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Executive summary 

 

 

This article introduces an innovative quantitative composite index to assess environmental 

performance across the city and country levels: a Deterioration of Environmental 

Performance Index (DEPI). This new index provides valuable and objective insights into the 

sustainability of territorial development strategies. In this context, environmental performance 

for governmental entities primarily reflects the outcomes of policies and human activities that 

directly or indirectly affect ecosystems. Given the multifaceted nature of environmental 

challenges, these policies encompass various interventions. This evaluation exclusively 

incorporates quantitative measures to capture the tangible impacts of human activity. The 

selected variables are intended to reflect human actions' outcomes and environmental 

management policies' effectiveness. Some variables are influenced by urban policies, while 

others by national ones. These variables allow for policy efficiency assessment in managing 

climate change and human impact across governance levels. The index evaluates two critical 

dimensions on an annual basis: air quality and climate hazard management. Governments 

are responsible for safeguarding populations and infrastructure from the adverse effects of 

global warming. Consequently, the climate hazard dimension encompasses risks like floods, 

wildfires, and extreme heat. Air pollution is measured by the average population exposure to 

fine particulate matter (PM2.5). By employing a population-weighted metric, this measure 

captures individuals' average exposure to PM2.5 across each territory. Each outcome is 

classified as negative based on its marginal environmental impact. To ensure comparability, 

calculations are conducted at both local and national levels. 

This article examines how local and national governments respond to these environmental 

challenges. We analyze the annual evolution of the DEPI for ten OECD countries and their 

respective Functional Urban Areas (FUAs) from 2001 to 2020. The index captures variations 

in environmental outcomes across multiple governance levels which measures environmental 

performance evolution. Objective indicators of performance remain relatively scarce for 

historical analyses. To address this limitation, we construct our index using datasets provided 

by OECD statistics and assess its robustness through empirical testing. 

Our findings show that on average, environmental management is consistently better at the 

national than at the city level each year. Among the countries in our sample, New Zealand is 

the only one with poorer national outcomes relative to its urban areas. Further research is 

needed to unravel the mechanisms that explain these results. Global agreements are 

insufficient, as they are not reflected in the evolution of quantitative outcomes. Environmental 

policies still need to be applied at all levels for better effectiveness in mitigating climate 

change impacts. However, there is a particular need to improve the implementation of local-

level policies. Despite establishing ambitious climate plans and mitigation targets, FUAs’ 

performance has deteriorated over time at a greater rate than the environmental performance 

of their respective countries. 

. 
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Introduction 

 
Humans are fundamentally integrated into a global ecosystem, as emphasized by Dasgupta and Treasury (2022). 

Therefore, household and government decisions are relevant because they have long-lasting implications for this 

complex ecosystem. A business-as-usual scenario would set off a chain of harmful consequences, extending 

beyond environmental degradation to disrupt economic and social systems. Due to the intricate 

interconnectedness of these systems, the deterioration of one area can exacerbate risks in others, triggering a 

cascading escalation of crises (Von Uexkull & Buhaug, 2021; Shi et al., 2019; Matsumoto et al., 2019; 

Aminzadeh, 2006). Historically, a substantial body of research has focused on understanding the environmental 

impacts of human behavior. However, many scientific recommendations have not been fully integrated into 

societal actions yet. The responsibility for safeguarding our ecosystem is primarily addressed by associations, 

governments, international organizations, and non-governmental organizations (NGOs). This can be attributed to 

the environment's inherent nature as a common good. Additionally, the lack of short-term profitability may 

discourage proactive engagement from the private sector (Schneider, 2014). Nevertheless, recent years have 

shown some progress in this area. A comprehensive ecological transformation of the global economy is essential. 

This requires transitioning from environmentally harmful production and consumption processes to sustainable 

alternatives across all economic sectors to mitigate the impact of human activities on our planet. In this context, 

we focus on governmental bodies, as they are entrusted with serving the public interest and possess greater 

capacity for effective action due to their legislative authority. A nation's economic identity represents a complex, 

interconnected matrix of numerous factors, such as market systems, trade routes, natural resources, and population 

distribution. It extends beyond being a simple assembly of cities. However, cities are hubs of economic dynamism 

and play a vital role in shaping the economic power of a nation. Economic output from the largest metropolitan 

regions is frequently like that of significant nations. For instance, the economic production of Tokyo can be 

compared to the entire global domestic product (GDP) of South Korea (Matsumoto et al., 2019). 

In parallel, a nation's environmental performance is not a simple aggregation of urban areas. It is a sophisticated 

interplay among cities, rural spaces, and adherence to policies enforced at different levels. Hence, data at the local 

and national levels are examined and compared for a comprehensive understanding of a nation's environmental 

performance (Eisenack & Roggero, 2022). Furthermore, Matsumoto et al. (2019) highlighted the capacity and 

relevance of local scale to address climate change in their OECD report, “An Integrated Approach to the Paris 

Climate Agreement: The Role of Regions and Cities”. With more than half the global population, cities generate 

80% of the worldwide GDP and contribute significantly to greenhouse gas (GHG) emissions, generating more 

than 70% of energy-related CO2 emissions. Urban ways of life, such as transportation methods and energy use at 

home, are significant determinants of GHG emissions. Projections suggest that if current trends persist, global 

urban primary energy use and CO2 emissions could increase by 70% and 50% by 2050 from their 2013 levels. 

The impact of climate change also poses a severe threat to cities, especially those in low-lying coastal regions, 

which are exposed to an increasing risk of flooding. Current estimations predict that global flood losses in the 

world's largest coastal cities could reach 52 billion USD by 2050 (Matsumoto et al., 2019). Other climate-change-

related phenomena, such as urban heat islands, which increase local temperatures, further intensify the 

vulnerability of cities. Moreover, they potentially damage infrastructure and increase energy demand for space 

cooling. 
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As they face these issues, cities have the potential to mitigate and adapt to climate change. Many climate 

policies are implemented at the city or regional level. An estimated 50% to 80% of adaptation and mitigation 

actions are led locally. In many countries, urban municipalities have at least partial authority over various 

sectors, such as spatial planning, transport, and waste services. This allows them to drive climate action through 

local regulations and strategic planning. Moreover, technically feasible low-carbon measures can reduce 

emissions from key urban sectors by almost 90% by 2050. Thus, it would generate substantial savings in the 

long term. Investments in low-carbon, climate-resilient urban infrastructure can yield additional benefits such 

as improved health, energy use, and security for a better quality of urban life. For instance, land-use zoning 

policies promoting higher densities can reduce transport distances, and increasing green spaces can mitigate 

extreme heat and flooding. Economic growth can also be stimulated through the job creation needed to 

implement these policies (Matsumoto et al., 2019). Despite the capacity of cities to address climate change-

related challenges, their full potential can only be harnessed through effective collaboration with regional and 

national governments according to the Coalition for Urban Transitions (CUT, 2019). This report underscores 

the crucial role of national governments in supporting economic growth and mitigating climate change effects 

through urban transformation. National governments can contribute by financing sustainable urban 

infrastructure, shaping global agendas, and endorsing city- and community-led climate initiatives. They also 

play a role in harmonizing national and local policies through comprehensive frameworks such as the Nationally 

Determined Contributions (NDC) (Matsumoto et al., 2019). Nonetheless, local governments control less than 

one-third of the potential GHG emissions reduction within their jurisdiction (CUT, 2019). More than two-thirds 

of the reduction potential depends on national and state governments or coordination across different levels of 

government. In addition, cities typically have less influence on significant sectors such as energy provision than 

on areas such as water management, building regulations, waste management, or transportation. This disparity 

in power distribution might impede the implementation of certain mitigation strategies sought by local 

governments. Nevertheless, cities have undertaken climate commitments and implemented miscellaneous 

mitigation and adaptation strategies since the 1990s. These measures range from solar panel installations and 

building renovations to green space expansion and congestion charges. Moreover, following the Paris Climate 

Agreement, some cities have set ambitious GHG emission reduction targets that often exceed those of their 

respective national governments (Matsumoto et al., 2019). 

Economics provides a framework for understanding societal behavior and aims to mitigate the inherent 

uncertainties of our collective future. Within conventional economic models, actors are assumed to behave 

rationally, making decisions based on resource constraints to achieve the best possible outcome. A key variable 

in this constraint function is the availability of information. Therefore, it can be argued that optimal environmental 

outcomes remain unattainable without adequate information and resources. Besides, addressing environmental 

challenges needs precise quantification and communication of environmental risks, resources, and performance 

given the widely accepted principle that "effective management requires accurate measurement". Assessing 

environmental performance is a complex task. It is particularly challenging to encapsulate within a single index, 

as it involves multiple ecosystem interactions. A composite index appears to be a relevant approach for capturing 

the multidimensional nature of human activity with ecosystems. In addition, information about a territory’s 

environmental status is generally more accessible and interpretable as a single numerical value with a standardized 

scale than a set of disparate indices (OECD, 2008). There is no universally accepted definition of a composite 

index. In this study, we adopt the definition proposed by Greco et al., (2019): “A composite index might reflect 

a complex system that consists of numerous ‘components,’ making it easier to understand rather than reducing it 

to its ‘spare parts’”. The proliferation of composite indices in recent years reflects the growing need to convey 
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complex, multidimensional realities through simplified and meaningful measures. The increasing number of 

publications referring to the "composite index" on SCOPUS illustrates this trend. Similarly, as the urgency to 

address climate change intensifies, the number of environmental indices has surged, each assessing a specific 

aspect of environmental conditions. The number of SCOPUS results for the "composite environmental index" 

increased from 10 in June 2001 to 125 in June 2023. However, to our knowledge, no composite index currently 

exists that quantitatively measures environmental performance at city and national levels. Such an index would 

facilitate comparisons between different jurisdictional levels, providing a more comprehensive understanding of 

environmental governance. In this context, this article examines the environmental performance of governmental 

entities at both city and national levels. We compare these two levels by developing a quantitative composite 

index (DEPI). We find that urban areas are less effectively managed environmentally than entire nations. 

Furthermore, by offering additional insights into their respective environmental situations, this research seeks to 

bridge part of the information gap that may have contributed to suboptimal policy decisions in the past. Given the 

significant strain on public resources and the escalating climate crisis, ensuring the efficient allocation of these 

resources is relevant. 

This paper is organized as follows. Section 2 briefly reviews existing indices at the city and country levels. 

Section 3 introduces the framework of the composite index created. Section 4 develops the application scope 

and explains the treatment applied to the data. The results are presented in Section 5. Finally, Section 6 discusses 

our results with a robust analysis, and Section 7 concludes. 

-2- 

Review of environmental performance indices 

 

In this section, we have reviewed widely used environmental indices at the national and city levels. These 

indices played a significant role in shaping the theoretical and practical concepts of the index proposed in this 

article. 

In a publication from the United Nations Industrial Development Organization, nine city-level sustainability 

indices were reviewed in 2017. We were particularly interested in the dimensions accounted for in the Green City 

Index (GCI). This index was first developed in 2008 by the private company the Economist Intelligence Unit in 

collaboration with Siemens. It is designed to evaluate and rank the environmental performance and aspirations of 

major cities worldwide. It evaluates cities using approximately 30 indices spread over eight to nine categories, 

depending on the region, due to data constraints. These categories include CO2 emissions, energy, buildings, land 

use, transport, water and sanitation, waste management, air quality, and environmental governance. Sixteen of 

these indices are quantitative measures, and the other fourteen are qualitative and assess the city's environmental 

policies. The combination of quantitative and qualitative indices reflects both current environmental performance 

and its ambitions to become greener. The Green City Index measures de facto and de jure environmental 

performance at the urban level (Gong & Lyu, 2017). In contrast to the specific scope of the GCI, footprint-related 

indices (i.e., environmental, energy, water or final consumption good footprints) can be calculated for various 

economic actors and levels. Redefining Progress, the Worldwide Fund for Nature and the Global Footprint 

Network first developed this concept. They provide a comparative measure of human demand versus the planet's 

ecological capacity regeneration. These indices symbolize the quantity of biologically productive land (i.e., global 

hectares) needed for resource regeneration and waste neutralization. Regular data and methodological updates 

have allowed these indices to include more dimensions and reflect scientific advancement since their conception 

in the 1990s (Gadrey & Jany-Catrice, 2016). Similarly, the net environmental contribution (NEC) assesses the 
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environmental impact of economic activities. The NEC framework is grounded in the concept of sustainable 

development. It evaluates the extent to which a product, service, company, or sector contributes positively or 

negatively to the environment. It considers various environmental dimensions, including climate, water, air, 

biodiversity, and resources. Thus, it offers a holistic perspective of environmental impact. The NEC calculation 

involves four key steps : (i) to identify the main environmental impact of the product life cycle, service, or sector 

considered, (ii) to quantify the environmental performance relative to the previously identified environmental 

impact during the life cycle steps, (iii) to normalize performance by comparing it to the best available technique 

or practice (a baseline for environmental impact measurements), (iv) and these scores are aggregated to generate 

a final NEC score. The NEC scores range from -100% to +100%, where negative values indicate net environmental 

degradation and positive values suggest a net environmental benefit. The global average serves as the NEC 0% 

point. Scores can also be aggregated for all sectors in a unique range, informing them of impact intensity to 

compare actors on a single scale. This means that environmental performance is measured as high (-

100%/+100%), moderate (-33%/+33%), or limited (-10%/+10%). This index can be applied to various subjects. 

For example, it can be used by companies to identify areas for improvement and by investors to evaluate the 

environmental responsibility of their portfolios. However, policymakers can also guide the development of more 

sustainable regulations (NEC, 2019). 

Transitioning to country-level indices, the Environmental Performance Index (EPI), developed by Yale 

University in 2022, provides a data-driven assessment of national environmental sustainability. It evaluates 180 

countries based on 40 performance indicators across 11 issue categories and three policy objectives: climate 

change management, environmental health, and ecosystem vitality. These indicators collectively measure how 

closely countries adhere to established international environmental policies. The index is aggregated at multiple 

levels, with each variable weighed according to its contribution to the total score. The EPI can also be 

disaggregated by issue category, policy objective, peer group, and country (Wolf et al., 2022). In addition, the 

Environmental Policy Stringency (EPS) Index, developed by the OECD, assesses the stringency of environmental 

policies, particularly those addressing climate change and air pollution. The EPS reflects the explicit or implicit 

cost of environmentally harmful behaviors, with variables selected based on legal regulations encompassing a 

broad range of policies. Stringency is measured on a 0 to 6 scale, where 0 represents nonexistent policies and 6 

indicates the most stringent. The index is calculated using the minimum and maximum sample values of each 

instrument. He is aggregated first by type of instrument and then by policy approach (market- and non-market-

based regulations). The EPS allows for international and historical comparisons covering 28 OECD countries 

from the 1990s to 2012. It can be further disaggregated by market-based vs. nonmarket-based instruments and by 

subcomponents such as policies that incentivize or penalize environmental actions (Botta and Koźluk, 2014). 

Building on these structured and comprehensive indices, we construct a composite index that captures shifts in 

environmental outcomes over time. This approach assesses de facto environmental performance at local and 

national levels across multiple dimensions. Importantly, we develop a methodology that facilitates comparisons 

over time while ensuring the measure remains accessible and easily interpretable for a non-expert audience. The 

framework is detailed in the following section. 

-3- 

Theoretical framework 

In this section, we present the index proposed in this study. First, we introduce the theoretical concept and 

incorporate the dimensions. We then discuss the methodology used. The final subsection provides a 
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mathematical illustration. 

3.1 Concept and dimensions definition 

Environmental performance for governmental entities primarily refers to the outcomes of policies and human 

activities that directly or indirectly impact the ecosystem. These policies span a wide variety of policies due to the 

multifaceted nature of environmental concerns. We only include quantitative measures in this evaluation to 

capture the tangible, 'on-the-ground' effects of human activity. The variables selected are intended to reflect both 

the outcomes of human activity and the results of environmental management policies. Some variables are more 

likely to be consequences of local actions, whereas others are more likely to be determined at the national level. 

Together, they evaluate policy efficiencies to manage climate change and human impact at both levels. 

Accordingly, our indices assess six key dimensions on an annual basis. 

 

3.1.1 Air quality management 

Air pollution is estimated as the mean population exposure to fine particulate matter (PM2.5). “2.5” 

indicates that particulate matter has a diameter of less than or equal to 2.5 micrometers, approximately 3% of 

the diameter of a human hair sample. It is calculated considering the population distribution across different 

areas with varying pollution levels. Hence, as a population-weighted measure, it provides a more accurate 

representation of individuals' average exposure to PM2.5 within each territory. Research has established a direct 

causal link between PM2.5 exposure and cardiovascular disease incidence and death rates. Notably, 

improvements in life expectancy in the United States have been partially attributed to reductions in ambient fine 

particulate air pollution exposure (Liu et al., 2019). We use total GHG emissions to account for this dimension. 

As more than 70% of GHG emissions can be attributed to cities, it appears relevant to monitor and compare 

their efforts to the national level. Moreover, local governments usually have room for urban planning, greatly 

influencing GHG emissions (Matsumoto et al., 2019). 

3.1.2 Climate hazard management 

Governments are responsible for protecting their population and infrastructure from the consequences 

of global warming. Thus, this dimension includes flood, fire, and heat risks. Climate change-induced floods that 

impact populations and buildings are evaluated as the share of population and built-up area exposed to river and 

coastal flooding. This accounts for the corresponding human risk, material damage, and water pollution 

associated with such events. The return period chosen is fifty years. Therefore, in any year, the probability of a 

flood reaching a similar intensity as a one-in-fifty-year flood is 2%. Due to ecosystem deregulation, important 

flood events are estimated to increase on all continents over time. A fifty-year return period seems adequate to 

account for the intensity of such an important environmental catastrophe. However, their frequency might 

increase. In addition, the engineering benefits of structural measures to improve the capacity of drainage 

systems are greatest when considering a 50-year return period (Wang et al., 2021). Climate deregulation also 

involves an increase in fire, partly due to drought and strong winds. Fire risk is no less disastrous than flood 

risk in terms of human health, material damage, and endangered animals. Moreover, fires instigate a series of 

subtle and delayed environmental events, including air pollution due to smoke plumes, which eventually 

contribute to land and water contamination through deposition, toxic runoff water pollution, and additional 

environmental hazards resulting from the combustion of various materials (Martin et al., 2016). This risk is 

illustrated by the share of the population exposed to at least one forest fire. Its reduction over time should reflect 

the government’s efforts to prevent fires and protect people. The increase in temperature and government 

response is proxied by the share of the population exposed to strong heat stress. Strong heat stress is calculated 
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via the Universal Thermal Climate Index (UTCI) for an equivalent temperature greater than 32 degrees Celsius. 

The UTCI considers air temperature, wind, radiation, and humidity and assesses the impact of atmospheric 

conditions on the human body (OECD, n.d.). This kind of temperature can destroy physical and social 

infrastructures in combination with the effects of extreme storms and drought. Moreover, a temperature rise 

could increase the demand for space cooling, skyrocketing energy consumption during high demand peaks 

(Matsumoto et al., 2019). 

3.1.3 Community life management 

The share of recycled waste of total waste produced by a territory illustrates the effectiveness of policies 

aimed at waste reduction and recycling. Waste management should improve at every level to limit its impact on 

our society. Moreover, local entities usually have direct power over waste treatment; thus, they can differentiate 

among levels (Matsumoto et al., 2019). The availability and network size of public transport for the population 

are considered via the share of the population living less than 10 minutes from a public transport stop. It is a 

public measure that can help reduce GHG emissions by encouraging the population to use collective transport 

rather than personal motorized vehicles. Furthermore, extensive research has conclusively shown that low-

density urban areas that lack efficient public transport networks tend to report higher GHG emissions 

(Matsumoto et al., 2019). Therefore, territories that act to promote and develop their public transport might 

observe a reduction in GHG emissions over time. 

 

3.1.4 Energy management 

This dimension is the share of renewable energy in the energy mix of a given territory, the carbon 

intensity of energy used, and a measure of energy consumed per capita. Urban development processes and 

infrastructure play a prominent role in energy use in territories (Larson et al., 2012). Thus, it should be 

considered by governments at every decision level. Including those metrics in the overall index allows us to 

follow their evolution and account for territorial efforts to provide efficient and ‘greener’ energy to its 

population. The Green City Index also accounts for this dimension using similar measures that are not detailed 

in their public reports, i.e., renewable energy consumption, energy intensity, and energy consumption. 

 

3.1.5 Natural capital management 

The management of green areas and forests is considered based on the ratio between their superficies 

and those of built-up areas. We also include the share of protected areas in the considered territory. Policies to 

enhance vegetation and expand green spaces can effectively mitigate the adverse effects of extreme heat and 

flooding (Matsumoto et al., 2019). Furthermore, evidence strongly supports that proactive implementation in 

such areas can significantly lower climate change threats to biodiversity (Hannah, 2008). However, there is 

currently a lack of new protected areas specifically designated for climate change mitigation. By considering 

this measure, we provide an incentive for policymakers to act. 

3.1.6 Water management 

This dimension has two outcomes. First, wastewater pollution (measured by the average concentration of 

hazardous chemicals in natural water1) threatens biodiversity and could lead to hazards for human health. This 

is a prominent issue because freshwater ecosystems have already experienced significant depletion (Albert et 

 
1 e.g., groundwaters, rivers, lakes, and exclusive economic zone sea areas. 
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al., 2021). Secondly, the responsibility of government entities to mitigate pressure on water resources is included 

in estimating the water wasted through the leakage rate. Leaks can be reduced by identification, repairs, and 

investments in network maintenance. These actions can be implemented by local and national governments. 

This outcome is also accounted for in the NEC framework. The next subsections present a methodology for 

constructing a new index building upon these previous dimensions and variables. 

 

3.2 Methodology 

First, each outcome is classified as positive or negative based on its marginal effect on the environment. For 

instance, the mean concentration of PM2.5 and population exposure to fire are considered negative, whereas the 

proportion of protected areas accessible by public transport is positive. The calculations are performed at local 

and national levels to ensure comparability. Our variables and their respective classifications are presented in 

Table 1. Next, we compute the annual evolution of each variable using an index with a base 100 as a reference 

for the analysis period. This approach allows us to account for environmental outcomes independently of their 

measurement units, facilitating their aggregation. Additionally, the base 100 enables the comparison of values 

and trends over time, addressing scale discrepancies between national and city-level measures. We then aggregate 

the variables within each category using a geometric mean. We apply an imperfect substitution method to 

incorporate strong sustainability into our framework, ensuring that no single dimension can fully compensate for 

another (Greco et al., 2019; Gadrey & Jany-Catrice, 2016). No weighting is applied, as all outcomes are 

considered equally important. Moreover, the lack of established theoretical guidance on jointly assessing these 

outcomes prevents the determination of a robust weighting scheme. At the city level, we account for differences 

while minimizing information loss. Local-level results require an additional aggregation at the national level. We 

compute a unique average value across the available locations by applying a simple arithmetic mean to the index 

results for each country's local components and year. This process yields an average value reflecting the evolution 

of “negative outcomes” in environmental performance variables at each level and year. Overall categorical DEPI 

is then derived as the unweighted geometric mean of the base-100 normalized outcomes. This metric enables us 

to assess whether environmental management is (i) deteriorating, or (ii) improving. Ultimately, it provides 

insights into the evolution of negative environmental outcomes over time. 

3.3 Mathematical definition of DEPI 

 

The DEPI index illustrates changes in environmental outcomes at different levels. Thus, this is an index of 

environmental performance evolution. Mathematically, the Deterioration of Environmental Performance Index 

is written as follows: 

𝐷𝐸𝑃𝐼𝑐,𝑇𝐿,𝑡 =
1

𝑁𝑇𝐿
× ∑ ( √∏ [ 

𝑣𝑥,𝑐,𝑇𝐿,𝑡

𝑣𝑥,𝑐,𝑇𝐿,0
× 100]𝑋

𝑥=1

𝑁𝑥
)

𝑁𝑇𝐿
𝑛𝑇𝐿=1

    (1) 

where “𝑥” equals “n” for computing the negative index (i.e., DEPI). Notation is as follows: 

- c: country. 

- t: year. 

- TL: Territorial Level (national or local). 

- NTL: number of territorial level (equals 1 for country). 

- vn: variable of marginally negative environmental outcome. 

- Nn: number of variables in the “negative” category. 
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DEPI is compared with a base of 100 used as a reference. A result greater (less) than 100 indicates that outcomes 

increase (decrease) relative to the baseline level. Environmental performance is better when the DEPI is less than 

100, as we evaluate the environmentally harmful outcomes with this index. The next section presents the scope 

of application of the index. 

-4- 

Application 

 

This section is structured into four subsections. The first details the data selection process, the next two 

examine variable selection at local and national levels, and the final subsection discusses the countries 

included and the calculation period. 

 

4.1 Data Selection 

Public data availability poses challenges for assessing the environmental status of cities and countries. 

Environmental indicators are collected more frequently at the national and city levels. Moreover, objective 

measures of environmental performance are relatively scarce for historical analyses. To address these limitations, 

we construct our index based on metadata provided by OECD statistics, following a thorough investigation of 

public databases. This enables further comparative analysis across locations. At the city level, the OECD Cities 

Statistics database encompasses various dimensions, including economic, environmental, and territorial 

organization, through 112 indicators. It covers 41 countries, incorporating data on 1,389 cities and 1,271 

functional urban areas (FUAs). The OECD has established a standardized definition of FUAs across the countries 

studied. A FUA is defined as a city along with its commuting zone, representing its economic and functional 

significance, as reflected in the daily commuting patterns of its inhabitants. Using FUAs instead of administrative 

city boundaries provides a more relevant framework for our environmental performance index. The administrative 

delimitation of a city arbitrarily constrains the analysis, as it does not align with economic reality from a territorial 

perspective. FUA values are primarily derived by downscaling indices from regional data, assuming the variable 

of interest follows the same distribution as population density. Additionally, FUA values are computed by 

aggregating local administrative data at the FUA level or by processing geolocated data using geographic 

techniques (OECD, 2022). First, we identified relevant variables from the OECD Cities Statistics at the FUA 

level, as they are less frequently collected than those at the national level. Once identified, we then searched for 

their counterparts at the country level to enable comparison. However, we could not account for all dimensions 

outlined in the conceptual framework. Among the 112 indices in the Cities Statistics database, 88 were calculated 

for FUAs. Only seven environmental dimensions are covered: air pollution, protected areas, public transport, 

green spaces, flood risk, fire risk, and heat stress. Unfortunately, data on protected areas, green spaces, and public 

transport access are only available for 2017, 2020, and 2022. Additionally, information on the share of the 

population exposed to flood risk is only available for 2015. As a result, we excluded it from the application, as its 

variation over time could not be analyzed. Therefore, the application measures a reduced version of the DEPI. 

Due to data limitations, only two of the six theoretical dimensions are considered: air quality and climate hazard 

management. 

4.2 Outcome selection – FUA level 

The variables selected at the FUA level include: the mean population exposure to PM2.5 air pollution, the 
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proportion of built-up areas exposed to river flooding (with a 50-year return period), the proportion of built-up 

areas exposed to coastal flooding (50-year return period), the share of the population exposed to at least one forest 

fire, and the number of days experiencing strong heat stress (UTCI > 32 °C). The mean population exposure to 

PM2.5 is downscaled through geographic processing, using data derived from a geographic shapefile containing 

boundary information and from the OECD Environment Directorate2. The share of built-up areas exposed to river 

flooding represents an assessment of population exposure. Data was collected using River Flood Hazard Maps at 

both European and global scales. These maps rely on a regional dataset with a spatial resolution of 250 meters for 

OECD countries within Europe and the Mediterranean Basin, and a global dataset with a 1-kilometer spatial 

resolution for other OECD countries. These datasets identify areas susceptible to river flooding based on various 

return periods. This measure is subsequently disaggregated through geographic processing to derive FUA-level 

variables. The methodology used to construct the share of built-up areas exposed to coastal flooding is not 

explicitly documented in the Metropolitan Database documentation or the Climate and Environment Regional 

Statistics documentation. However, it is reasonable to assume that it follows a similar approach to the river 

flooding variable. The share of the population exposed to at least one forest fire is calculated by integrating 

monthly wildfire perimeters and applying a 5-kilometer buffer. This process uses data from the Joint Research 

Center (JRC) Global Wildfire dataset. Population exposure is then estimated using the Global Human Settlement 

Population layer. Finally, FUA-level values are computed through geographic processing. The number of days 

with strong heat stress (UTCI > 32 °C) represents the annual count of days experiencing strong heat stress. The 

OECD derives this measure using geolocated data from the Copernicus Climate Data Store. The process involves 

calculating the daily maximum temperature, applying a 32 °C threshold, and summing the results annually to 

produce gridded datasets of strong heat stress days. These datasets are then disaggregated through geographic 

processing to obtain FUA-level variables. 

4.3 Outcome selection – National level 

We integrate multiple databases to compile all necessary information at the national level. The selected variables 

include the mean population exposure to PM2.5 air pollution, the proportion of built-up areas exposed to river 

flooding (50-year return period), the proportion of built-up areas exposed to coastal flooding (50-year return 

period), the percentage of the population exposed to wildfires, and the percentage of the population exposed to 

extreme heat days (Table 1). The mean population exposure to PM2.5 was derived from the Exposure to PM2.5 

in Countries and Regions database. This metric is computed using the Global Burden of Disease 2017 project 

data, which integrates satellite observations, chemical transport models, and ground-based monitoring station 

measurements. Population exposure is then estimated using gridded population datasets from the JRC Global 

Human Settlement project. We use data from the OECD Climate and Environment Regional Database regarding 

the proportion of built-up areas exposed to river and coastal flooding. National values were computed by 

aggregating regional shares using an arithmetic mean. This methodology and dataset align with those used for 

variables measured at FUA level. However, specific details were not provided in the dataset regarding coastal 

flooding exposure. The share of the population exposed to wildfires was estimated using the Global Human 

Settlement Layer population grids, which quantify the population residing in areas classified as having very high 

or extreme fire danger according to the Fire Weather Index. This data was sourced from the Green Growth Indices 

database. Finally, the percentage of the population exposed to extreme heat days was also obtained from the 

Green Growth Indices database. In this context, "population exposure" refers to the proportion of the population 

experiencing at least one to a maximum of fourteen extreme heat days per year, where extreme heat days are 

 
2 While the exact computation method is not specified, we assume it follows the same approach as the country-level variable. 
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defined as those with a maximum daily temperature exceeding 35°C. Table 2 summarizes the selected variables 

at both local and national levels. 

Table 1: Variables included in the applied composite index according to territorial level. 

 Functional Urban Area Country 

Negative 

Impact 

Mean population exposure to 

PM2.5 air pollution 

Mean population exposure to PM2.5 air 

pollution 

Share of built-up area 

exposed to river flooding 

(50-year return period) 

Aggregation of the TL2 level share of built-

up area exposed to river flooding (50-year 

return period) 

Share of built-up area 

exposed to coastal flooding 

(50-year return period) 

Aggregation of the TL2 level share of built-

up area exposed to coastal flooding (50-year 

return period) 

Share of the population 

exposed to at least one forest 

fire 

Percentage of population exposed to wildfire 

Days of strong heat stress 

(UTCI > 32°C) 

Percentage of population exposure to hot days 

(maximum daily temperature exceeds 35° C) 

Source: authors. 

4.4 Country and Period Selection 

The reduced version of the DEPI is computed annually from 2001 to 2020 for ten countries and their 

corresponding FUAs. This twenty-year period allows for an assessment of the evolution of environmental 

performance at national and FUA levels, providing insight into which territorial scale exhibits better 

environmental management over time. The OECD countries selected for the final database were chosen to 

represent diverse regional contexts, with two countries from each continent. Specifically, the database includes 

Australia and New Zealand for Oceania, the United States (US) and Canada for North America, Mexico and 

Colombia for South America, Japan and South Korea for Asia, and Belgium and Sweden for Europe. The 

following sub-section details the raw data processing and presents the final database used for index computation. 

4.5 Final database processing and DEPI calculation 

This section describes the construction of our final database and the computation of the DEPI results. We select 

the variables of interest (Section 4), focusing on those with a negative impact as well as the relevant periods, 

countries, and their respective FUAs from each of the previously mentioned datasets. These observations are then 

merged to create a unified database. 

The merged database (including all FUA values) contains 37.25% zero entries, corresponding to 19,856 out of 

53,300 rows. The most affected variables are primarily those related to shares. Specifically, the share of the 

population exposed to at least one fire accounts for 28.71% of zero observations (both at the FUA and country 

levels). Other affected variables include the days with strong heat stress at the FUA level (3.35%) and exposure 

to hot days at the country level (0.26%). Additionally, the share of built-up areas at flood risk represents 13,436 

values or 67.66% of zero entries. Zeros are predominantly observed at the FUA level, accounting for 19,698 

cases, or 99.20% of the total. Moreover, 771 pairs of geolocations and variables consistently recorded a value of 

‘0’ across all years. Among these, 49 pairs contained only a single non-zero value throughout the period at the 

FUA level, making them unsuitable for analyzing trends over time. These two groups comprise 16,351 

observations, meaning 82.34% of the recorded values are equal to zero. Furthermore, for FUAs and countries 
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where a variable is conceptually irrelevant (such as coastal flooding in inland regions) these cases are coded as 

“NA.” Using “NA” for missing values allows us to compute 100 baseline indices and then derive their geometric 

mean to calculate the DEPI for each year. This ensures that only meaningful and varying values contribute to the 

DEPI while excluding variables where the risk or occurrence is inherently null. The database used for DEPI 

computation is structured in a long format, where each row represents an observation corresponding to a specific 

location, year, and variable. The included variables are as follows: 

• ‘LOCATION’ informs us about the 3-character country code of each location. It contains 10 

unique country codes associated with selected countries. 

• ‘GEO’ provides granular information about FUAs’ OECD code and replicates the 3-character 

country code for country-level observations. This dataset includes 533 unique values and, thus, 523 

different FUAs across 10 countries. 

• ‘TIME’ accounts for the year the observation occurred. It ranges from 2001 to 2020. 

• ‘VAR’ includes a variable code for each result under consideration, representing the seven variable 

codes included in our application. Three of them have the same codes for country and FUA level, and 

four differ but still convey similar information. 

• ‘VALUE’ carries values associated with each triple GEO-TIME-VAR ranked from 0.008 to 366. 

 

First, we add two columns to this database to calculate the DEPI. One contains the first no-missing value of 

matching GEO-VAR pairs as the initial value on which 100 indices are calculated. The second is the result of 

the base 100 computations. We then grouped the observations by geolocation and year to calculate the geometric 

mean for every variable per year and geolocation, obtaining the yearly DEPIs for every FUA and country. 

Finally, all FUA results by country are averaged to get a unique value for the FUA level per year. The DEPI 

values ranged from 34.52 (Japan at the country level in 2007) to 295.60 (New Zealand at the country level in 

2017). The mean and median of DEPI values are approximately 102.15 and 100.00, respectively. In summary, 

half of the results indicate a net reduction in harmful environmental impacts, while the other half suggest an 

increase. The bottom quartile of the results exhibits a decrease of at least 12.05% from the baseline level. In 

contrast, only a quarter of the results show a deterioration exceeding 14.23% of their initial environmental 

performance, primarily compared to their 2001 baseline. Table 2 presents the descriptive statistics discussed 

above. 

Table 2: Descriptive statistics for the global DEPI results 

Minimum 1st 

Quarter 

Median Mean 3rd 

Quarter 

Maximum 

34.52 87.95 100.00 102.15 114.23 295.60 

Source: authors. 

We analyze the overall results in the following section. 

-5- 

Results 

The results are first presented at the national level, followed by an analysis at the territorial level. Various 

graphical representations then illustrate which level demonstrates better environmental management over time. 

5.1 Country level 
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Environmental management appears to be more effective nationally than at the FUA level in Australia, Canada, 

Colombia, Japan, Mexico, and Sweden. However, results are more ambiguous for Belgium, South Korea, and the 

United States. In the U.S., national and FUA-level trends intersected several times before 2012, after which the 

national level consistently outperformed the FUA level. New Zealand is the only country where the national level 

underperforms the FUA level almost every year, with 2008 being the sole exception. At the national level, Canada, 

Japan, and Mexico exhibit the greatest reductions in harmful environmental outcomes within our sample. Among 

FUAs, Belgium demonstrates the best overall performance. Additionally, in Canada, South Korea, Sweden, and 

urban areas in the U.S., DEPI trends closely follow their baseline values. Similar patterns are observed in Australia 

and Colombia. Meanwhile, Japan and Mexico display an inverse relationship, with DEPI scores increasing at the 

FUA level while decreasing at the national level. These countries were selected to assess the environmental 

performance of nations across different continents within the OECD.  Our findings indicate that variations in 

results are just as pronounced between countries on the same continent as they are between countries on various 

continents. We conducted paired t-tests for each continent at both levels to investigate this. All but one test 

confirmed that differences between countries within the same continent were not statistically significant3. Overall, 

no clear continental effect would systematically explain the observed DEPI results. Given the large number of 

FUAs considered for each country, their evolution appears smoother than national-level DEPI. Extreme values at 

the FUA level are mitigated by the geometric mean used in computation and by aggregation through an arithmetic 

mean. In the following paragraphs, we look at each country, analyzing how national results contribute to specific 

fluctuations. Additionally, the DEPI reveals a strong influence of country-specific risks, which could help identify 

vulnerable areas and potential opportunities for improvement. 

 

Graph 1: Evolution of DEPI for each country over the same period (2001–2020). Note: The green horizontal 

line for y=100 represents normalization to base 100. On the one hand, when a country or FUA point is above 

this point, its environmental performance deteriorates compared with its reference level. On the other hand, 

 

3 The only exception was found at the FUA level between Australia and New Zealand. 
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when they are below, their performance improves. This means that they are reducing their harmful effects on 

the environment compared with their reference level. We need to subtract 100 from the result to read the 

percentage variation. 

 

5.1.1 Australia 

The evolution of the DEPI index in Australia is quite variable at both levels. At the national level, the minimum 

was 78.47 in 2008, representing an average decrease of 21.53% in environmentally damaging results compared 

to the 2001 level. The maximum is 104.25 in 2020, representing an average increase of 4.25%. At the FUA level, 

the DEPI value reached its minimum in 2010, 88.72 (-11.28% in 2001), and its maximum in 2002, 138.91 

(+38.91% in 2001). The national coastal flood risk was approximately 50% below its baseline (0.12% in 2001) in 

2006 and 2007. This influenced the overall index, as most other base-100 values remained close to 100. The 

country’s 2008 result can be attributed to a halving of fluvial flooding risk and a 30% reduction in the population 

exposed to wildfire risk. In 2010, the FUA level was the only instance where it exceeded the national level, with 

a difference of 3.51%. Australia's local DEPI appears to be primarily driven by the proportion of the population 

exposed to at least one wildfire, which has shown the greatest variation over time. A paired t-test comparing index 

results at both levels confirms that national and FUA levels exhibit significantly different average measures of 

environmental degradation over time. Based on these findings, we conclude that environmental management is 

more effective at the national level than at the city level in Australia. However, both levels have shown an overall 

increase in environmental degradation since 2019, suggesting a recent reversal of the country’s past performance. 

Graph 2: Australia’s DEPI by territorial level over 2001–2020. 

 

5.1.2 Belgium 

The DEPI values exhibit a relatively wide range at the national level, with a minimum of 53.92 in 2013 and a 

maximum of 144.88 in 2006. On average, negative environmental changes varied between -46.08% and +44.88% 

compared to their initial values. At the FUA level, the range is narrower, with a local minimum of 68.76 (a 

decrease of 31.24%) and a maximum of 116.51 (an increase of 16.51%). In Belgium, DEPI fluctuations are largely 

driven by the proportion of the population exposed to hot days. This data is available for only 10 of the 20 years 

considered in the analysis, yet it produces extreme results when reported. For instance, in 2003, the reference 

value was 27.8%, which surged to 79.4% in 2006, explaining the sharp increase in the DEPI that year. No data is 

available until 2009, when the value drops to 5.3%, resulting in a base-100 index of 19.06. A similar trend was 

observed in 2010, decreasing to 2.1%. The next recorded value in 2015 shows a 51% decrease compared to the 
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reference year. However, in the last three years of the period, values consistently exceeded the reference level, 

with base-100 indices of 180.57, 336.33, and 329.13, respectively. Coastal flooding risk also contributes to index 

variability, albeit to a lesser extent. When measured, its values increase by approximately 50% compared to the 

reference year, except when data is missing ("NA"). This occurs in 7 out of the 10 years in which coastal flooding 

is considered. The sharp increase in 2017 is particularly notable, as the share of built-up areas at risk of coastal 

flooding surged by 207.54% compared to its 2002 reference value, rising from 4.74% to 14.58%. Given these 

fluctuations, it is difficult to draw definitive conclusions about which territorial level—national or FUA—is better 

managed from an environmental perspective over time in Belgium. A paired t-test comparing DEPI results at both 

levels indicates that, on average, national and FUA levels exhibit statistically similar patterns of environmental 

degradation. However, visually, FUA-level results have been consistently better than national-level results since 

2017. 

Graph 3: Belgium DEPI by territorial level (2001-2020). 

5.1.3 Canada 

We observe a greater range of results at the country level than at the FUA level in Canada. Nonetheless, a 

paired t-test comparing index results confirms that national and FUA levels present significantly different 

average measures of environmental degradation over time. Local values range from 68.10 in 2014 to 120.40 

in 2005, while national values vary between 34.77 in 2017 and 110.06 in 2018. Canada's country-level DEPI 

results are primarily influenced by the share of the population exposed to hot days and coastal flood risks. In 

2001, 20% of the population was exposed to hot days. The normalized base-100 index remained below 25% 

for twelve subsequent years. And it was even under 5% for some of those years. The sharp increase in 2011 

highlights this variability, with the base-100 index rising dramatically from 6 in 2010 to 144.5 in 2011, before 

dropping back to 35.5 in 2012. Coastal flood risk remained consistent with its 2001 baseline value of 4.85%, 

except for 2006, 2007, 2009, 2012, and 2017, when it dropped below 0.67%. These declines contributed to 

the overall reduction observed during those years. In contrast, increases observed in 2011 and 2018 were partly 

driven by the share of the population exposed to wildfires. This share rose by approximately 70% in 2011, 

climbing from its initial value of 0.68% in 2001 to 1.21% in 2011. A similar pattern was observed in 2018 

when wildfire exposure reached 1.16%. Over the entire period, national values outperformed local ones. 

However, by 2020, both had returned to their baseline levels, suggesting that the improvements observed in 

earlier years were effectively offset. This indicates that the overall results have not significantly changed since 
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2001, despite periods of progress. 

 

 
Graph 4: Canada DEPI by territorial level. 

5.1.4 Colombia  

Colombia's DEPI values are relatively stable, with minor annual variations. A paired t-test comparing 

DEPI results confirms that the national and FUA levels exhibit significantly different average measures of 

environmental degradation over time. The lowest value was recorded in 2004, at 64.33, reflecting a 35.67% 

reduction in environmentally harmful outcomes. Conversely, the highest value was 134.12 in 2019, representing 

a 34.12% increase. At the city level, DEPI values range from 96.81 in 2019 to 137.18 in 2003. Note that 2019 is 

the only year in which local level improved. In 2004, river flood risk was significantly reduced by 72.17% 

compared to its 2001 level, dropping from 14.97% to 4.16%. However, 2019 is the only year when the national 

DEPI exceeded the FUA level. That year, flood risk soared to 174.86% of its 2001 baseline for coastal areas and 

134.46% for riverine areas compared to baseline values of 0.008% and 14.97%, respectively. Flood risk was also 

notably high in 2014 and 2019, with DEPI results exceeding the base-100 threshold at 113.50 and 134.12, 

respectively. As a result, Colombia's national-level performance consistently outperformed the urban level except 

for one year. 

 
Graph 5: Colombia DEPI by territorial level (2001-2020). 

5.1.5 Japan 

Japan's local-level DEPI index fluctuates but follows a general upward trend, increasing from 92.02 in 
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2003 to 128.83 in 2019. It consistently remains above the baseline, indicating a steady decline in environmental 

performance. In contrast, the national-level index shows greater variability, rising from 34.52 in 2007 to 110.50 

in 2020, the only year since 2001 to record a deterioration relative to the baseline. A paired t-test comparing index 

results confirms a significant difference in average environmental degradation between the national and FUA 

levels over time. Flood risk is the primary driver of these results in Japan. Other indices exhibit low year-to-year 

variations, except for the share of the population exposed to hot days in 2009, which was unusually minimal at 

3.9%, compared to an average of 41.28%. By 2020, the DEPI index surpassed 100, driven by increased urban 

exposure. Urbanized areas saw a 34.99% rise in exposure, while the share of the population affected by hot days 

increased by 9 percentage points, pushing the hot-day exposure index to 117.01 on a base-100 scale. Meanwhile, 

PM2.5 concentrations rose by only 0.3% compared to 2001. However, a 5.88% reduction in built-up areas at risk 

of river flooding was insufficient to offset increases in other factors. Throughout the review period, environmental 

management outcomes at the national level consistently outperformed those in FUAs. 

 
Graph 6: Japan DEPI by territorial level (2001-2020). 

5.1.6 Mexico  

Mexico’s national DEPI shows a clear decline in adverse environmental outcomes since 2004. Values 

range from 111.44 in 2002 to a minimum of 56.78 in 2005, with only two instances exceeding the 2001 reference 

level. In contrast, local DEPI results remain consistently above their 2001 baseline, rising from 100 in 2001 to 

126.97 in 2020, with a peak of 142.61 in 2005. As in other cases, Mexico’s overall environmental performance 

is heavily influenced by fluctuations in flood risks, while other factors play a less significant role. The share of 

built-up areas exposed to coastal flooding, measured in base-100 values, fluctuates from a minimum of 29.97 in 

2017 (0.037%) to a maximum of 270.30 in 2005 (0.337%), compared to the 2001 baseline of 0.125%. River flood 

risk, however, remains relatively low, consistently below 1%. The base-100 index for river flood risk reached a 

minimum of 2.13 in 2005 and a maximum of 126.28 in 2017. The proportion of areas exposed to river flooding 

was 31.85% in 2001 and surpassed this level only in 2017, reaching 40.22%. Additionally, the proportion of built-

up areas at risk remained generally below 10%, with a minimum of 0.68% in 2005, contributing to the decline in 

the index that year. A paired t-test comparing national and local DEPI results confirms a significant difference in 

average environmental degradation over time. This suggests that Mexico consistently achieves better 

environmental management at the national level than at the city level. Among all the countries analyzed, Mexico 

exhibits the most consistent reduction in negative environmental outcomes. 
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Graph 7: Mexico DEPI by territorial level (2001-2020). 

5.1.7 New Zealand  

For its FUAs, New Zealand exhibits a steady upward trend in DEPI values. The lowest recorded value 

was 94.63 in 2002, while the peak occurred in 2018 at 156.49. This upward trend has accelerated since 2015. In 

contrast, national-level DEPI results are more variable, ranging from 99.26 in 2008 to a maximum of 295.60 in 

2017. Notably, 2008 is the only year when the national DEPI dropped below the base-100 reference level. A 

paired t-test comparing DEPI results confirms a significant difference in average environmental degradation 

levels between national and local scales over time. New Zealand's national DEPI is heavily influenced by the 

proportion of built-up areas exposed to coastal flood risk. This share started at a relatively low baseline of 0.091% 

in 2001 and increased significantly over time, though it remained below 1%. The highest recorded values were 

0.287% in 2005 and 0.266% in 2018 and 2019. The sharp rise in national DEPI in 2017 can be attributed to an 

increase in the population exposed to wildfire risk, which surged from 0.04% in 2009 (the earliest available data 

point) to 1.06% in 2017, resulting in a base-100 index of 265 for that year. At the urban level, DEPI results 

consistently outperform national-level outcomes, except for 2008 when the national DEPI was 12.61 percentage 

points lower. Among the countries in the sample, New Zealand is unique in demonstrating better environmental 

management at the city level than at the national level. However, local and national DEPI results remain above 

their reference levels throughout the observed period. 
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Graph 8: New Zealand DEPI by territorial level (2001-2020). 

5.1.8 South Korea 

The DEPI at the FUA level exhibits greater consistency than the national level. National DEPI values 

fluctuate widely, ranging from a minimum of 43.72 in 2011 to a maximum of 187.70 in 2019.  Conversely, local 

DEPI values show less variation, with a minimum of 81.17 in 2003 and a maximum of 143.73 in 2017. Note that 

urban areas performed well until 2012, maintaining negative results below the 2001 baseline. At the national 

level, South Korea’s trajectory is largely driven by the share of the population exposed to hot days, which accounts 

for much of the observed variability. The baseline in 2001 was 10.6%, but this share fluctuated dramatically, 

reaching a minimum of 0.03% in 2011 and peaking at 76.7% in 2018. As a result, the base-100 index varied 

significantly, from a minimum of 2.83 to a maximum of 723.58. Other variables exhibited similarly smaller 

fluctuations over the years, further amplifying the influence of hot-day exposure on national DEPI outcomes. 

Although a paired t-test confirms a significant difference between average DEPI values at the national and city 

levels, drawing clear conclusions about South Korea’s territorial environmental management remains 

challenging. This ambiguity stems primarily from the interconnectedness of national and local indices, making 

direct comparisons complex. 

 
Graph 9: South Korea DEPI by territorial level (2001-2020). 

5.1.9 Sweden 

At the national level, only four DEPI values exceed the 2001 reference. National DEPI scores range from 

a minimum of 47.22 in 2013 to a maximum of 121.57 in 2007. Conversely, at the city level, only four results fall 

below the 2001 reference, with local DEPI values ranging from a minimum of 92.96 in 2013 to a maximum of 

147.79 in 2018. The rapid decline in national DEPI during certain years is primarily driven by the variability in 

the share of built-up areas exposed to coastal and river flooding risks. For coastal flooding, the share reached its 

lowest point in 2013 at 0.379%, compared to the 2001 baseline of 2.353%. This corresponds to a base-100 index 

of 16.11 in 2013. The values only exceeded the baseline in 2006 and 2007, at 2.612% and 3.113%, respectively. 

River flooding risk shows similarly high variability, starting with a baseline value of 8.625% in 2001. This share 

decreased to 5.875% in 2012, rose by 1.1 percentage points in 2013, and peaked at 12.077% in 2014. 

Consequently, the base-100 index for river flooding risk increased sharply from 80.99 in 2013 to 140.01 in 2014, 

accounting for the steepest drop in the DEPI graph. A paired t-test comparing DEPI results confirms that national 

and city levels exhibit significantly different average measures of environmental degradation over time. The 

national level consistently outperforms the city level nearly every year, except for 2007. That year, the local FUA 
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DEPI stood at 110.14, while the national DEPI was slightly higher at 121.57. Both coastal and river flood risks 

at the national level had risen to over 30% of their initial levels, contributing to the divergence in results. 

 
Graph 10: Sweden DEPI by territorial level (2001-2020). 

5.1.10 United States of America 

The USA's DEPI values range from 66.83 in 2003 to 128.47 in 2007. DEPI values are consistently higher, 

fluctuating between a minimum of 97.50 in 2015 and a maximum of 119.37 in 2007 at the city level. Notably, 

local DEPI exhibits less variability compared to the national index. The first decline in the national DEPI in 2003 

can be attributed to a combination of below-benchmark values for flood risk and exposure to hot days, alongside 

improvements in forest fire management. A similar pattern emerged in 2013. In contrast, 2007 saw a sharp 

increase in DEPI due to significantly higher-than-baseline levels of river flood risk and population exposure to 

forest fires, which resulted in base-100 indices of 162.23 and 223.47, respectively. Additionally, coastal flood 

risk surged in 2010 and 2011, contributing to the second peak illustrated in Graph 11. By 2012, the national-level 

DEPI indicated better environmental management than at the city level. However, before that year, results varied 

depending on the specific year examined. Despite this variability, a paired t-test comparing national and local 

DEPI values confirms a significant difference between the average levels of environmental degradation over time. 

 
Graph 11: USA DEPI by territorial level (2001-2020). 

The next subsections analyze the joint evolution of each level.  
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5.2 Evolution of DEPIs at different territorial levels 

In the context of the 2015 Paris Agreement, it is important to assess whether the implementation of 

international commitments to mitigate the environmental impact of human activities is reflected in actual 

outcomes. However, we observe no significant change after 2015. The results appear to follow their pre-existing 

trajectory, unaffected by the announced commitments. Graph 12 presents DEPIs for each territorial level on a 

single chart, illustrating twenty different results. 

 
Graph 12: DEPI by territorial level (2001–2020). 

 

5.3 Local vs. national 

 

Finally, we use a geometric mean to calculate the DEPIs for all countries and FUAs. On average, 

environmental management is consistently better at the national level than at the city level each year. Moreover, 

the Paris Agreement does not appear to have been effective, as both values have increased since 2015. Ideally, 

environmental policies should be implemented at all levels to effectively mitigate the impacts of climate change. 

However, local-level policies would greatly benefit from improved implementation, as their performance has 

deteriorated over time. 

 

Graph 13: Overall average DEPI by territorial level (2001–2020). 
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In the next section, we discuss the robustness of the index. 

-6- 

Robustness analysis 

Robustness is assessed through two approaches. First, we compare the original results with an alternative 

version of the applied index. Second, we evaluate the theoretical framework and the application of DEPI. 

 

6.1 Alternative version of the DEPI 

We recognize that modifying input variables or applying different weights could alter the overall results. 

Therefore, we calculated an alternative DEPI, excluding coastal and river flooding risks, as they were the primary 

sources of extreme values. Overall, the results and trends remain consistent with the original findings. 

Environmental performance tends to be stronger at the national level throughout the observed period, although 

some variations are year-dependent. Australia, Canada, Colombia, Japan, Mexico, and Sweden continue to 

perform better at national and city levels, indicating greater environmental deterioration in urban areas. In 

contrast, the territorial level with the best-managed environment fluctuates over time in Belgium and the United 

States. New Zealand and South Korea were excluded from direct comparisons with other countries. In the 

alternative DEPI, New Zealand exhibits a relatively stable trend at the national level, as only one variable was 

considered (the mean population exposed to PM2.5). South Korea’s results remain ambiguous, generally staying 

close to the baseline except for two outliers at each level. To sum up, this alternative version reinforces confidence 

in our initial results. National-level performance in air quality and climate hazard management consistently 

surpasses that of urban areas. 

 

Graph 14: Alternative DEPIs by territorial level (2001-2020). 

 

6.2 Theoretical and practical evaluation 

 
The integrity of composite indices primarily depends on the rigorous scrutiny of their theoretical framework, 

underscoring the need for full transparency. Robustness is achieved when every decision can be explicitly traced 
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back to the index’s intended purpose (Greco et al., 2019; OECD, 2008). Accordingly, we present a multicriteria 

evaluation of the Depreciation of Environmental Performance Index. The evaluation method, outlined in Table 3, 

is based on the framework developed by Gadrey and Jany-Catrice (2016), which assesses an index’s efficiency 

and methodological soundness as a measurement tool. There is no universally "correct" answer for each criterion; 

the overall evaluation depends on the intended goal and application of the indices. One notable area for 

improvement is the lack of public involvement in the development and use of the index, which significantly 

affects their perceived legitimacy. Additionally, the degree of consideration given to irreversible environmental 

effects could be enhanced. However, using a geometric mean introduces an inherent trade-off between outcomes, 

which may not fully capture these effects. Similarly, while one could argue that aggregation should be weighted—

since not all environmental outcomes hold equal importance in management decisions—both weighted and 

unweighted approaches can be valid if well justified. On the positive side, both indices have a clearly defined 

objective: evaluating the environmental performance of government entities at various levels. The selection of 

outcomes was guided by relevant literature and remains flexible for further expansion. Moreover, the transparency 

of methodology and data processing is a key strength. The ability to compare results annually and track overall 

trends adds further value. Additionally, the indices allow for disaggregation by dimension, individual outcomes, 

and territorial levels, making them adaptable for specific assessments. DEPI incorporates only two dimensions, 

represented by five outcomes: four related to climate hazard management and one addressing air quality 

management. The applied version is less comprehensive regarding complementarity and coverage of 

environmental outcomes that reflect territorial ecological performance. However, it maintains strong data 

integrity and international comparability due to its reliance on the OECD database. 

 

Table 3: Evaluation of technical and political aspects of DEPI 

 
Deterioration of Environmental Performance 

Index 

A. Construction mode  

Nature of the initiative Research article 

Accounting consistency 
Non-monetary valuation, comparing each outcome with 

its initial value 

Data integrity Reliable statistics, OECD datasets 

Possible expansion Yes, open to new data and new dimensions enlargement 

Theoretical and conventional framework 
Environmental performance outcomes chosen via 

dedicated literature 

B. Dimensions and components  

Complementariness 

Data restriction but main quantitative environmental 

outcomes included (air pollution, climate hazard via heat, 

flood and fire risks). 

Objective or subjective measure Objective measure 

Number of dimensions 2 dimensions through five outcomes, relative simplicity 

Choice and transparency of weighting 
Unweighted geometric mean of base 100, complete 

transparency 

C. Technical potential of the index for 

various use 
 

Temporal continuity, regularity of the data used 

Normalization through the first non-zero value of each 

outcome on the chosen period. Rather strong regularity of 

OECD data 

International comparability of variables and data sources Strong comparability, single data source (OECD datasets) 
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Synchronicity and diachronicity 
Comparison can be made for a single year from a starting 

point, as well as for its evolution over time. 

Adjustability and disintegration 
Strong, can be computed for any territorial level and 

declined for any outcome 

Degree of consideration given to irreversible effects Relatively weak via geometric means 

D. Political perspectives  

Clear economic and/or social policy objective Yes, evaluation of territorial environmental performances 

Public decision-making tool No, research project without public involvement 

Possible use 

An indicator of the sustainability of our development 

strategies, with quantified measurements of 

environmental performance to fuel discussion 

Acquired legitimacy (media coverage, influence in public 

debate, lifespan of the index) 
No coverage, short lifespan 

Source: Gadrey &Jany-Catrice (2016), completed by the authors. 

 

-7- 

Conclusion 

This article presents an innovative framework for calculating a new quantitative composite index. Its 

purpose is to evaluate environmental management across different territorial levels over time. Using OECD 

databases, we calculate a Deterioration of Environmental Performance Index for ten countries at two territorial 

levels. We find that national level is on average better environmentally managed than the city level. New Zealand 

is the only country in our sample that presents poorer results nationally in comparison with their urban areas. 

Further research is needed to unravel the mechanisms that explain these results. Global agreements are 

insufficient, as they are not reflected in the evolution of quantitative outcomes. Environmental policies still 

need to be applied at all levels for better effectiveness in mitigating climate change impacts. However, there 

is a particular need to improve the implementation of local-level policies. Despite establishing ambitious 

climate plans and mitigation targets, FUAs’ performance has deteriorated over time at a greater rate than the 

environmental performance of their respective countries. 

Data constraints occur because FUAs have recently collected data on some environmental outcomes, such 

as public transport access or green areas. Therefore, we did not calculate the entire concept proposed for our 

applied analysis. Nonetheless, in the OECD database, more environmental outcomes are accounted for at the 

city level since 2021. Moreover, data issues should be overcome soon as the subject gains relevance in public 

debates. Another solution would be to merge several databases to account for the larger variety of 

environmental outcomes. This would improve the overall understanding of how local and national 

environmental performance has evolved. However, this may influence the results if local and national 

variables are not collected and processed using the same methodology. We assume a sufficient degree of 

independence between the local and national levels of the same country to compare the index results. However, 

a complementary study on each state’s territorial organization would help further explain observed differences. 

In addition, it could be interesting to analyze whether the results are mechanically driven by cities’ natural 

exposure to climate hazard risk and migration movement through population-weighted measures. For instance, 

coastal and river flood risks usually present greater tension at the city level than at the national level, as 

important cities are often located near water access areas. At the same time, rural and mountain areas are 

usually less populated. Thus, the DEPI results show that urban areas are more sensitive to climate change 

threats than countries with better climate change mitigation policies. 
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Regarding the variability of results, we considered establishing threshold categories of variation to limit 

the influence of extreme base-100 values on the overall index. This issue arises particularly when initial values 

are very small, making subsequent increases appear disproportionately large. For example, if an initial share 

is 0.05% and then increases to 0.1%, the base-100 index doubles to 200. In contrast, a 0.05 percentage point 

increase for higher initial values has a much smaller impact on the base-100 index. To address this, we could 

define category-specific limits for base-100 results, ensuring that identical percentage increases of similar 

proportions are more appropriately accounted for. Further research is needed to identify relevant category 

thresholds. Additionally, the first-level outcome may influence how its evolution is measured over time. A 

given territorial level might reach a minimum threshold on an outcome, preventing further reductions. In such 

cases, the current DEPI would reflect this as neutral, maintaining values close to the baseline. Introducing 

additional differentiation thresholds at various levels for each outcome could provide a more comprehensive 

assessment of territorial environmental performance. An alternative approach for handling zero values could 

also be explored by implementing thresholds. This could involve discretizing changes into a binary variable 

distinguishing between increases and decreases from the baseline or categorizing variable evolution into 

meaningful thresholds. This methodology could be further developed in future studies. 

Finally, a key limitation of this concept is the absence of involvement from public actors. As highlighted 

in Gadrey and Jany-Catrice's framework, the legitimacy and longevity of indices are significantly diminished 

without public participation. To address this, we consider collecting public input on the relative importance 

of each variable within categories through an anonymous survey would be relevant. Participants would rank 

each outcome based on its perceived relevance to environmental management within a jurisdiction. Future 

research could then explore the possibility of computing relative weights based on these responses. 
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Appendix 

1. Data processing 

1.1 Useful for all processing 

 
pacman::p_load(here, dplyr, tidyverse, readr, stringr, readxl, tidyr, psych, ggplot2, forcats) 
here::i_am("_R_PROG.Rproj") 

countries <- c("AUS", "CAN", "USA", "COL", "MEX", "BEL", "SWE", "KOR", "JPN", "NZL") 
TL2_keep <- c("ˆAU", "ˆCA", "ˆUS", "ˆCO", "ˆME", "ˆBE", "ˆSE", "ˆKR", "ˆJP", "ˆNZ") 
TL2_keep <- paste(TL2_keep, collapse = "|")

country_code <- c("AU" = "AUS", 
"CA" = "CAN", 
"US" = "USA", 
"CO" = "COL", 
"ME" = "MEX", 
"BE" = "BEL", 
"SE" = "SWE", 
"KR" = "KOR", 
"JP" = "JPN", 
"NZ" = "NZL") 

country_name <- c("AUS" = "Australia", 
"CAN" = "Canada", 
"USA" = "United States of America", 
"COL" = "Colombia", 
"MEX" = "Mexico", 
"BEL" = "Belgium", 
"SWE" = "Sweden", 
"KOR" = "South Korea", 
"JPN" = "Japan", 
"NZL" = "New Zealand") 

period <- 2001:2020 
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1.2 Functional Urban Areas database 

 

 
## LOCATION GEO TIME VAR 
## Length:52300 Length:52300 Min. :2001 Length:52300 
## Class :character Class :character 1st Qu.:2006 Class :character 
## Mode :character Mode :character Median :2010 Mode :character 
##   Mean :2010  

##   3rd Qu.:2015  

##   Max. :2020  

## Value    

FUA_data_raw <- read.csv("FUA_CITY-en.csv") 

FUA_data <- FUA_data_raw %>% filter((TL == "FUA")) 
FUA_data <- FUA_data %>% filter((LOCATION %in% countries)) 
FUA_data <- FUA_data %>% filter((TIME %in% period)) 

FUA_data <- FUA_data %>% select(LOCATION, GEO, TIME, VAR, Value) 

var_keep <- c("PWM_EX", 
"FLOOD_R_RP50_BUILT_SH", 
"FLOOD_C_RP50_BUILT_SH", 
"FIRES_POP_SH", 
"HEAT_STRESS_DAYS_UTCI32") 

FUA_data <- FUA_data %>% filter((VAR %in% var_keep)) 

summary(FUA_data) 
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## Min.  : 0.00 ##  
1st Qu.:  0.00 
## Median : 3.70 ## 
Mean : 23.15 ## 
3rd Qu.: 17.00 ##  
Max.  :366.00 

 print(unique(FUA_data$VAR))  

 
## [1] "PWM_EX" "HEAT_STRESS_DAYS_UTCI32" 
## [3] "FLOOD_R_RP50_BUILT_SH" "FIRES_POP_SH" 
## [5] "FLOOD_C_RP50_BUILT_SH" 

 

 

1.3 Countries database 

 

#Flood risk information 
country_flood <- read.csv("REGION_level_ENV.csv") 
country_flood <- country_flood %>% select(-c(Territorial.Level,Year, Flag.Codes, Flags)) 

#keeping only the large region and country-level data 

country_flood <- country_flood %>% filter(!(TL == 3)) 

flood <- c("FLOOD_R_RP50_BUILT_SH", 
"FLOOD_C_RP50_BUILT_SH") 

country_flood <- country_flood %>% filter((IND %in% flood)) 

# length(unique(country_flood$TL)) 

# #We have this information only at the large region (TL2) level 

country_flood <- country_flood %>% filter(str_detect(REG_ID, TL2_keep)) 

country_flood <- country_flood %>% mutate(LOCATION = substr(REG_ID, 1, 2)) 

country_flood <- 
country_flood %>% mutate(LOCATION = recode(LOCATION, !!!country_code)) 

sum_country_flood <- lapply(flood, function(cat) { 
country_flood %>% 

filter(IND == cat) %>% 
group_by(LOCATION, TIME) %>% 
summarise(!!cat := mean(Value, na.rm = TRUE), .groups = "keep") 

}) 

sum_country_flood <- 
Reduce(function(...) 

merge(..., by = c("LOCATION", "TIME"), all = TRUE), sum_country_flood) 

country_flood_vf  <-  sum_country_flood  %>% 

#Cleaning the environment 
rm(list=c("FUA_data_raw", "var_keep")) 
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pivot_longer(cols  =  c("FLOOD_R_RP50_BUILT_SH", 
"FLOOD_C_RP50_BUILT_SH"), 

names_to = "VAR", 
values_to = "Value") 

#Air pollution information 
country_airpoll <- read.csv("EXP_PM2_5_COUNTRY.csv") 
country_airpoll <- country_airpoll %>% select(c(COU, Year, VAR, Value)) 
country_airpoll <- country_airpoll %>% rename(c(LOCATION = COU, TIME = Year)) 
country_airpoll <- country_airpoll %>% filter((LOCATION %in% countries)) 

#Proxy heat stress and population exposure to fire information 
country_hotdays_fire  <-  read.csv("GREEN_GROWTH_COUNTRY.csv") 
country_hotdays_fire <- country_hotdays_fire %>% select(c(COU, Year, VAR, Value)) 
country_hotdays_fire <- country_hotdays_fire %>% rename(c(LOCATION = COU, TIME = Year)) 
country_hotdays_fire <- country_hotdays_fire %>% filter((LOCATION %in% countries)) 

country_hotdays_fire <- 

country_hotdays_fire %>% filter((VAR %in% c("HD_POP_IND", "FT_POP_IND"))) 

#Concatenating the final country database 
country_data <-bind_rows(country_flood_vf, 

country_airpoll, 
country_hotdays_fire) 

country_data <- country_data %>% mutate(GEO = LOCATION) 

country_data <- country_data %>% select(LOCATION, GEO, TIME, VAR, Value) 

country_data <- country_data %>% filter(TIME %in% period) 

summary(country_data) 

 

## LOCATION GEO TIME VAR 
## Length:1000 Length:1000 Min. :2001 Length:1000 
## Class :character Class :character 1st Qu.:2006 Class :character 
## Mode :character Mode :character Median :2010 Mode :character 
##   Mean :2010  

##   3rd Qu.:2015  

##   Max. :2020  

## 
## Value 
## Min. : 0.0000 ##  
1st Qu.: 0.3648 
## Median : 6.2274 
## Mean :10.8028 ## 
3rd Qu.:13.7607 ##  
Max.  :93.5000 
##  NA’s  :3 

 print(unique(country_data$VAR))  

 
## [1] "FLOOD_R_RP50_BUILT_SH" "FLOOD_C_RP50_BUILT_SH" "PWM_EX" 
## [4] "HD_POP_IND" "FT_POP_IND" 
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1.4 Combining countries and FUAs data 

 

 
## LOCATION GEO TIME VAR 
## Length:53300 Length:53300 Min. :2001 Length:53300 
## Class :character Class :character 1st Qu.:2006 Class :character 
## Mode :character Mode :character Median :2010 Mode :character 
##   Mean :2010  

##   3rd Qu.:2015  

##   Max. :2020  

## 
## Value 
## Min.  : 0.00 ##  
1st Qu.:  0.00 
## Median : 3.80 ## 
Mean : 22.92 ## 
3rd Qu.: 16.90 ##  
Max.  :366.00 
##  NA’s  :3 

 

1.5 Treatment of missing data 

 

 
##  LOCATION GEO TIME VAR Value 
## 1 BEL BEL 2004 FLOOD_C_RP50_BUILT_SH NA 
## 2 BEL BEL 2007 FLOOD_C_RP50_BUILT_SH NA 
## 3 BEL BEL 2020 FLOOD_C_RP50_BUILT_SH   NA 

 

#Cleaning the environment 
bin <- c("country_flood_vf", 

"country_airpoll", 
"country_hotdays_fire", 
"country_flood", 
"flood", 
"TL2_keep", 
"country_code", 
"sum_country_flood") 

rm(list=bin) 

all_data <- bind_rows(FUA_data, country_data) 
summary(all_data) 

NA_data <- all_data %>% filter(is.na(Value)) 
head(NA_data) 

#There are three missing data for Belgium national level about its coastal food risk 
#for 2004, 2007 and 2020. 
#Not a problem for the overall index computation. 
rm(list = c("NA_data", "bin")) 
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1.6 Treatment of values equal to 0 

The data contains 37.255% of values equal to zero. They cannot bring information to build the index so we 
replace their value with ‘NA’ so they are ignored in the computation of the index. 

 mean(all_data$Value == 0, na.rm = TRUE)*100  

 

## [1] 37.25538 
 

 

## LOCATION GEO TIME VAR 
##  Length:19856 Length:19856 Min.   :2001   Length:19856 
##  Class :character   Class :character   1st Qu.:2005   Class :character 
##  Mode  :character  Mode  :character  Median :2010  Mode  :character 
## Mean  :2010 
## 3rd Qu.:2015 
## Max.  :2020 
## Value 
## Min. :0 ## 
1st Qu.:0 ##  
Median :0 
## Mean :0 ## 
3rd Qu.:0 ##  
Max.  :0 

 print(unique(zero_data$VAR))  

 

## [1] "HEAT_STRESS_DAYS_UTCI32" "FIRES_POP_SH" 
## [3] "FLOOD_R_RP50_BUILT_SH" "FLOOD_C_RP50_BUILT_SH" 
## [5] "HD_POP_IND" "FT_POP_IND" 

 

 

## 
## country  FUA 
## 158 19698 

 

 

## [1] 771 3 

zero_data <- all_data %>% filter(Value == 0) 
summary(zero_data) 

zero_data$TL <- ifelse(nchar(zero_data$GEO) == 3, "country", "FUA") 
table(zero_data$TL) 

count_GEO <- 
zero_data %>% group_by(LOCATION, TL, TIME, VAR) %>% summarise(n_TL = n()) 

only_zero_pairs <- zero_data %>% 
group_by(GEO, VAR) %>% 
summarise(n = n()) %>% 
filter(n == length(period)) %>% 
ungroup() 

dim(only_zero_pairs) 
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## [1] 49 3 
 

 

1.7 Description of the final database before index computation 

 

 
## LOCATION GEO TIME VAR 
## Length:53300 Length:53300 Min. :2001 Length:53300 
## Class :character Class :character 1st Qu.:2006 Class :character 
## Mode :character Mode :character Median :2010 Mode :character 
##   Mean :2010  

##   3rd Qu.:2015  

##   Max. :2020  

## 
## Value 
## Min. : 0.008 ##  
1st Qu.:  5.600 
## Median : 12.000 
## Mean : 36.529 ## 
3rd Qu.: 32.400 ##  
Max.  :366.000 
##  NA’s  :19859 

 length(unique(all_data_NA$GEO))  

 

## [1] 533 

 length(unique(all_data_NA$VAR))  

 

## [1] 7 

 head(all_data_NA)  

only_one <- c(length(period) - 1) 
only_1_not_zero <- zero_data %>% 

group_by(GEO, VAR) %>% 
summarise(n = n()) %>% 
filter(n == only_one) %>% 
ungroup() 

dim(only_1_not_zero) 

#Cleaning the environment 
rm(list = c("zero_data", "count_GEO", "only_zero_pairs", "only_one", "only_1_not_zero")) 

#Changing '0' values to 'NA' values 

all_data_NA <- all_data %>% mutate(Value = if_else(Value == 0, NA, Value)) 

summary(all_data_NA) 
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## LOCATION GEO TIME VAR Value 
## 1  JPN JPN18F 2001 PWM_EX 13.2 
## 2 JPN JPN18F 2002 PWM_EX 13.2 
## 3 JPN JPN18F 2003 PWM_EX 12.5 
## 4 JPN JPN18F 2004 PWM_EX 12.4 
## 5 JPN JPN18F 2005 PWM_EX 12.5 
## 6 JPN JPN18F 2006 PWM_EX 12.9 

 

2. Index computation 

2.1 Preparation 

 

#Computation of the evolution with a basis 100 on the first non-missing value for  

#each GEO-VAR pairs 
all_data_NA <- all_data_NA %>% 

arrange(GEO, VAR, TIME) %>% 
group_by(GEO, VAR) %>% 
mutate(Initial_Value = first(Value, order_by = TIME, na_rm = TRUE), 

Base_INDEX = Value / Initial_Value * 100) 

#Computation of the Degradation of Environmental Performance Index for each GEO-TIME pairs 
Grouped_DEPI <- all_data_NA %>% 

group_by(GEO, TIME) %>% 
summarise(Deterioration_EP_INDEX = psych::geometric.mean(Base_INDEX, na.rm = TRUE)) 

#Clear data frame with only relevant information 
allFUAs_final_data <- 

merge(Grouped_DEPI, unique(all_data_NA[, c("LOCATION", "GEO")]), by = "GEO") %>% 
select(LOCATION, GEO, TIME, Deterioration_EP_INDEX) 

#Cleaning the environment 
bin <- c("FUA_data", 

"country_data", 
"all_data", 
"Grouped_DEPI") 

rm(list=bin) 

 

2.2 Finalisation 

 

final_data <- allFUAs_final_data 

final_data$TL <- ifelse(nchar(final_data$GEO) == 3, "Country", "FUA") 

#Computation of the unique value for each year at the national and local level 
final_data <- final_data %>% 

group_by(LOCATION, TL, TIME) %>% 
summarise(DEPI = mean(Deterioration_EP_INDEX, na.rm = TRUE)) %>% 
arrange(LOCATION, TIME) 

summary(final_data) 
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 head(final_data)  

## # A tibble: 6 x 4 
## # Groups: LOCATION, TL [2] 
## LOCATION TL TIME DEPI 
## <chr> <chr> <int> <dbl> 

 

 

 

 

 summary(final_data$DEPI)    

## Min. 1st Qu. Median Mean 3rd Qu. Max. 
## 34.52 87.95 100.00 102.15 114.23 295.60 

 

3. Results 

3.1 By Country 

final_data <- final_data %>% mutate(LOCATION = recode(LOCATION, !!!country_name)) 

ggplot(final_data, aes(x = TIME, y = DEPI, color = TL)) + 
geom_line() + 
geom_point() + 
geom_hline(yintercept = 100, color = "#00CC00", linewidth = 0.75) + 
labs(title = "Graph 1: Deterioration of Environmental Performance over time by country and urban area 

x = "Year", 
y = "Deterioration of Environmental Performance Index") + 

facet_wrap(~LOCATION) + 
theme_minimal() + 
scale_color_manual(values = c("#FF0000", "#0000FF")) 

## LOCATION TL TIME DEPI 
## Length:400 Length:400 Min. :2001 Min. : 34.52 
## Class :character Class :character 1st Qu.:2006 1st Qu.: 87.95 
## Mode :character Mode :character Median :2010 Median :100.00 
##  Mean :2010 Mean :102.15 
##  3rd Qu.:2015 3rd Qu.:114.23 
##  Max. :2020 Max. :295.60 

 

## 1 AUS Country 2001 100 
## 2 AUS FUA 2001 100 
## 3 AUS Country 2002 83.9 
## 4 AUS FUA 2002 139. 
## 5 AUS Country 2003 97.7 
## 6 AUS FUA 2003 107. 
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Graph 1: Deterioration of Environmental Performance over time by country 
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AUS_data <- final_data %>% filter(LOCATION == "Australia") 

ggplot(AUS_data, aes(x = TIME, y = DEPI, color = TL)) + 
geom_line() + 
geom_point() + 
geom_hline(yintercept = 100, color = "#00CC00", linewidth = 0.6) + 
labs(title = "Graph 2: Australia's DEPI by territory level over time", 

x = "Year", 
y = "Deterioration of Environmental Performance Index") + 

theme_minimal() + 
scale_color_manual(values = c("#FF0000", "#0000FF")) 
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Graph 2: Australia's DEPI by territory level over time 
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## 
## Paired t-test 
## 
## data: AUS_data_loc$DEPI and AUS_data_nat$DEPI 
## t = 6.5442, df = 19, p-value = 2.883e-06 
## alternative hypothesis: true mean difference is not equal to 0 
## 95 percent confidence interval: 
## 14.79411 28.70706 
## sample estimates: 
## mean difference 
## 21.75058 

 #Based on this result, we shall reject the null hypothesis of no difference.  

 

3.1.2 Belgium 
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AUS_data_loc <- AUS_data %>% filter(TL == "FUA") 
AUS_data_nat <- AUS_data %>% filter(TL == "Country") 
t.test(AUS_data_loc$DEPI,AUS_data_nat$DEPI, paired = T) 

BEL_data <- final_data %>% filter(LOCATION == "Belgium") 

ggplot(BEL_data, aes(x = TIME, y = DEPI, color = TL)) + 
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Graph 3: Belgium's DEPI by territory level over time 
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## 
## Paired t-test 
## 
## data: BEL_data_loc$DEPI and BEL_data_nat$DEPI 
## t = -1.7253, df = 19, p-value = 0.1007 
## alternative hypothesis: true mean difference is not equal to 0 
## 95 percent confidence interval: 
## -20.069045 1.932604 
## sample estimates: 
## mean difference 
## -9.068221 

geom_line() + 
geom_point() + 
geom_hline(yintercept = 100, color = "#00CC00", linewidth = 0.6) + 
labs(title = "Graph 3: Belgium's DEPI by territory level over time", 

x = "Year", 
y = "Deterioration of Environmental Performance Index") + 

theme_minimal() + 
scale_color_manual(values = c("#FF0000", "#0000FF")) 

BEL_data_loc <- BEL_data %>% filter(TL == "FUA") 
BEL_data_nat <- BEL_data %>% filter(TL == "Country") 
t.test(BEL_data_loc$DEPI,BEL_data_nat$DEPI, paired = T) 
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 #Based on this result, we shall accept the null hypothesis of no difference.  

 

3.1.3 Canada 

 

 
Graph 4: Canada's DEPI by territory level over time 
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## 
## Paired t-test 

CAN_data_loc <- CAN_data %>% filter(TL == "FUA") 
CAN_data_nat <- CAN_data %>% filter(TL == "Country") 
t.test(CAN_data_loc$DEPI,CAN_data_nat$DEPI, paired = T) 
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CAN_data <- final_data %>% filter(LOCATION == "Canada") 

ggplot(CAN_data, aes(x = TIME, y = DEPI, color = TL)) + 
geom_line() + 
geom_point() + 
geom_hline(yintercept = 100, color = "#00CC00", linewidth = 0.6) + 
labs(title = "Graph 4: Canada's DEPI by territory level over time", 

x = "Year", 
y = "Deterioration of Environmental Performance Index") + 

theme_minimal() + 
scale_color_manual(values = c("#FF0000", "#0000FF")) 
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## 
## data: CAN_data_loc$DEPI and CAN_data_nat$DEPI 
## t = 5.0449, df = 19, p-value = 7.192e-05 
## alternative hypothesis: true mean difference is not equal to 0 
## 95 percent confidence interval: 
## 16.13559 39.01709 
## sample estimates: 
## mean difference 
## 27.57634 

 #Based on this result, we shall reject the null hypothesis of no difference.  

 

3.1.4 Colombia 

 

COL_data <- final_data %>% filter(LOCATION == "Colombia") 

ggplot(COL_data, aes(x = TIME, y = DEPI, color = TL)) + 
geom_line() + 
geom_point() + 
geom_hline(yintercept = 100, color = "#00CC00", linewidth = 0.6) + 
labs(title = "Graph 5: Colombia's DEPI by territory level over time", 

x = "Year", 
y = "Deterioration of Environmental Performance Index") + 

theme_minimal() + 
scale_color_manual(values = c("#FF0000", "#0000FF")) 
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Graph 5: Colombia's DEPI by territory level over time 
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## 
## Paired t-test 
## 
## data: COL_data_loc$DEPI and COL_data_nat$DEPI 
## t = 5.188, df = 19, p-value = 5.233e-05 
## alternative hypothesis: true mean difference is not equal to 0 
## 95 percent confidence interval: 
## 13.7677 32.3888 
## sample estimates: 
## mean difference 
## 23.07825 

 #Based on this result, we shall reject the null hypothesis of no difference.  

 

3.1.5 Japan 
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COL_data_loc <- COL_data %>% filter(TL == "FUA") 
COL_data_nat <- COL_data %>% filter(TL == "Country") 
t.test(COL_data_loc$DEPI,COL_data_nat$DEPI, paired = T) 

JPN_data <- final_data %>% filter(LOCATION == "Japan") 

ggplot(JPN_data, aes(x = TIME, y = DEPI, color = TL)) + 
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Graph 6: Japan's DEPI by territory level over time 
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## 
## Paired t-test 
## 
## data: JPN_data_loc$DEPI and JPN_data_nat$DEPI 
## t = 10.792, df = 19, p-value = 1.521e-09 
## alternative hypothesis: true mean difference is not equal to 0 
## 95 percent confidence interval: 
## 36.19539 53.61295 
## sample estimates: 
## mean difference 
## 44.90417 

geom_line() + 
geom_point() + 
geom_hline(yintercept = 100, color = "#00CC00", linewidth = 0.6) + 
labs(title = "Graph 6: Japan's DEPI by territory level over time", 

x = "Year", 
y = "Deterioration of Environmental Performance Index") + 

theme_minimal() + 
scale_color_manual(values = c("#FF0000", "#0000FF")) 

JPN_data_loc <- JPN_data %>% filter(TL == "FUA") 
JPN_data_nat <- JPN_data %>% filter(TL == "Country") 
t.test(JPN_data_loc$DEPI,JPN_data_nat$DEPI, paired = T) 
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 #Based on this result, we shall reject the null hypothesis of no difference.  

 

3.1.6 Mexico 

 

 
Graph 7: Mexico's DEPI by territory level over time 
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## 
## Paired t-test 

MEX_data_loc <- MEX_data %>% filter(TL == "FUA") 
MEX_data_nat <- MEX_data %>% filter(TL == "Country") 
t.test(MEX_data_loc$DEPI,MEX_data_nat$DEPI, paired = T) 
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MEX_data <- final_data %>% filter(LOCATION == "Mexico") 

ggplot(MEX_data, aes(x = TIME, y = DEPI, color = TL)) + 
geom_line() + 
geom_point() + 
geom_hline(yintercept = 100, color = "#00CC00", linewidth = 0.6) + 
labs(title = "Graph 7: Mexico's DEPI by territory level over time", 

x = "Year", 
y = "Deterioration of Environmental Performance Index") + 

theme_minimal() + 
scale_color_manual(values = c("#FF0000", "#0000FF")) 
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## 
## data: MEX_data_loc$DEPI and MEX_data_nat$DEPI 
## t = 9.3508, df = 19, p-value = 1.534e-08 
## alternative hypothesis: true mean difference is not equal to 0 
## 95 percent confidence interval: 
## 37.75588 59.53232 
## sample estimates: 
## mean difference 
## 48.6441 

 #Based on this result, we shall reject the null hypothesis of no difference.  

 

3.1.7 New Zealand 

 

NZL_data <- final_data %>% filter(LOCATION == "New Zealand") 

ggplot(NZL_data, aes(x = TIME, y = DEPI, color = TL)) + 
geom_line() + 
geom_point() + 
geom_hline(yintercept = 100, color = "#00CC00", linewidth = 0.6) + 
labs(title = "Graph 8: New Zealand's DEPI by territory level over time", 

x = "Year", 
y = "Deterioration of Environmental Performance Index") + 

theme_minimal() + 
scale_color_manual(values = c("#FF0000", "#0000FF")) 
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Graph 8: New Zealand's DEPI by territory level over time 
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## Paired t-test 
## 
## data: NZL_data_loc$DEPI and NZL_data_nat$DEPI 
## t = -5.0235, df = 19, p-value = 7.543e-05 
## alternative hypothesis: true mean difference is not equal to 0 
## 95 percent confidence interval: 
## -62.93885 -25.91748 
## sample estimates: 
## mean difference 
## -44.42816 

 #Based on this result, we shall reject the null hypothesis of no difference.  

 

3.1.8 South Korea 
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NZL_data_loc <- NZL_data %>% filter(TL == "FUA") 
NZL_data_nat <- NZL_data %>% filter(TL == "Country") 
t.test(NZL_data_loc$DEPI,NZL_data_nat$DEPI, paired = T) 

KOR_data <- final_data %>% filter(LOCATION == "South Korea") 

ggplot(KOR_data, aes(x = TIME, y = DEPI, color = TL)) + 
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Graph 9: South Korea's DEPI by territory level over time 
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## Paired t-test 
## 
## data: KOR_data_loc$DEPI and KOR_data_nat$DEPI 
## t = -2.5917, df = 19, p-value = 0.0179 
## alternative hypothesis: true mean difference is not equal to 0 
## 95 percent confidence interval: 
## -36.455215 -3.880524 
## sample estimates: 
## mean difference 
## -20.16787 

geom_line() + 
geom_point() + 
geom_hline(yintercept = 100, color = "#00CC00", linewidth = 0.6) + 
labs(title = "Graph 9: South Korea's DEPI by territory level over time", 

x = "Year", 
y = "Deterioration of Environmental Performance Index") + 

theme_minimal() + 
scale_color_manual(values = c("#FF0000", "#0000FF")) 
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KOR_data_loc <- KOR_data %>% filter(TL == "FUA") 
KOR_data_nat <- KOR_data %>% filter(TL == "Country") 
t.test(KOR_data_loc$DEPI,KOR_data_nat$DEPI, paired = T ) 
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 #Based on this result, we shall reject the null hypothesis of no difference.  

 

3.1.9 Sweden 

 

 
Graph 10: Sweden's DEPI by territory level over time 
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## 

## Paired t-test 
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SWE_data <- final_data %>% filter(LOCATION == "Sweden") 

ggplot(SWE_data, aes(x = TIME, y = DEPI, color = TL)) + 
geom_line() + 
geom_point() + 
geom_hline(yintercept = 100, color = "#00CC00", linewidth = 0.6) + 
labs(title = "Graph 10: Sweden's DEPI by territory level over time", 

x = "Year", 
y = "Deterioration of Environmental Performance Index") + 

theme_minimal() + 
scale_color_manual(values = c("#FF0000", "#0000FF")) 

SWE_data_loc <- SWE_data %>% filter(TL == "FUA") 
SWE_data_nat <- SWE_data %>% filter(TL == "Country") 
t.test(SWE_data_loc$DEPI,SWE_data_nat$DEPI, paired = T ) 
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## 
## data: SWE_data_loc$DEPI and SWE_data_nat$DEPI 
## t = 6.3521, df = 19, p-value = 4.286e-06 
## alternative hypothesis: true mean difference is not equal to 0 
## 95 percent confidence interval: 
## 15.13738 30.01514 
## sample estimates: 
## mean difference 
## 22.57626 

 #Based on this result, we shall reject the null hypothesis of no difference.  

 

3.1.10 United States of America 

 

USA_data <- final_data %>% filter(LOCATION == "United States of America") 

ggplot(USA_data, aes(x = TIME, y = DEPI, color = TL)) + 
geom_line() + 
geom_point() + 
geom_hline(yintercept = 100, color = "#00CC00", linewidth = 0.6) + 
labs(title = "Graph 11: USA's DEPI by territory level over time", 

x = "Year", 
y = "Deterioration of Environmental Performance Index") + 

theme_minimal() + 
scale_color_manual(values = c("#FF0000", "#0000FF")) 
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Graph 11: USA's DEPI by territory level over time 
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## 
## Paired t-test 
## 
## data: USA_data_loc$DEPI and USA_data_nat$DEPI 
## t = 4.0223, df = 19, p-value = 0.0007281 
## alternative hypothesis: true mean difference is not equal to 0 
## 95 percent confidence interval: 
## 5.947506 18.852072 
## sample estimates: 
## mean difference 
## 12.39979 

 #Based on this result, we shall reject the null hypothesis of no difference.  

 

3.1.11 Paired t-test to investigate a possible common continent effect 
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USA_data_loc <- USA_data %>% filter(TL == "FUA") 
USA_data_nat <- USA_data %>% filter(TL == "Country") 
t.test(USA_data_loc$DEPI,USA_data_nat$DEPI, paired = T ) 

#Asia 

t.test(JPN_data_nat$DEPI,  KOR_data_nat$DEPI,  paired  =  T) 
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## 
## Paired t-test 
## 
## data: JPN_data_nat$DEPI and KOR_data_nat$DEPI 
## t = -6.584, df = 19, p-value = 2.657e-06 
## alternative hypothesis: true mean difference is not equal to 0 
## 95 percent confidence interval: 
## -68.50440 -35.45573 
## sample estimates: 
## mean difference 
## -51.98006 

 t.test(JPN_data_loc$DEPI,  KOR_data_loc$DEPI,  paired  =  T)  

 

## 
## Paired t-test 
## 
## data: JPN_data_loc$DEPI and KOR_data_loc$DEPI 
## t = 5.0927, df = 19, p-value = 6.466e-05 
## alternative hypothesis: true mean difference is not equal to 0 
## 95 percent confidence interval: 
## 7.711384 18.472565 
## sample estimates: 
## mean difference 
## 13.09197 

 

 

 

 

 

## 
## Paired t-test 
## 
## data: BEL_data_nat$DEPI and SWE_data_nat$DEPI 
## t = 2.2745, df = 19, p-value = 0.03472 
## alternative hypothesis: true mean difference is not equal to 0 
## 95 percent confidence interval: 
## 1.018333 24.507841 
## sample estimates: 
## mean difference 
## 12.76309 

 t.test(BEL_data_loc$DEPI,  SWE_data_loc$DEPI,  paired  =  T)  

 

## 
## Paired t-test 
## 
## data: BEL_data_loc$DEPI and SWE_data_loc$DEPI 
## t = -5.0442, df = 19, p-value = 7.204e-05 
## alternative hypothesis: true mean difference is not equal to 0 
## 95 percent confidence interval: 

#Based on these results, we shall reject the null hypothesis of no difference.  

#Europe 

t.test(BEL_data_nat$DEPI,  SWE_data_nat$DEPI,  paired  =  T) 
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## -26.71605 -11.04673 
## sample estimates: 
## mean difference 
## -18.88139 

 
 

 

 

## 
## Paired t-test 
## 
## data: CAN_data_nat$DEPI and USA_data_nat$DEPI 
## t = -4.1259, df = 19, p-value = 0.0005747 
## alternative hypothesis: true mean difference is not equal to 0 
## 95 percent confidence interval: 
## -42.43276 -13.87062 
## sample estimates: 
## mean difference 
## -28.15169 

 t.test(CAN_data_loc$DEPI, USA_data_loc$DEPI, paired = T)  

 

## 
## Paired t-test 
## 
## data: CAN_data_loc$DEPI and USA_data_loc$DEPI 
## t = -5.1253, df = 19, p-value = 6.014e-05 
## alternative hypothesis: true mean difference is not equal to 0 
## 95 percent confidence interval: 
## -18.273791 -7.676484 
## sample estimates: 
## mean difference 
## -12.97514 

 

 

 

 

 

## 
## Paired t-test 
## 
## data: AUS_data_nat$DEPI and NZL_data_nat$DEPI 
## t = -6.4832, df = 19, p-value = 3.268e-06 
## alternative hypothesis: true mean difference is not equal to 0 
## 95 percent confidence interval: 
## -83.57570 -42.78252 
## sample estimates: 
## mean difference 
## -63.17911 

#Based on these results, we shall reject the null hypothesis of no difference.  

#Oceania 

t.test(AUS_data_nat$DEPI,  NZL_data_nat$DEPI,  paired  =  T) 

#Based on these results, we shall reject the null hypothesis of no difference.  

#North America 

t.test(CAN_data_nat$DEPI, USA_data_nat$DEPI, paired = T) 
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 t.test(AUS_data_loc$DEPI,  NZL_data_loc$DEPI,  paired  =  T)  

 

## 
## Paired t-test 
## 
## data: AUS_data_loc$DEPI and NZL_data_loc$DEPI 
## t = 0.58276, df = 19, p-value = 0.5669 
## alternative hypothesis: true mean difference is not equal to 0 
## 95 percent confidence interval: 
## -7.773721 13.772995 
## sample estimates: 
## mean difference 
## 2.999637 

#Australia and New Zealand show different results for paired t-tests. 

#South America 
t.test(COL_data_nat$DEPI,  MEX_data_nat$DEPI,  paired  =  T) 

 

## 
## Paired t-test 
## 
## data: COL_data_nat$DEPI and MEX_data_nat$DEPI 
## t = 2.7456, df = 19, p-value = 0.01286 
## alternative hypothesis: true mean difference is not equal to 0 
## 95 percent confidence interval: 
## 3.422068 25.373008 
## sample estimates: 
## mean difference 
## 14.39754 

 t.test(COL_data_loc$DEPI,  MEX_data_loc$DEPI,  paired  =  T)  

 

## 
## Paired t-test 
## 
## data: COL_data_loc$DEPI and MEX_data_loc$DEPI 
## t = -3.0834, df = 19, p-value = 0.006117 
## alternative hypothesis: true mean difference is not equal to 0 
## 95 percent confidence interval: 
## -18.749403 -3.587218 
## sample estimates: 
## mean difference 
## -11.16831 

 #Based on these results, we shall reject the null hypothesis of no difference.  

 

3.2 All together in the same plot 
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final_data$LOCATION_TL <- interaction(final_data$LOCATION, final_data$TL) 
final_data$LOCATION_TL <- forcats::fct_inorder(final_data$LOCATION_TL) 

 
ggplot(final_data, aes(x = TIME, y = DEPI, group = LOCATION_TL, color = LOCATION_TL)) + 

geom_line() + 
geom_point() + 
geom_hline(yintercept = 100, color = "#00CC00", linewidth = 0.6) + 
theme_minimal() + 
labs(title = "Graph 12: DEPI over time per country and urban areas level", x = "Year", 

y = "Deterioration of Environmental Performance Index") + 
theme(legend.title = element_blank()) 
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3.3 Comparative analysis between the local and national levels 

geom_hline(yintercept = 100, color = "#00CC00", linewidth = 0.6) + 

labs(title = "Graph 13: Average Deterioration of Environmental Performance Index by territory level", 
x = "Year", 
y = "Average DEPI") + 

theme_minimal()+ 
scale_color_manual(values = c("#FF0000", "#0000FF")) 

 
Graph 13: Average Deterioration of Environmental Performance Index 
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local_vs_national <- final_data %>% 
group_by(TL, TIME) %>% 
summarise(avg_DEPI = psych::geometric.mean(DEPI, na.rm = TRUE)) 

 
ggplot(local_vs_national, aes(x = TIME, y = avg_DEPI, color = TL)) + 

geom_line() + 
geom_point() + 
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## Paired t-test 
## 
## data: All_local_data$avg_DEPI and All_nat_data$avg_DEPI 
## t = 9.4134, df = 19, p-value = 1.381e-08 
## alternative hypothesis: true mean difference is not equal to 0 
## 95 percent confidence interval: 
## 13.14801 20.66647 
## sample estimates: 
## mean difference 
## 16.90724 

 #Means of DEPI results for each level are statistically different with  

 

 

4. Robustness analysis 

Due to the importance of flood risks driving country results, we test the computation of the index without including 
those outcomes. 

#Removing flood information from the data 
not_flood <- c("FLOOD_C_RP50_BUILT_SH", "FLOOD_R_RP50_BUILT_SH") 
test_all_data <- all_data_NA %>% filter(!(VAR %in% not_flood)) 

#Removing the share of t h e  population exposed to wildfires in New Zealand as it expands  

# too much of the graphical result scale, making it unreadable 

test_all_data$Base_INDEX[test_all_data$GEO == "NZL" & test_all_data$VAR == "FT_POP_IND"] <- NA 

#Paired sample t-test 
All_local_data <- local_vs_national %>% filter(TL == "FUA") 
All_nat_data <- local_vs_national %>% filter(TL == "Country") 
t.test(All_local_data$avg_DEPI, All_nat_data$avg_DEPI, paired = T) 

#Cleaning the environment 
all_pattern <- c("ˆAUS_data", 

"ˆBEL_data", 
"ˆCAN_data", 
"ˆCOL_data", 
"ˆJPN_data", 
"ˆKOR_data", 
"ˆMEX_data", 
"ˆNZL_data", 
"ˆSWE_data", 
"ˆUSA_data", 
"local_vs_national", 
"All_local_data", 
"All_nat_data", 
"all_pattern") 

all_pattern <- paste(all_pattern, collapse = "|") 
bin_data <- ls(pattern = all_pattern) 
rm(list=bin_data) 
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#Removing the share of population expose to hot days in South Korea as it expands to much  

# the graphical result scale, making it unreadable 
test_all_data$Base_INDEX[test_all_data$GEO == "KOR" & test_all_data$VAR == "HD_POP_IND"] <- NA 

#Computation of the Degradation of Environmental Performance Index for each GEO-TIME pairs 
Grouped_DEPI2 <- test_all_data %>% 

group_by(GEO, TIME) %>% 
summarise(Deterioration_EP_INDEX = psych::geometric.mean(Base_INDEX, na.rm = TRUE)) 

#Clear data frame with only relevant information 
DEPI_test_data <- 

merge(Grouped_DEPI2, unique(test_all_data[, c("LOCATION", "GEO")]), by = "GEO") %>% 
select(LOCATION, GEO, TIME, Deterioration_EP_INDEX) 

DEPI_test_data$TL <- ifelse(nchar(DEPI_test_data$GEO) == 3, "Country", "FUA") 

#Computation of the unique value for each year at the national and local level 

DEPI_test_data  <-  DEPI_test_data  %>% 

 

 
## LOCATION TL TIME DEPI 
## Length:400 Length:400 Min. :2001 Min. : 22.62 
## Class :character Class :character 1st Qu.:2006 1st Qu.: 87.35 
## Mode :character Mode :character Median :2010 Median : 99.89 
##  Mean :2010 Mean : 99.18 
##  3rd Qu.:2015 3rd Qu.:111.92 
##  Max. :2020 Max. :183.93 

 

group_by(LOCATION, TL, TIME) %>% 
summarise(DEPI = mean(Deterioration_EP_INDEX, na.rm = TRUE)) %>% 
arrange(LOCATION, TIME) 

summary(DEPI_test_data) 

#Plotting the results 
DEPI_test_data <- DEPI_test_data %>% mutate(LOCATION = recode(LOCATION, !!!country_name)) 

ggplot(DEPI_test_data, aes(x = TIME, y = DEPI, color = TL)) + 
geom_line() + 
geom_point() + 
geom_hline(yintercept = 100, color = "#00CC00", linewidth = 0.75) + 
labs(title = "Graph 14: Alternative DEPI over time by country and urban areas level", 

x = "Year", 
y = "Deterioration of Environmental Performance Index") + 

facet_wrap(~LOCATION) + 
theme_minimal() + 
scale_color_manual(values = c("#FF0000", "#0000FF")) 
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Graph 14: Alternative DEPI over time by country and urban areas level 
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rm(list = ls()) 

cat("\014") 
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