.0000 0.3472 0.4307
EPS_Indus 0.6293 0.3472 1.0000 0.5828
EPS_Transport 0.7339 0.4307 0.5828 1.0000

Additionally, inter-correlations among EPS sector metrics, detailed in Table B.6 highlight the po-
tential for multicollinearity. The lowest levels of correlation between sectoral EPS variables are
obtained for EPS_GDP (except for EPS_building for which variable EPS_GHG has lower corre-
lation), which may explain the better adjustment of this indicator .
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B.3 A causal relation

B.3.1 EPS lagged

Table B.7: Lagged Sectoral EPS Effects on GHG Emissions
EPS_OECD EPS_BOD EPS_GHG EPS_GDP

Dep. Variable ln(GHG)
Cov. Est Clustered
No. Observations 1078
R2 (Within) 0.3638 0.1166 0.1960 0.3595
R2 (Overall) 0.9283 0.9259 0.9324 0.9166
Log-likelihood 1204.6 1190.9 1189.7 1182.4
F-statistic 124.29 118.00 115.08 124.76
EPS_building_lag 0.0129 0.0480* -0.1283*** -0.0657***

(0.5450) (2.3491) (-6.8722) (-3.7268)
EPS_elec_lag -0.0576* -0.0048 -0.0410* 0.0464

(-1.9996) (-0.2252) (-3.1150) (1.9158)
EPS_indus_lag -0.1072*** -0.1198*** 0.0102 -0.0681***

(-5.0549) (-5.9609) (0.6670) (-6.9836)
EPS_transport_lag -0.1459*** -0.0886*** -0.1087*** -0.0959***

(-6.0642) (-4.4767) (-6.4564) (-6.5120)
signif. code 0.001 ’***’ 0.01 ’**’ 0.05 ’*’

Note: Results come from a two-way fixed effects OLS with control variables, including ln(GDP), ln(GDP)2,
ln(POP) and urban growth.

B.3.2 A Shift-Share Instrumental Variable

Total IV In our estimation strategy, we implement a Shift-Share Instrumental Variable (SSIV)
approach to address endogeneity concerns when estimating the impact of Environmental Policy
Stringency (EPS) on national greenhouse gas (GHG) emissions. This method, designed to isolate
exogenous variation, combines both a "shift" and a "shock" component. Also known as a Bartik
instrument, it leverages country-specific economic exposure and external, global policy shocks to
isolate exogenous variation in EPS.

The share component is derived from each country’s initial sectoral exposure, specifically the share
of GDP from agriculture and forestry in 1990. This historical data captures a fixed economic
characteristic that reflects each country’s structural reliance on sectors impacted by environmental
policy, while remaining exogenous to the current variation in GHG emissions. Therefore, we use
data only from 1991 onward for other observations, ensuring that the shift component predates our
panel data and remains uninfluenced by contemporary policy changes.

The shift component captures global shocks in environmental policy, measured as the global average
of EPS with a leave-one-out calculation to mitigate endogeneity. By excluding each country’s EPS
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from the global mean calculation, we ensure that the instrument captures a global policy trend
unaffected by national-level variation. This shock component, therefore, reflects exogenous global
trends, varying over time but remaining independent of individual countries’ policy decisions.

The Bartik instrument can be expressed as:

Bartik_instrumentcy “ Sc ˆ Zy

where Sc represents each country’s initial share of GDP from agriculture and forestry in 1990, and
Zy is the leave-one-out global mean of EPS in year y.

First-Stage Regression

In the first stage, we estimate the effect of the Bartik instrument on EPS while controlling for
relevant covariates. The first-stage regression is specified as:

EPScy “ β1
0 ` β1

1Xcy ` β1
2Bartik_instrumentcy ` α1

c ` γ1
y ` ϵ1

cy

Table B.8: First-Stage Regression Results: Predicting EPS Variables
EPS_OCDE EPS_BOD EPS_GHG EPS_GDP

Cov. Estimator Clustered
No. Observations 1138
R2 (Within) -0.3101 -0.2515 -0.3213 -0.2716
R2 (Overall) -3.9036 -4.2507 -4.0557 -4.3738
Log-likelihood -494.68 -894.23 -545.13 -614.78
F-statistic 72.235 68.214 72.554 53.961
F-statistic (robust) 61.711 91.671 64.389 48.206
const 73.037*** 106.05*** 75.052*** 76.159***

(12.834) (14.837) (12.514) (12.645)
ln(GDP) -6.4855*** -9.4083*** -7.2875*** -6.1004***

(-12.278) (-13.884) (-12.949) (-11.026)
ln(GDP)2 0.2634*** 0.3999*** 0.2854*** 0.2554***

(11.201) (13.188) (11.592) (10.160)
ln(POP) -1.9321*** -2.9965*** -1.6671*** -2.3364***

(-7.1209) (-8.5049) (-5.9727) (-7.8395)
urban_growth 0.0328 0.0493 0.0442 0.0102

(1.2541) (1.3832) (1.6179) (0.3577)
Bartik_instrument -0.0240*** -0.0250*** -0.0200*** -0.0229***

(-8.2515) (-8.8125) (-6.0326) (-6.8031)
signif. code 0.001 ’***’ 0.01 ’**’ 0.05 ’*’

Second-Stage Regression
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Using the predicted EPS zEPScy, from the first stage, we estimate the causal effect on GHG emissions
in the second stage:

ln(GHG)cy “ β2
0 ` β2

1Xcy ` β2
2

zEPScy ` α2
c ` γ2

y ` ϵ2
cy.

Table B.9: Second-Stage Regression Results: Predicting ln(GHG)with Predicted EPS
Variables

EPS_OCDE EPS_BOD EPS_GHG EPS_GDP
Dep. Variable ln(GHG)
Cov. Estimator Clustered
No. Observations 1138
R2 (Within) -1.5682 -1.5552 -1.5706 -1.5671
R2 (Overall) 0.8787 0.8796 0.8782 0.8790
Log-likelihood 1217.4 1216.2 1217.6 1217.2
F-statistic 190.41 189.54 190.54 190.28
F-statistic (robust) 120.28 119.85 120.29 120.46
const 9.4561* 10.120* 12.861** 10.253**

(2.5181) (2.5518) (2.7924) (2.5832)
ln(GDP) -1.1418** -1.1934** -1.5743*** -1.1002**

(-3.1721) (-3.1538) (-3.3585) (-3.1353)
ln(GDP)2 0.0683*** 0.0726*** 0.0836*** 0.0679***

(4.8781) (4.7536) (4.6960) (4.8672)
ln(POP) 0.3674*** 0.3233** 0.3439*** 0.2915*

(3.7708) (3.0110) (3.3603) (2.5513)
urban_growth -0.0336*** -0.0332*** -0.0299*** -0.0372***

(-4.7679) (-4.6510) (-3.9858) (-5.5488)
pred_EPS -0.1642*** -0.1186*** -0.2056*** -0.1675***

(-3.7525) (-3.6926) (-3.7624) (-3.7348)
signif. code 0.001 ’***’ 0.01 ’**’ 0.05 ’*’

Robustness of the SSIV We first check the F-statistic and robust F-statistic of the first-
stage regression, both of which exceed 30, indicating a strong instrument (see Appendix B.3.2).
We employ the approximate correlation test from van Kippersluis and Rietveld (2018) to check
for potential autocorrelation. These authors provide a way to approximate the deviation from the
exclusion restriction by estimating the degree of correlation between the instrument and the error
term in the structural equation. The test results in a p-value of lower than 0.001, rejecting the
assumption of the instrument’s exogeneity.

To further analyzing the robustness our IV strategy, we employ a shock-level decomposition follow-
ing Borusyak et al. (2022). This approach allows us to test the robustness of our instrument by
decomposing the study period into three intervals, each reflecting different levels of EPS intensity:
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• Period 1 (1991–2000): Low or stable EPS levels, serving as a baseline with minimal global
environmental policy shocks.

• Period 2 (2001–2010): Moderate increases and fluctuations in EPS, capturing initial global
shifts toward environmental policy integration.

• Period 3 (2011–2020): High EPS growth and large shocks, representing substantial changes
in global environmental policies.

By examining the heterogeneity of treatment effects across these periods, we can evaluate whether
the relationship between EPS and GHG emissions holds consistently under different levels of policy
intensity. Borusyak et al. (2022) further suggest conducting a placebo test by applying the instru-
ment in a period without significant policy changes; in our analysis, this placebo period yields no
significant effects. This shock-level decomposition confirms what we find without the IV in the
period decomposition that the instrument is temporally instable.

Table B.10: The Borusyak et al. (2022) Shock-Level Decomposition
EPS_OECD EPS_BOD EPS_GHG EPS_GDP

Period 1 (1991-2000) - 293 obs
F-statistic 34.34 34.31 34.42 34.43
Robust F-statistic 25.98 25.98 26.06 26.07
predicted_EPS 0.055 0.029 0.051 0.051

(0.53) (0.47) (0.65) (0.67)
Period 2 (2001-2010) - 416 obs

F-statistic 54.58 54.62 54.60 54.58
Robust F-statistic 36.37 36.37 36.38 36.30
predicted_EPS -0.105 -0.049 -0.117 -0.142

(-0.95) (-0.94) (-0.97) (-0.94)
Period 3 (2011-2020) - 429 obs

F-statistic 9.42 25.57 11.80 8.37
Robust F-statistic 9.44 21.95 11.19 8.52
predicted_EPS 0.131** 0.258*** 0.163** 0.083*

(2.41) (5.61) (3.11) (1.94)
Placebo - 1138 obs

F-statistic 177.78 177.78 177.78 177.78
Robust F-statistic 102.52 102.50 102.52 102.52
Placebo -0.102 -0.083 -0.291 -0.068

(-0.39) (-0.41) (-0.39) (-0.40)
signif. code 0.001 ’***’ 0.01 ’**’ 0.05 ’*’

Note: Results come from a two-way fixed effects OLS with control variables, including ln(GDP), ln(GDP)2,
ln(POP) and urban growth.

The Borusyak’s test reveals that while all indicators maintain a relationship with emissions over
time, EPS_BOD shows greater variability This fluctuation may reflect EPS_BOD’s broader design,
which might be less adaptable to national policy differences. By contrast, EPS_OECD, EPS_GHG
and EPS_GDP exhibit more stable values around -0.15 and -0.10 initially and stronger, consistent
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negative coefficients around -0.43 and -0.31 in the later period (2011–2020). The placebo test further
confirms instrument reliability, showing no significant impacts.

However, if the SSIV is significant at the aggregate level, it is not for the sectoral decomposition,
regardless on the type of EPS indicator.

B.4 EPS on GHG/cap

B.4.1 Total EPS effect on GHG

Table B.11: Total EPS Effects on GHG Emissions Per Capita
EPS_OECD EPS_BOD EPS_GHG EPS_GDP

Dep. Variable ln(GHG/cap)
Cov. Est Clustered
No. Observations 1151
R2 (Within) 0.4197 0.1355 0.3421 0.4513
R2 (Overall) 0.4117 0.3954 0.4128 0.4038
Log-likelihood 1226.8 1203.5 1218.8 1241.4
F-statistic 133.33 119.54 128.53 142.24
const -3.6387*** -3.7585*** -3.7123*** -3.2774***

(-11.225) (-11.180) (-11.240) (-10.674)
ln(GDP/cap) 0.0470 -0.0046 0.0256 0.1952

(0.3353) (-0.0318) (0.1790) (1.4748)
ln(GDP/cap)2 -0.0458** -0.0536*** -0.0477*** -0.0315*

(-3.1355) (-3.5300) (-3.2031) (-2.2710)
POP_growth 0.0647*** 0.0702*** 0.0635*** 0.0550**

(3.4993) (3.8726) (3.4601) (3.0102)
urban_growth -0.1025*** -0.1064*** -0.1016*** -0.0975***

(-6.9974) (-7.4850) (-7.0315) (-6.8056)
EPS -0.0523*** -0.0234*** -0.0452*** -0.0572***

(-7.2095) (-4.1911) (-5.9202) (-8.7088)
signif. code 0.001 ’***’ 0.01 ’**’ 0.05 ’*’
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B.4.2 sectoral EPS on GHG

Table B.12: Sectoral EPS Effects on GHG Emissions Per Capita
EPS_OECD EPS_BOD EPS_GHG EPS_GDP

Dep. Variable ln(GHG/cap)
Cov. Estimator Clustered
No. Observations 1118
R2 (Within) 0.4213 0.1505 0.4413 0.4826
R2 (Overall) 0.4383 0.4256 0.4737 0.4422
Log-likelihood 1191.9 1183.2 1217.0 1212.9
F-statistic 83.639 80.354 93.418 91.823
const -3.5464*** -3.6806*** -3.5744*** -3.4283***

(-10.991) (-11.501) (-11.168) (-9.7817)
ln(GDP/cap) 0.0954 0.0605 0.1039 0.1361

(0.6808) (0.4335) (0.7430) (0.9077)
ln(GDP/cap)_2 -0.0408** -0.0445** -0.0358* -0.0363*

(-2.7953) (-3.0573) (-2.4297) (-2.3899)
POP_growth 0.0620*** 0.0660*** 0.0439* 0.0493**

(3.3271) (3.4444) (2.4439) (2.6801)
urban_growth -0.1044*** -0.1101*** -0.0771*** -0.0926***

(-7.1596) (-7.5481) (-5.5638) (-6.3094)
EPS_building 0.0127 0.0726*** -0.1257*** -0.0958***

(0.5384) (3.9377) (-7.4807) (-5.3137)
EPS_elec -0.0006 0.0085 -0.0078 0.0683**

(-0.0246) (0.4414) (-0.6490) (2.9698)
EPS_indus -0.1190*** -0.1174*** -0.0015 -0.0509***

(-7.1608) (-7.3934) (-0.1063) (-6.1554)
EPS_transport -0.0883*** -0.0493* -0.1315*** -0.0736***

(-3.6796) (-2.5059) (-7.9832) (-5.2508)
Signif. codes 0.001 ’***’, 0.01 ’**’, 0.05 ’*’
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B.4.3 Cross-country comparison

Table B.13: Total EPS Effects on GHG Emissions per capita (Developed vs Developing
Countries)

EPS_OECD EPS_BOD EPS_GHG EPS_GDP
Dep. Variable ln(GHG/cap)
Cov. Est Clustered

Developed countries (713 obs.)
R2 (Within) 0.4051 0.3557 0.3950 0.4287
R2 (Overall) -0.1746 -0.1785 0.0229 -0.2054
Robust F-statistic 64.861 48.240 47.918 79.883
EPS -0.0756*** -0.0315*** -0.0330*** -0.0802***

(-9.3346) (-5.3005) (-4.0183) (-11.721)
Developing countries (438 obs.)

R2 (Within) 0.1997 0.2340 0.2270 0.2258
R2 (Overall) -0.0691 -0.0695 -0.0701 -0.0683
Robust F-statistic 22.311 20.735 21.127 28.815
EPS -0.0290 -0.0081 -0.0205 -0.0612***

(-1.7747) (-0.6448) (-1.2827) (-4.7139)
Signif. codes 0.001 ’***’ 0.01 ’**’ 0.05 ’*’

Note: Results come from two-way fixed effects OLS with control variables, including ln(GDP/cap),
ln(GDP/cap)2, ln(POP_growth) and urban growth.
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B.4.4 Time period decomposition

Table B.14: Time-period Decomposition (GHG per capita)
EPS_OECD EPS_BOD EPS_GHG EPS_GDP

Period 1 (1991-2000) - 292 obs
R2 (Within) -0.3143 -0.2324 -0.2914 -0.3272
F-statistic 12.85 13.12 12.88 12.87
EPS -0.0041 -0.0175 -0.0012 -0.0079

(-0.1528) (-0.9902) (-0.0419) (-0.3549)
Period 2 (2001-2010) - 416 obs

R2 (Within) 0.2627 0.2197 0.2766 0.2631
F-statistic 52.25 51.26 53.94 52.42
EPS -0.0500*** -0.0305*** -0.0484*** -0.0520***

(-5.1817) (-4.7785) (-5.3698) (-5.8069)
Period 3 (2011-2020) - 429 obs

R2 (Within) 0.1612 -0.2013 0.1746 -0.1097
F-statistic 14.18 15.61 14.41 14.19
EPS 0.0048 0.0201* -0.0050 0.0108

(0.4525) (2.4934) (-0.5019) (1.1829)

Note: Results come from two-way fixed effects OLS with control variables, including ln(GDP/cap),
ln(GDP/cap)2, ln(POP_growth) and urban growth.
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B.5 EPS on GHG/GDP

B.5.1 Total EPS on GHG/GDP

Table B.15: Total EPS Effects on GHG Emissions Per GDP
EPS_OECD EPS_BOD EPS_GHG EPS_GDP

Dep. Variable ln(GHG/GDP)
Cov. Est Clustered
No. Observations 1130
R2 (Within) 0.1010 -0.0534 -0.0052 0.2479
R2 (Overall) -0.6326 -0.7116 -0.6936 -0.5069
Log-likelihood 1096.7 1092.1 1093.2 1107.1
F-statistic 46.103 44.037 44.553 50.872
const -1.1259 -1.3368 -1.3036 -0.6938

(-0.9422) (-1.1309) (-1.1070) (-0.5700)
ln(POP) 0.4462*** 0.4576*** 0.4559*** 0.4214***

(6.1103) (6.3273) (6.3258) (5.6752)
GDP_growth -0.5435*** -0.5394*** -0.5469*** -0.5250***

(-3.4618) (-3.4178) (-3.4590) (-3.4072)
GDP_growth2 -2.3536 -2.5310** -2.4242 -1.9625

(-1.8363) (-1.9734) (-1.8675) (-1.5292)
urban_growth -0.0592*** -0.0590*** -0.0592*** -0.0600***

(-6.7360) (-6.7416) (-6.7380) (-6.7903)
EPS -0.0216** -0.0065 -0.0128 -0.0340***

(-2.8579) (-1.2035) (-1.6686) (-4.3890)
signif. code 0.001 ’***’ 0.01 ’**’ 0.05 ’*’
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B.5.2 Sectoral EPS on GHG/GDP

Table B.16: Sectoral EPS Effects on GHG Emissions Per GDP
EPS_OECD EPS_BOD EPS_GHG EPS_GDP

Dep. Variable ln(GHG/GDP)
Cov. Est Clustered
No. Observations 1098
R2 (Within) 0.1273 -0.0946 0.0516 0.1957
R2 (Overall) -0.6530 -0.9684 -0.8602 -0.3841
Log-likelihood 1062.2 1064.0 1073.3 1088.6
F-statistic 29.798 30.318 32.988 37.523
const -0.5898 -1.6085 -1.4002 0.5041

(-0.4604) (-1.2795) (-1.1613) (0.3902)
ln(POP) 0.4124*** 0.4721*** 0.4628*** 0.3458***

(5.2565) (6.1280) (6.2567) (4.3667)
GDP_growth -0.5258*** -0.5712*** -0.5953*** -0.4450***

(-3.3180) (-3.5739) (-3.7484) (-2.8931)
GDP_growth2 -2.2153 -2.0116 -2.2458 -1.8760

(-1.7051) (-1.5282) (-1.7271) (-1.4044)
urban_growth -0.0622*** -0.0627*** -0.0500*** -0.0641***

(-6.9907) (-6.8016) (-5.9292) (-7.0083)
EPS_building 0.0254 0.0910*** -0.0492* 0.0328

(1.0288) (4.3883) (-2.5472) (1.7673)
EPS_elec 0.0413 -0.0201 0.0028 0.0577**

(1.4750) (-0.9609) (0.2274) (2.6499)
EPS_indus -0.0803*** -0.0715*** 0.0364* -0.0550***

(-3.9391) (-3.8667) (2.3785) (-5.0019)
EPS_transport -0.0575* -0.0164 -0.0962*** -0.0483**

(-2.2376) (-0.7704) (-5.6033) (-2.8836)
signif. code 0.001 ’***’ 0.01 ’**’ 0.05 ’*’
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B.5.3 Cross-country comparison

Table B.17: Total EPS Effects on GHG per GDP Emissions (Developed vs Developing
Countries)

EPS_OECD EPS_BOD EPS_GHG EPS_GDP
Dep. Variable ln(GHG/GDP)
Cov. Est Clustered

Developed countries (701 obs.)
R2 (Within) 0.5044 0.2180 0.3304 0.6914
R2 (Overall) -0.5286 -0.2089 -0.3111 -0.9154
Robust F-statistic 9.6306 7.0084 7.4091 15.038
EPS -0.0393*** -0.0111 -0.0238** -0.0598***

(-4.4347) (-1.8832) (-2.6957) (-6.2303)
Developing countries (429 obs.)

R2 (Within) 0.2070 0.0722 0.1573 0.2489
R2 (Overall) -3.0046 -3.1131 -3.0202 -2.6443
Robust F-statistic 35.189 32.593 32.635 36.620
EPS -0.0314* -0.0113 -0.0263* -0.0358**

(-2.3853) (-1.1353) (-1.9677) (-3.2150)
Signif. codes 0.001 ’***’ 0.01 ’**’ 0.05 ’*’

Note: Results come from two-way fixed effects OLS with control variables, including ln(GDP_growth),
ln(GDP_growth)2, ln(POP_growth) and urban growth.

B.5.4 Time period decomposition

Table B.18: Time-period Decomposition (GHG per GDP)
EPS_OECD EPS_BOD EPS_GHG EPS_GDP

Period 1 (1991-2000) - 284 obs
R2 (Within) 0.0275 0.0949 -0.0165 0.0319
Robust F-statistic 3.37 3.60 3.34 3.38
EPS -0.0093 -0.0190 0.0013 -0.0092

(-0.3049) (-1.0123) (0.0411) (-0.3675)
Period 2 (2001-2010) - 416 obs

R2 (Within) 0.3434 0.2924 0.3045 0.3613
Robust F-statistic 12.08 11.14 11.09 13.38
EPS -0.0486*** -0.0282*** -0.0420*** -0.0524***

(-4.4144) (-3.8471) (-4.2191) (-5.3073)
Period 3 (2011-2020) - 429 obs

R2 (Within) -0.0719 -0.1157 0.0177 -0.0245
Robust F-statistic 14.54 15.38 14.35 14.38
EPS 0.0118 0.0187* -0.0020 0.0047

(1.0359) (2.1101) (-0.1782) (0.4577)

Note: Results come from two-way fixed effects OLS with control variables, including ln(GDP_growth),
ln(GDP_growth)2, ln(POP_growth) and urban growth.
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B.6 EPS on Sectoral emissions

B.6.1 Total EPS

Table B.19: Total Effect on sectoral Emissions
EPS_OECD EPS_BOD EPS_GHG EPS_GDP

Cov. Est Clustered
No. Observations 1124
Dep. Variable ln(GHG_building)
R2 (Within) -0.0779 -0.1697 -0.3964 0.0356
F-statistic 42.317 41.889 39.763 45.134
EPS -0.0524* -0.0345* -0.0240 -0.0643**

(-2.5529) (-2.3847) (-1.1610) (-3.3047)
Dep. Variable ln(GHG_elec)
R2 (Within) 0.2832 0.0732 0.2871 0.2984
F-statistic 66.947 60.372 67.993 70.535
EPS -0.0980*** -0.0410** -0.0996*** -0.1028***

(-5.5264) (-2.9942) (-5.6168) (-6.7533)
Dep. Variable ln(GHG_indus)
R2 (Within) 0.2994 0.0736 0.2431 0.2492
F-statistic 135.37 124.90 131.91 133.96
EPS -0.0996*** -0.0528*** -0.0894*** -0.0875***

(-7.8688) (-6.0117) (-6.8674) (-7.3856)
Dep. Variable ln(GHG_transport)
R2 (Within) 0.7012 0.7012 0.7135 0.6984
F-statistic 259.15 243.73 249.73 269.89
EPS -0.0628*** -0.0333*** -0.0522*** -0.0646***

(-8.4332) (-5.8209) (-6.6007) (-8.8368)
signif. code 0.001 ’***’ 0.01 ’**’ 0.05 ’*’
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B.6.2 Sectoral EPS

Table B.20: Sectoral EPS Effects on Building GHG Emissions
EPS_OECD EPS_BOD EPS_GHG EPS_GDP

Dep. Variable ln(GHG_building)
Cov. Estimator Clustered
No. Observations 1119 1119 1119 1119
R2 (Within) 0.0038 -0.0551 -0.2648 -0.1026
R2 (Overall) 0.8620 0.8617 0.8063 0.8621
Log-likelihood 369.86 363.96 420.33 371.68
F-statistic 31.963 30.268 47.204 32.488
const -2.1472 -2.7675 -12.185 -1.7975

(-0.5661) (-0.6903) (-2.8513) (-0.4449)
ln(GDP) -0.1641 -0.1229 0.7423** -0.0494

(-0.6407) (-0.4589) (2.7939) (-0.1949)
ln(GDP)2 0.0275* 0.0263* -0.0098 0.0269*

(2.4814) (2.2665) (-0.8326) (2.3428)
ln(POP) 0.5741** 0.5911** 0.8518*** 0.4685*

(2.7298) (2.8508) (3.7926) (2.0422)
urban_growth -0.0229 -0.0232 -0.0211 -0.0297

(-1.4012) (-1.3779) (-1.3143) (-1.7998)
EPS_building 0.0649 0.0894** 0.3560*** 0.1134*

(1.4916) (2.7343) (7.5294) (2.4256)
EPS_elec 0.0026 -0.0519 0.0077 -0.0111

(0.0518) (-1.2431) (0.3108) (-0.2148)
EPS_indus -0.0333 -0.0182 -0.0564** -0.0775***

(-0.8906) (-0.5991) (-2.9229) (-5.4984)
EPS_transport -0.3221*** -0.2075*** -0.2760*** -0.1506***

(-5.5141) (-4.4703) (-5.4054) (-4.1303)
Signif. codes 0.001 ’***’, 0.01 ’**’, 0.05 ’*’
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Table B.21: Sectoral EPS Effects on Electricity GHG Emissions
EPS_OECD EPS_BOD EPS_GHG EPS_GDP

Dep. Variable ln(GHG_elec)
Cov. Estimator Clustered
No. Observations 1119 1119 1119 1119
R2 (Within) 0.2907 0.1168 0.3236 0.3216
R2 (Overall) 0.7107 0.6982 0.7586 0.7575
Log-likelihood 246.76 245.46 282.34 262.40
F-statistic 45.408 45.002 56.891 50.368
const 3.1081 0.0947 -0.6395 3.2188

(0.6620) (0.0203) (-0.1434) (0.6924)
ln(GDP) -1.6870*** -1.3120*** -1.1871*** -1.3662***

(-4.3854) (-3.4317) (-3.3673) (-3.7774)
ln(GDP)2 0.0906*** 0.0757*** 0.0644*** 0.0757***

(5.7395) (4.7647) (4.4862) (5.1174)
ln(POP) 0.8640*** 0.9021*** 0.9695*** 0.7605***

(4.7538) (5.0143) (5.6889) (4.1373)
urban_growth -0.0631*** -0.0669*** -0.0439*** -0.0653***

(-4.3322) (-4.4819) (-3.3520) (-4.6719)
EPS_building 0.1229** 0.2053*** -0.2913*** -0.2061***

(2.5909) (5.0527) (-7.4959) (-5.9450)
EPS_elec -0.1122* -0.0119 0.0294 0.2132***

(-2.0593) (-0.2914) (1.1432) (4.3014)
EPS_indus -0.2215*** -0.1881*** -0.0246 -0.0948***

(-6.3959) (-5.7996) (-0.9505) (-5.0936)
EPS_transport -0.1674*** -0.1789*** -0.2498*** -0.1182***

(-3.5965) (-4.2892) (-5.6081) (-3.7890)
Signif. codes 0.001 ’***’, 0.01 ’**’, 0.05 ’*’
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Table B.22: Sectoral EPS Effects on Industrial GHG Emissions
EPS_OECD EPS_BOD EPS_GHG EPS_GDP

Dep. Variable ln(GHG_indus)
Cov. Estimator Clustered
No. Observations 1119 1119 1119 1119
R2 (Within) 0.3224 0.0362 0.3566 0.3224
R2 (Overall) 0.5482 0.4094 0.5474 0.5025
Log-likelihood 618.06 608.90 624.53 618.83
F-statistic 96.830 93.152 99.462 97.140
const -17.488 -20.502 -18.247 -18.721

(-5.2695) (-6.2537) (-5.7775) (-5.5009)
ln(GDP) 0.7795** 1.0338*** 0.8971*** 0.9123***

(2.7917) (3.7216) (3.4490) (3.3123)
ln(GDP)2 -0.0088 -0.0173 -0.0138 -0.0133

(-0.7554) (-1.4925) (-1.2759) (-1.1661)
ln(POP) 1.1870*** 1.2542*** 1.1932*** 1.2053***

(8.8232) (9.4452) (9.1742) (8.7057)
urban_growth -0.0346** -0.0392*** -0.0214* -0.0329**

(-3.2377) (-3.6279) (-2.1122) (-3.1808)
EPS_building -0.0147 0.0609* -0.1709*** -0.1264***

(-0.4493) (2.2588) (-6.3851) (-4.4954)
EPS_elec -0.1809*** -0.1493*** -0.1414*** -0.2241***

(-4.6071) (-4.9049) (-7.6882) (-6.1748)
EPS_indus -0.1583*** -0.1472*** 0.0111 -0.0964***

(-6.1476) (-6.1657) (0.5611) (-7.6931)
EPS_transport -0.0625 0.0331 -0.1480*** -0.0494*

(-1.6580) (1.0987) (-5.2854) (-1.8522)
Signif. codes 0.001 ’***’, 0.01 ’**’, 0.05 ’*’
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Table B.23: Sectoral EPS Effects on Transport GHG Emissions
EPS_OECD EPS_BOD EPS_GHG EPS_GDP

Dep. Variable ln(GHG_transport)
Cov. Estimator Clustered
No. Observations 1119 1119 1119 1119
R2 (Within) 0.7024 0.7062 0.7139 0.6534
R2 (Overall) 0.8777 0.8862 0.8955 0.8499
Log-likelihood 1154.4 1127.1 1131.8 1165.3
F-statistic 167.32 153.19 155.58 173.17
const 3.0847 1.7145 1.2325 2.5795

(1.8414) (1.0482) (0.6763) (1.5481)
ln(GDP) 0.5917*** 0.7783*** 0.7922*** 0.7672***

(3.8980) (5.1796) (4.7774) (5.1867)
ln(GDP)2 0.0122* 0.0058 0.0035 0.0034

(1.9446) (0.9140) (0.4982) (0.5450)
ln(POP) -0.1420* -0.1411* -0.0993 -0.1591*

(-1.9877) (-1.9500) (-1.3420) (-2.1123)
urban_growth 0.0029 -0.00002 0.0001 -0.0029

(0.4726) (-0.0026) (0.0168) (-0.4713)
ln_EPS_building -0.0333 -0.0025 -0.0845*** -0.1286***

(-1.4982) (-0.1260) (-3.3747) (-6.9827)
EPS_elec -0.1127*** -0.0632** -0.0506*** 0.0283

(-4.6034) (-3.2393) (-4.3807) (1.2304)
EPS_indus -0.0091 -0.0063 -0.0220 -0.0509***

(-0.4973) (-0.3776) (-1.6428) (-4.3821)
EPS_transport -0.1460*** -0.0819*** -0.0770*** -0.0790***

(-6.2091) (-4.2228) (-3.9800) (-5.1893)
Signif. codes 0.001 ’***’, 0.01 ’**’, 0.05 ’*’
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B.7 EPS on GHG

B.7.1 Regional comparison of sectoral EPS

Table B.24: Sectoral EPS Effects on GHG Emissions (Developed vs Developing Countries)
EPS_OECD EPS_BOD EPS_GHG EPS_GDP

Dep. Variable ln(GHG)
Cov. Est Clustered

Developed countries (709 obs.)
R2 (Within) 0.0955 -1.2084 0.0972 0.2891
R2 (Overall) 0.9068 0.9064 0.9363 0.7898
Robust F-statistic 46.269 51.467 83.607 64.411
EPS_building 0.0528* 0.1526*** -0.1297*** -0.0182

(2.0830) (7.8518) (-5.5334) (-0.9194)
EPS_elec -0.0749** -0.0255 -0.0167 0.0224

(-2.9018) (-1.3604) (-1.3098) (1.3278)
EPS_indus -0.1123*** -0.1120*** 0.0285* -0.0703***

(-5.6858) (-6.7414) (2.0748) (-7.0064)
EPS_transport -0.0874*** -0.0570** -0.1322*** -0.1074***

(-3.3026) (-2.5874) (-7.6825) (-6.2825)
Developing countries (410 obs.)

R2 (Within) 0.5676 0.4620 0.4864 0.5889
R2 (Overall) 0.9430 0.9403 0.9389 0.9423
Robust F-statistic 73.682 67.456 65.322 80.022
EPS_building 0.0017 -0.0077 -0.1047* -0.0442

(0.0444) (-0.2248) (-2.6555) (-1.1765)
EPS_elec 0.0570 0.0613 -0.0003 0.1248**

(1.1737) (1.6815) (-0.0127) (2.7227)
EPS_indus -0.1100*** -0.1049*** -0.0621 -0.0908***

(-3.7592) (-3.4357) (-1.8194) (-5.7446)
EPS_transport -0.0796 0.0013 0.0084 -0.0242

(-1.7233) (0.0325) (0.2030) (-1.0042)
Signif. codes 0.001 ’***’ 0.01 ’**’ 0.05 ’*’

Note: Results come from a two-way fixed effects OLS with control variables, including ln(GDP), ln(GDP)2,
ln(POP) and urban growth.
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B.7.2 Sectoral decomposition with interactions

Table B.25: VIF Comparison Across Sectoral Models with Interaction (Best Model)
Variable EPS_OECD EPS_BOD EPS_GHG EPS_GDP
ln(GDP) 24.13 24.76 25.20 22.67
ln(GDP)2 24.00 24.82 25.36 23.20
ln(POP) 1.24 1.25 1.22 1.25
urban_growth 1.09 1.10 1.13 1.08
EPS_indus 3.12 6.22 2.38 2.17
EPS(Elec*Indus) 6.56 10.33 4.33 5.24
EPS(Elec*Transport) 7.15 8.01 2.86 5.38
EPS(Building*Transport) 3.75 5.23 1.85 1.52

Table B.26: VIF Comparison Across Sectoral Models with Interaction (All Variables)
Variable EPS_OECD EPS_BOD EPS_GHG EPS_GDP
ln(GDP) 26.03 26.32 26.94 24.18
ln(GDP)2 25.96 26.07 27.16 24.44
ln(POP) 1.33 1.39 1.31 1.39
urban_growth 1.12 1.13 1.17 1.11
EPS_elec 12.74 10.54 3.99 11.55
EPS_indus 13.67 19.21 10.39 6.85
EPS_building 5.37 9.33 7.48 6.44
EPS_transport 4.32 6.62 3.62 2.61
EPS(Elec*Indus) 30.58 53.95 8.88 8.90
EPS(Elec*Transport) 30.99 67.36 11.16 13.61
EPS(Building*Transport) 32.83 65.42 11.92 11.44
EPS(transport*indus) 33.46 67.61 9.96 7.88
EPS(building*elec) 64.11 86.81 10.29 14.76
EPS(indus*building) 35.47 65.23 13.57 7.61
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B.7.3 GHG Elasticities with respects to EPS

Table B.27: GHG Elasticities with Respect to Total EPS
EPS_OECD EPS_BOD EPS_GHG EPS_GDP

Dep. Variable ln(GHG)
Cov. Estimator Clustered
No. Observations 1152
R2 (Within) -0.2585 -0.6990 -0.4028 -0.1494
R2 (Overall) 0.8905 0.8776 0.8863 0.8937
Log-likelihood 1208.5 1198.4 1204.9 1215.7
F-statistic 205.88 198.58 203.31 211.21
const -1.4011 -2.2398 -1.6172 -1.1257

(-0.9107) (-1.4257) (-1.0630) (-0.7507)
ln(GDP) 0.0184 0.0689 0.0063 0.0130

(0.1431) (0.5209) (0.0485) (0.1009)
ln(GDP)2 0.0257*** 0.0235*** 0.0259*** 0.0261***

(4.6917) (4.1780) (4.6878) (4.8156)
ln(POP) 0.5443*** 0.5753*** 0.5634*** 0.5281***

(7.9415) (8.2339) (8.3718) (7.9629)
urban_growth -0.0490*** -0.0510*** -0.0496*** -0.0491***

(-6.9095) (-7.0035) (-6.8905) (-7.0314)
ln(EPS+1) -0.1061*** -0.0494* -0.0853*** -0.1206***

(-4.4039) (-2.3714) (-3.8485) (-5.2014)
Signif. codes 0.001 ’***’, 0.01 ’**’, 0.05 ’*’
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Table B.28: GHG Elasticities with Respect to Sector-Specific EPS
EPS_OECD EPS_BOD EPS_GHG EPS_GDP

Dep. Variable ln(GHG)
Cov. Estimator Clustered
No. Observations 1119 1119 1119 1119
R2 (Within) 0.3061 -0.1304 0.3692 0.2761
R2 (Overall) 0.9108 0.8919 0.9287 0.9194
Log-likelihood 1210.2 1199.7 1211.7 1206.7
F-statistic 144.72 139.61 145.46 143.01
const 1.1155 -0.8951 0.3640 1.1970

(0.7278) (-0.5515) (0.2310) (0.7978)
ln(GDP) -0.3349** -0.1749 -0.1489 -0.1787

(-2.6603) (-1.3255) (-1.1490) (-1.3703)
ln(GDP)2 0.0383*** 0.0316*** 0.0294*** 0.0330***

(7.1971) (5.6562) (5.3469) (5.9272)
ln(POP) 0.5383*** 0.6002*** 0.5307*** 0.4668***

(7.8374) (8.4693) (7.6938) (6.8552)
urban_growth -0.0502*** -0.0556*** -0.0437*** -0.0535***

(-7.1609) (-7.4051) (-6.5333) (-7.7519)
ln_EPS_building 0.0705 0.1415*** -0.1823*** -0.0844**

(1.8449) (4.0828) (-5.6716) (-2.5244)
ln_EPS_elec -0.1186** -0.0260 -0.0388 0.0070

(-3.1110) (-0.8701) (-1.7112) (0.1651)
ln_EPS_indus -0.2272*** -0.2433*** -0.0671** -0.1669***

(-8.6296) (-8.9687) (-2.8177) (-9.1621)
ln_EPS_transport -0.1116** -0.0422 -0.1839*** -0.0696**

(-2.9264) (-1.1683) (-5.4653) (-2.4993)
Signif. codes 0.001 ’***’, 0.01 ’**’, 0.05 ’*’

Note: ln_EPS_{sector} variables correspond to ln(EPS_{sector} +1).

In the previous sections, we examined the effect of EPS on the logarithm of GHG, interpreting the
results as partial elasticities. Here, we present the findings for total elasticities, as detailed in Tables
B.27 and B.28. To assess these effects, we computed the logarithm of the EPS score plus one to
account for cases where the score is zero.

The results reveal similar trends to those observed with partial elasticities, particularly under the
Proxy and Effectiveness assumptions. However, there is a general decline in the significance of the
overall model under these specifications, which led us to exclude it as the primary model.

55



N°2025 - 07 • MARCH 2025 

 
 

WORKING PAPER 
................................................................................................... 

 

PREVIOUS ISSUES 
............................................................................................. 

 
 

Forecasting Extreme Trajectories Using Seminorm Representations 
Gilles de TRUCHIS, Sébastien FRIES, Arthur THOMAS 
 
 
Les déterminants des distances domicile-travail : cas des aires 
urbaines françaises métropolitaines 
Romain GATÉ, Mohamed HILAL 
 

Certification, manipulation and competition: evidence from Energy 
Performance Certificates 
Edouard CIVEL, Anna CRETI, Gabrielel FACK, Daniel HERRERA-
ARAUJO 
 

The Value of Nuclear Power Plants Flexibility: A Multistage Stochastic 
Dynamic Programming Approach 
Ange BLANCHARD, Olivier MASSOL 
 
Collaborative management partnerships strongly decreased 
deforestation in the most at-risk protected areas in Africa since 2000 
Sébastien DESBUREAUX, Ibrahim KABORE, Giulia VAGLIETTI, Antoine 
LEBLOIS 

 
Mind the Market: A Novel Measure of Carbon Leakage Risk 
Aliénor CAMERON 

 
Demand response control structure in imperfectly competitive power 
markets: independent or integrated? 
Julien ANCEL 

 
Strategic investments: Electrolysis vs. storage for Europe's energy 
security in the hydrogen era 
Ange BLANCHARD 

 

 

 

N°2025-06 

 
 
 
N°2025-05 

 
 
 
N°2025-04 
 
 
 

 

N°2025-03 
 
 
 
N°2025-02 

 
 
 
N°2025-01 

 
 
N°2024-06 

 
 
 
N°2024-05

     
          Working Paper Publication Directors : 

 
Marc Baudry, Philippe Delacote, Olivier Massol 

 
The views expressed in these documents by named authors are solely the responsibility of 

those authors. They assume full responsibility for any errors or omissions. 

 
The Climate Economics Chair is a joint initiative by Paris-Dauphine University, CDC, TOTAL 

and EDF, under the aegis of the European Institute of Finance. 

 
 
 
 

 

– Chaire Économie du Climat • Palais Brongniart, 4
ème 

étage • 28 place de la Bourse • 75002 PARIS – 
www.chaireeconomieduclimat.org 


