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Executive summary 
 

Energy Performance Certificates (EPCs) are a cornerstone of policies promoting energy 

efficiency in the residential sector. These labels are intended to provide households with 

standardized, reliable information about a home's energy efficiency, helping to bridge the energy 

efficiency gap and guiding investment in retrofits. However, the effectiveness of EPCs depends 

on their credibility. This study provides compelling evidence that the EPC market in France 

exhibits systematic manipulation, with energy efficiency ratings strategically misreported to 

secure more favorable classifications. It further demonstrates that increased competition among 

certifiers exacerbates this behavior. 

Key Findings 

• Bunching at EPC Thresholds: A significant number of homes are just below key cut-off 
points, suggesting certifiers intentionally manipulate ratings to improve classifications. 

• Competition Increases Manipulation: Certifiers in more competitive markets are more 
likely to manipulate scores, as they are incentivized to provide lenient ratings to gain 
market shares. 

• Housing Price Distortions: A one-class better EPC leads to price premiums of about 6%, 
suggesting buyers rely heavily on labels, even when manipulated. Manipulation has thus 
welfare implications. 

Policy Implications 

1. Stronger Oversight and Enforcement of EPC Assessments 
The findings highlight the need for stricter regulatory oversight of EPC certifiers. France’s 

2021 reform, which made EPCs legally enforceable, is a step in the right direction but may not 

go far enough in addressing market incentives for manipulation. More rigorous auditing of 

EPC assessments and penalties for fraudulent reporting could deter manipulation. 

2. Decoupling Certifier Payments from Homeowners 
A fundamental issue in the EPC market is the misaligned incentive structure: certifiers are 

paid directly by homeowners, who benefit from favorable ratings. A reform that shifts the 

payment structure—such as government or independent third-party funding for EPC 

assessments—could reduce certifiers’ conflicts of interest. 

3. Harmonization of EPC Standards Across the EU 
The study underscores the need for more standardized and manipulation-resistant EPC 

methodologies at the European level. Different national practices create varying degrees of 

manipulation risk, and more uniform rules—such as stricter guidelines for certifier 

independence and threshold effects—could improve the integrity of the system. 

4. Enhancing Consumer Awareness to Reduce the Price Premium at cutoffs 
A key reason why EPC manipulation persists is that buyers place disproportionate weight on 

EPC ratings without fully understanding their calculation methods. Public awareness 

campaigns and disclosure reforms that emphasize underlying energy efficiency metrics rather 

than simplistic class labels could mitigate this problem. 

. 



1 Introduction

In most markets, information imperfections arise because the product or service qual-

ity is not easily observable ex-ante and sometimes even challenging to ascertain ex-post.

Mandatory disclosure of information has become a popular policy tool to reveal product

quality in such markets and help consumers optimize their choices. Examples range from

credit rating in financial markets to certification of a product’s safety, nutritional content,

energy efficiency, or environmental impact. In many settings, third-party certifiers carry

out product certification. A key question is whether they report unbiased and accurate

information. Indeed, when firms that certify the quality of goods are paid by the agents

who benefit from more favorable certification, they may be tempted to provide lenient

assessments to attract more clients. Moreover, in such markets, increased competition

may exacerbate incentives to manipulate certification quality to attract consumers. As-

sessing the prevalence of such behavior is important from a policy perspective, as it may

limit the benefits of mandatory information provision.

In this paper, we focus on the mandatory disclosure of energy performance certificates

(hereafter EPC) in housing markets, which have become a prominent policy to foster

the renovation of buildings and lower carbon emissions. This disclosure policy aims to

address the energy efficiency gap in home renovation (Allcott and Greenstone (2012)) by

providing households with certificates that contain reliable and standardized information

about the energy efficiency of their homes. Many governments, including several U.S. local

authorities and the European Union, have adopted mandatory disclosure of home energy

labels. The effectiveness of this policy is, however, still debated: Myers et al. (2022) finds

that compulsory disclosure of EPCs in Austin increases the premium for energy-efficient

homes, while Aydin et al. (2020) do not detect any effect of the provision of EPCs on the

housing market in the Netherlands. The impact of such programs depends on households’

initial level of information about energy efficiency but also the accuracy and reliability

of the certificates (Lanz and Reins (2021)). The quality of the energy rating provided by

certifiers has been the subject of heated debate, with EPCs often accused of providing
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inaccurate information1. Indeed, it has been shown that the predicted energy efficiency

of homes and its improvements can be inaccurate if the technical projections used to

calculate them are not well calibrated (Fowlie et al. (2018), Davis et al. (2020)), or if

EPC assessors disagree on the quality of the observed characteristics of buildings (Hardy

and Glew (2019)). The inaccuracy of labels might also come from misaligned incentives

between different agents, which could lead to misreporting. However, the incentives for

third-party certifiers to manipulate reports have been little studied in the context of home

energy performance labeling.

In this paper, we present evidence of manipulation in the EPCs market and analyze

the relationship between competition and such manipulation. The EPC label creates in-

centives for manipulation at specific energy consumption levels. As the label is a discon-

tinuous step function of a house’s predicted energy consumption, it generates significant

and evident differences in how houses are classified into energy efficiency classes at certain

thresholds. Suppose prospective buyers have limited attention or technical knowledge.

In that case, they may be willing to pay a premium for houses with a better label than

those with similar energy consumption but classified in a less efficient energy class. This

dynamic creates strong incentives to manipulate the EPC label at energy consumption

thresholds, splitting two energy efficiency classes.

Using the EPC labels issued in France between 2013 and 2021, we provide empirical

evidence that the EPC rating is often manipulated. We show clear breaks in the EPC

distribution at the thresholds between two categories, with a bunching of houses on the

side of the threshold corresponding to a more efficient class. In the market for EPCs, a

few papers have shown evidence of bunching at the threshold for more favorable energy

classes (Collins and Curtis (2018), Atasoy (2020)). Still, they attribute this to strategic

investment in energy-efficient equipment when building or renovating a home. We argue

that in the case of France, this bunching reveals manipulation rather than strategic

responses. It is present regardless of the method used to assess the EPC, and it adjusts
1In France, consumer associations regularly show large variations in EPC established by different

certifiers for the same home, see "Nouveau DPE : des erreurs en pagaille !", 60 millions de consommateurs,
May 24, 2022)
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quickly to regulatory changes in the value of the thresholds. In addition, we uncover

one channel for adjusting the EPC score, which is misreporting of dwelling size, and find

significant discontinuities in reported size at the threshold, consistent with manipulative

behavior. We then analyze how this bunching varies with the degree of competition

between certifiers and show that more competition is associated with more manipulation.

Since certifiers are paid by homeowners, their behaviour is consistent with the incentives

of profit-seeking firms, which could gain market share by offering more lenient ratings to

their customers (Dranove and Jin (2010)).

Next, we examine whether this manipulation is profitable for homeowners. We can

measure the willingness to pay for a better energy grade by comparing the house price

premium attached to houses with similar theoretical energy consumption but which fall

on opposite sides of the energy label thresholds and receive different labels. We use a

donut Regression Discontunity Design (RDD) estimation strategy to account that houses

very close to the threshold may have different characteristics due to manipulation. Cross-

ing an energy class threshold triggers a significant house price premium in France. This

effect suggests that some households have a limited attention bias and are willing to pay

more for houses with a better EPC rating, even after controlling for the overall level

of electricity consumption. Several robustness checks confirm that such effects are only

present at the official cut-off points and not at the placebo values, where we find no

deformation in the EPC distribution and no price premium. These results suggest that

manipulating EPC ratings has welfare consequences, increasing the profits of informed

sellers to the detriment of uninformed buyers.

Our study contributes to the economic literature on quality disclosure and certifica-

tion. Following the seminal work of Tirole (1986) on enforceable capture, Lizzeri (1999),

Strausz (2005), Lerner and Tirole (2006) and Mahenc (2017), have modelled certifiers

behaviours. These contributions tend to demonstrate that profit-seeking certifiers have

incentives to manipulate the information displayed on labels to gain market shares.

The theoretical literature presents a mixed view on how competition affects quality
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certification. For instance, Bolton et al. (2012) argue that in financial markets, where

issuers can shop for the most favourable rating, competition between credit rating agencies

can lead to artificially better ratings. On the other hand, in environments as in Lizzeri

(1999) where sellers (issuers) have a single chance to be certified or sellers’ applications

are public, competition between certifiers drive them to fully disclose quality information.

In empirical applications, this relationship has been investigated in a limited number

of settings. A few papers have studied the behaviour of credit rating agencies in financial

markets (Becker and Milbourn (2011) and Flynn and Ghent (2018)), finding that the ar-

rival of a new competitor on the market leads to an increase in ratings. Other applications

include food certification (Zheng and Bar (2021)) and vehicle emission testing (Hubbard

(1998), Bennett et al. (2013)), where it has been shown that the pass rate increases when

inspectors have a nearby competitor. Our study is the first to investigate the link between

competition and manipulation in the market for energy performance certificates. Indeed,

while some papers have analysed the strategic response of manufacturers to energy labels

for domestic appliances (Houde (2018b)), there is minimal evidence of the strategic be-

havour of third-party certifiers for energy efficiency in the residential sector. Our results

highlight the usefulness of studying the behavior of third-party certifiers to evaluate the

overall effects of mandatory disclosure programs for energy efficiency.

Our study is also directly related to a strand of the environmental literature investigat-

ing how labels may encourage households to consider energy efficiency in their residential

decisions. Most of the literature has measured the capitalization of energy efficiency in

house prices, using hedonic analysis, often finding a sales premium for energy-efficient

houses.2. In standard OLS regressions, the premium estimation may be biased if un-

observed dwelling characteristics correlate with energy efficiency measures. We adopt

an RDD approach to identify how households value a house with a better energy class,

controlling for the level of energy consumption. In contrast to the null effect of labeling

found in RDD by Aydin et al. (2020) in the Netherlands, we find that salient differences
2Studies include Eichholtz et al. (2010) and Kahn and Kok (2014) in the US, Brounen and Kok (2011)

in the Netherlands ,Hyland et al. (2013) and Fuerst et al. (2015) in Ireland and England. In France,
Civel (2019) also finds a significant green premium across several local markets.
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in energy ratings trigger significant house premiums, in line with recent results from the

UK (Sejas-Portillo et al. (2025)). However, in contrast to these papers, we find evidence

of threshold manipulation in France, as the large housing bonuses may increase incentives

to exploit information asymmetries.3

By investigating how the salience of the class of EPCs affects household decisions,

our study also contributes to the behavioral economic literature on salience and limited

attention. Theoretical models, reviewed in Bordalo et al. (2022), emphasize that salient

information about a product’s characteristics can distort consumer choices. In the case of

energy-efficiency attributes, several papers have shown, using either hypothetical choices

surveys (Newell and Siikamäki (2014), Davis and Metcalf (2016), Civel and Cruz (2018))

or actual purchases (Houde (2018a)) that providing information has an impact on choices.

However, many consumers tend to rely primarily on the salient information presented in

the label, not exerting effort to understand how they are calculated. In particular, Andor

et al. (2020) show that consumers’ willingness to pay for refrigerators with a better

energy class goes beyond the expected energy savings associated with the certification.

Our findings echo this result. In our model, households are willing to pay significant

premiums for houses on the better side of an EPC class threshold. Such behavioral effects

can lead to substantial welfare losses, especially when exploited by informed third-party

certifiers.

Finally, our study also relates to a strand of the public economics literature that

exploits bunching to estimate behavioral responses by households (Kleven (2016)), and

in particular, to detect fraudulent reporting (Kleven et al. (2011), Fack and Landais

(2016))). In the case of energy efficiency labels, Goeschl (2019) and Blonz (2023) uncov-

ered misreporting for refrigerators. Still, there has been, to our knowledge, little research

on misreporting in home energy-efficiency labels despite their widespread use. Our study

contributes to extending the bunching approach to detect manipulation in such a setting.

Moreover, we can relate this manipulation to the competition structure in the certifica-
3In the UK, both Comerford et al. (2018) and Sejas-Portillo et al. (2025) find evidence that households

are willing to make strategic investments in response to labels to increase home energy ratings, but they
argue that the possibilities for manipulation are limited in the english context.
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tion market. Our results, therefore, yield specific policy implications, as they emphasize

the need to impose clearer rules in the market for third-party assessors.

This paper is structured as follows: Section 2 describes the market for EPC certifi-

cation, its regulatory framework, and the incentives for manipulation that it may create.

Section 3 presents the data and the first evidence of manipulation. Section 4 presents

the econometric analysis of the relationship between competition and manipulation, and

Section 5 examines the welfare effects by measuring the associated house price premium.

2 The Market for energy performance certificates

2.1 The regulatory framework

The development of a regulated framework to assess the energy performance of buildings

in France follows the energy policy objectives defined at the European level to reduce

the energy consumption of buildings and limit greenhouse gas emissions.4 In France, it

is mandatory for sellers and landlords to provide an EPC in any sale or rental agreement

since 2007, and to include it in property advertisements since 2011. The initial purpose

of the policy was to provide households with clear information on the energy performance

of their homes. Over the years, the EPC has also become an essential tool for policies to

promote the development of energy-efficient buildings.

The French authorities regulate the method for establishing home energy certificates.

A certified trained expert must issue the EPC after a visit to the dwelling to record its

physical characteristics such as size, structure, quality of insulation, heating installation,

ventilation, and energy systems. The information collected is then used to predict the

home’s total energy consumption using a standardized procedure. For EPCs established

before July 2021, the energy consumption of older homes is calculated based on past

bills, while it is based on a predictive model for more recent buildings, called "DPE-3CL"

and whose calculation and parameters are defined by the French Ministry of Ecololgy
4Since 2002, the directive on the energy performance of buildings has established a general calculation

framework for energy diagnostics and minimum requirements. Since 2010, all EU countries have been
required to operate a certification scheme to provide prospective buyers or tenants with information on
the energy performance of a building (Directive 2010/31/EU on the energy performance of buildings).
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and Housing. The home is then assigned an energy label based on theoretical consump-

tion thresholds ranging from category A (low energy consumption) to category G (high

energy consumption), as well as a greenhouse gas (GHG) emissions label with the same

categories. We focus our analysis on the energy efficiency label, which is more directly

correlated with household energy costs than the GHG label.5 As one can see on Figure 1,

which shows an example of an EPC document, the presentation makes the category of

the energy label very prominent, in addition to the information on energy consumption.

In addition, the label category is usually the only information about energy efficiency

provided in property advertisements, which increases its salience for potential buyers.

In July 2021, the French government adopted a significant reform of the EPC, adjust-

ing its calculation method and making it a fully enforceable real estate diagnosis. There

were no serious legal consequences of providing an inaccurate EPC before 2021.6 Our

study focuses on the period between January 2013 and July 2021, which corresponds to

a stable legal and technical framework with weak enforcement regulation.

2.2 Market structure and incentives for manipulation

We focus on the EPCs of homes sold or rented on the real estate market. The main

actors involved in the market for EPC assessments of homes include owners (clients), EPC

certifiers (service providers), and real estate agents. Owners must provide an up-to-date

EPC with other mandatory technical diagnoses when selling or renting a home.7 Certifiers

usually offer to provide all certificates together for a fixed fee, paid by homeowners. Estate

agents, who may recommend a certifier to the seller, are likely to be aware of the potential

premium in the sale price of a home with a higher EPC, as property websites regularly

publish articles on the subject.8. As the main source of realtors’ revenue is derived from
5The energy efficiency label and the greenhouse gas emissions label are correlated because they vary

with the level of energy consumption, but the GHG label is worse for houses with fuel or gas heating
compared to houses with only electricity.

6The reform led to an update of the model used to calculate EPCs and the generalization of its use
for the assessment of all homes, along with a new simplified design for the presentation of the EPC

7Such as assessment of electricity and gas installations, exposure to lead and asbestos, climatic and
industrial risks in the area, etc. Some of these diagnoses, including EPC, have a limited validity period,
which implies that most sales require a new assessment.

8See for example the article https://edito.seloger.com/actualites/villes/vraiment-l-impact-dpe-prix-
d-un-logement-article-39526.html published by the main real estate website SeLoger September 2020
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broker fees, which are calculated as a percentage of the transaction price (MEF, 2020), it

is reasonable to assume that both realtors and homeowners would have a preference for

certifiers that give a favorable EPC label for the house.

In a competitive market, certifiers may feel compelled to manipulate EPC assessments

if they anticipate that competitors will use such practices to attract customers. If the

legal consequences of issuing inaccurate certificates are limited, competitive pressures

may increase the incentives for firms to engage in deceptive practices. Several features of

the certification market may exacerbate such behavior. First, manipulation is inherently

complex to detect because energy performance is not readily observable. Second, pro-

viding an inaccurate EPC rating has limited legal consequences during the study period,

thereby reducing the costs of fraudulent practices. Third, the services offered by certifiers

are pretty standardized, and barriers to entry are relatively low, which may exacerbate

the competitive pressure.9 In France, during the study period, there were almost 15,000

certifiers who were active in many local areas (see descriptive statistics in Table I).

Given the market’s organization, we hypothesize that more competitive markets will

lead to higher levels of manipulation. To test this hypothesis, we first need to develop a

method to detect manipulation in the absence of audit data that would allow for a direct

detection of fraud.

3 Data and evidence of manipulation

3.1 Data and summary statistics

Our main analysis is based on the database covering all EPCs for homes, provided in open

access by the French Agency for Energy Transition (ADEME). Our primary sample of

interest, which contains 3,18 million EPCs for houses issued between January 2013, and

June 2021 includes all the variables that certifiers were required to fill in when assessing

buildings (including geolocation data).10 It also provides detailed information on the
9Training costs are limited, as training centers typically offer fast-track course packages, where

prospective certifiers can acquire all the qualifications to become a certifier within a few weeks.
10We chose to restrict our sample to single-family homes, excluding flats because the quality of the

statistical merge based on geolocation is lower for multi-dwelling units, but the results (available upon
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EPC assessment for each dwelling unit, including the expected annual primary energy

consumption in kilowatt hours per square meter, the EPC label awarded, the certifier’s

identifier, and the assessment date. Summary statistics (see column 1 of table II), show

that less than 4% of homes are rated as high energy-efficient dwellings (classes A and B),

while more more than a third (35.5%) are rated D and 15% are rated low (class F) or

very low (class G). This distribution roughly represents the energy performance of the

stock of homes in France, as evaluated by Le Saout et al. (2022).11

To measure the housing price premium of a better label, we construct a second sample

with information on all houses sold in France between 2014 and 2022, for which we

can retrieve the associated Energy Performance Certificate. The dataset on real estate

transactions comes from the French Ministry of Finance (DGFiP, 2023). It includes

variables related to each transaction, including geolocation information of the dwelling,

property characteristics, and the transaction price. We match the two datasets using

geolocation information and property characteristics available in the two databases (see

appendixA for a detailed description of the datasets and merging method.). The resulting

merged database contains 568,436 house transactions matched with EPC observations.

Summary statistics (see column 3 in table II) show that the distribution of characteristics

in the merged sample is relatively close to the sample of all EPC homes, with an average

price of 226,000 euros.

3.2 Detecting manipulation in EPC certification

In the absence of audit data to detect fraudulent EPCs, we examine the distribution

of EPC labels to detect anomalies. We focus on a specific type of manipulation, which

can be inferred from the data: bunching at EPC label cutoffs. While several forms of

fraudulent practices can coexist in the EPC market, manipulation at the threshold is

potentially significant because it directly benefits the buyer. Indeed, the label is a salient

feature of the EPC, and, as we show later, exceeding the threshold is associated with a

request) are similar if we include flats.
11Among the existing stock of houses, Le Saout et al. (2022) tend to find a slightly higher share (17%)

of low to very low energy performing homes, as houses in the worst condition are less likely to be sold
or rented and to appear in the EPC database.
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significant house price premium.

To generate an EPC label, the certifier must first calculate the predicted theoretical

energy consumption based on the characteristics of the dwelling, and then assign an

energy class based on the energy thresholds defined by law. Without manipulation,

we should expect the distribution of theoretical energy consumption at the thresholds

for each label to be continuous, reflecting the diversity of dwelling characteristics and

the exogenous nature of the threshold definitions. However, Figure 2 shows systematic

deformations in the distribution of theoretical energy consumption at the thresholds

between different EPC classes for the entire sample of EPCs issued for houses over 2013-

2021. More specifically, we observe a bunching of EPCs on the favorable side of the

threshold, corresponding to a better energy class, and a missing mass on the other side

of the cutoff. We observe a deformation in the distribution at the 151, 231, 331, and 450

kWh thresholds, corresponding to the thresholds for classes C/D, D/E, E/F, and F/G.

To assess whether this visual evidence is statistically significant, we perform the den-

sity continuity test developed in Cattaneo et al. (2020), which is based on a McCrary

sorting test (McCrary, 2008) widely used in the empirical literature. The results, shown

in column 1 of table III, confirm that four of the six cutoffs exhibit significant disconti-

nuities in the distribution of EPCs, corresponding, as in the figure, to the thresholds for

classes C/D, D/E, E/F, and F/G. As a robustness check, we test for discontinuities at

the placebo cutoffs, defined as the midpoints between two actual thresholds. We find no

significant discontinuities at these placebo cutoffs (see column 2 of table III). These re-

sults confirm that substantial deformations in the distribution mainly occur at the cutoffs

between two EPC classes.

An important question is whether the observed bunching can indeed be interpreted

as a fraudulent practice. Two alternative interpretations could be put forward: bunching

could be an artifact of the method used to model theoretical consumption, or it could

reflect actual renovations households undertake to achieve a target EPC label. To inves-

tigate whether the model used to predict theoretical energy consumption could generate

bunching, we exploit the co-existence of two methods to assess this value in France before
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2021. For most homes (over 80%), energy consumption is calculated using a predictive

model called “3-CL”, but homes built before 1949 are assessed based on past energy

bills. When using past bills, the certifier calculates energy consumption based on the

average consumption over the past 3 years. We would therefore not expect that this

method of calculation would generate any specific discontinuity in the distribution of

energy consumption. Figure 3 reveals, however, the same deformation of the distribu-

tion of EPC labels, irrespective of the method used to calculate theoretical consumption.

This suggests that the model used to estimate consumption is not the primary driver of

bunching.

Another possible explanation for the observed bunching might be optimization by

households, making improvements to their dwellings to achieve a better energy class.

Collins and Curtis (2018), who find evidence of bunching for EPCs after dwelling renova-

tions in Ireland but not before, argue that this ex-post bunching could be evidence of a

genuine response by households undertaking renovations to reach a salient EPC thresh-

old. In the UK context, Sejas-Portillo et al. (2025) shows that dwellings with predicted

energy costs close to the more unfavorable side of an EPC threshold are more likely to

be re-certified within a short period and to achieve a better subsequent rating. They

argue that this is evidence that a small number of potential sellers are making strate-

gic investments to improve their property’s energy performance. However, they do not

detect significant discontinuities for the entire sample of EPCs. In the case of France,

clear bunching is found for the sample of all EPCs, most of which were carried out for

dwellings that had not undergone renovation. We can also exploit that the values of the

thresholds defining the energy performance classes were modified by the 2021 reform, to

analyze how bunching evolves before and after the reform. Figure 4, which reproduces

the distribution of EPCs as a function of predicted theoretical energy consumption for

certifications carried out after July 2021, shows that the distribution adjusts to the new

thresholds. The excess mass of EPCs previously observed at the old threshold values dis-

appears, while bunching appears at the new threshold values. Such a massive adjustment

in the distribution after a change in the legal values defining the thresholds suggests that
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the response is more likely due to changes in reporting practices by certifiers than by

actual actions taken by households.

In addition, we uncover a channel for adjusting the EPC score without renovation,

to manipulate the reported size of dwellings. The thermal model used to calculate most

EPCs is based on software that predicts absolute conventional energy consumption by

assessing the energy lost through the building envelope due to heat transfer. The expected

energy consumption is then divided by the surface area to get energy consumption per

square meter, which is used to attribute the energy class. A simple way to manipulate

the final EPC result is to reduce the house’s dimensions slightly. Since a slight reduction

in the floor area of a house results in a more considerable decrease in its envelope area,

a reduction in the declared size of the house will result in a reduction in conventional

consumption per square meter.12 Consistent with this intuition, Figure 7 shows evidence

that houses whose energy consumption is just below an EPC cutoff have a significantly

smaller reported size than houses just above. We estimate, using regression discontinuity

techniques (see below for a detailed explanation of the method), that these discontinuities

in size are significant for most cutoffs, but not at placebo points (see results in table VI).

Since we can assume that households carrying out renovations would not do so to reduce

the size of their dwelling, this finding adds to the evidence that the observed bunching

at the EPC cutoffs is mainly caused by manipulation in France.

3.3 Competition and manipulation: graphical evidence

Having established that bunching is likely to be due to an overly lenient assessment of

energy consumption at the threshold, we seek to understand whether it can be related

to the incentive structures in the third-party certification market. More specifically, we

want to investigate whether manipulation is more likely to occur in markets with higher

levels of competition. To do so, we focus on houses whose theoretical consumption is

close to an EPC cutoff where bunching has been detected. We restrict our sample to the
12In France, while there is a legal obligation to provide a floor area certificate when selling a flat, there

is no such legal obligation for the sale of a house. It is therefore very easy to manipulate the reported
dimensions of a house in the EPC certificate.
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EPCs within 5kWh/m2/year above or below the following cutoffs: C/D, D/E, E/F and

F/G. This represents a sample of 328,478 EPCs in these "areas of manipulation". The

descriptive statistics (see column 2 of table II) show that, despite the sample restrictions

on the distribution of labels, the other characteristics of the houses located at these cutoffs

are quite similar to the full sample of houses in the EPC database. The raw analysis of

the distribution of EPCs in this sample (see table VIII in the appendix) shows that, on

average, only 33% are above the cut-off, and 67% (twice as many) are below it and get

a better EPC class. Compared to a random allocation, where we would expect 50% of

observations on each side, this sample has considerable bunching.

We provide some descriptive evidence of the relationship between competition and

the manipulation of EPCs. We then construct a measure of bunching at the local level

by calculating the relative excess mass of EPCs to the left of the cut-off, aggregated

at the local level of the département, corresponding to administrative areas similar to

English counties.13 Competition is measured using a Herfindahl-Hirschman Index (HHI)

centered on the property’s location for which the EPC is issued. We include all certifiers

operating in the same postcode as the property and active in the year the EPC is issued.

The HHI is calculated in the standard way by summing the squares of the market shares

of each certifier that has operated in that market. This results in a specific HHI for each

postcode and year, which reflects the concentration faced by the owner of a property

when searching for certifiers.14 Figure 5, which represents the distribution of the HHI

within our sample, shows that there is considerable variation in the level of competition

at the zip code and year level, with a mean value of 0.21 and a standard deviation of 0.21.

While most areas exhibit low to moderate levels of concentration, a significant number

of areas are very concentrated, with only one certifier active in a given year. To provide

first evidence of the link between competition and manipulation, we construct an aggre-

gate measure of competition at the department level, by taking the average HHI of the
13More precisely, for each threshold, we calculate the difference between the number of EPCs to the

left of the threshold and the number to the right, normalized by the total number of EPCs in the interval.
We take the average for the thresholds C to G by department. Metropolitan France has 96 départements.

14Alternatively, we can define the HHI at the certifier level. See Appendix B for robustness checks
using this alternative definition.
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certifiers operating in a department/year. Figure 6 plots aggregate bunching, as a func-

tion of average competition at the department level. We observe a negative correlation

between bunching and HHI: more competition (lower levels of HHI) is associated with

more manipulation. To test the robustness of this correlation, we develop an econometric

model in the next section.

4 Econometric analysis

4.1 Empirical specification

We focus on the sample of certificates whose theoretical energy consumption is located

close to a cutoff where we detect manipulation, as defined in the previous subsection:

all EPCs with energy consumption within 5k Wh/m2/year above or below the following

cutoffs: C/D, D/E, E/F and F/G.

We consider the benefit Y ∗
ij that a certifier j gets from issuing a certificate i with

an energy consumption close to the thresholds, as a linear function of the vector of

explanatory variables X, with β the vector of coefficients, and the error term ϵi:

Y ∗
ij = X · β + ϵi (1)

We can define the probability that the predicted energy consumption falls just be-

low the threshold of one label, defined by the binary variable Yi, which equals 1 if the

theoretical energy consumption of the EPC takes a value just below the cutoff :

Yij = 1 if Y ∗
ij ≥ 0 and Yij = 0 if Y ∗

ij < 0 (2)

Assuming that the error term follows a standardized normal distribution ϵi ∼ N (0, 1),

we can use a probit model for estimation:

Pr(Yij = 1 | Xi) = Φ(Xi · β) (3)
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where Φ(·) is the cumulative distribution function of the standard normal distribution.

In the main specification, our explanatory variable of interest is the level of competi-

tion faced by the certifier in the market in which it operates, measured by the individ-

ualized HHI. We also include the number of certificates issued by the certifier to date

as a control variable to proxy for experience. In addition, we include controls related to

the characteristics of the EPC: the method of certification (energy bill or thermal model)

and the date of realization. To control for local property market characteristics, we also

include the local number of heating degree days and the local average yearly square meter

price at the zip code level. We also add cutoff fixed effects in all specifications.

4.2 Results

The results of the main specification, presented in the first column of table IV, show a

negative relationship between HHI and manipulation: a higher level of competition (i.e.

a smaller HHI) results in more manipulation. The marginal effects, shown in column 2

of Table IV, suggest that a decrease of the HHI by 1 standard deviation (0.21) increases

manipulation by 2.24 percentage points.15 This corresponds on average to a 13% decrease

in manipulation at the cutoff.16 These results are consistent with the prediction from

the industrial organization literature that more competition may reduce the quality of

certification.

The results on the coefficients of the other control variables also provide some inter-

esting insights. Certifiers’ use of thermal modelling seems to lead to more manipulation,

which makes sense as certifiers have more freedom to adjust parameters in such a model

than when taking the average of past energy bills. Areas with higher average house prices,

where the premium for more efficient homes tends to be lowest, as found in Civel (2019),

are also associated with lower levels of manipulation.
15This number is calculated by multiplying the coefficient of the marginal effect from column (2) of

the HHI, which is −0.116, by 0.205,the standard deviation of the HHI.
16Compared to a 50% random probability, the probability to be below the cutoff is on average 67% in

the sample, i.e. 17 p.p. higher. A decrease of 2.24 p.p. corresponds to a 13% decrease.
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4.3 Robustness checks

We perform a series of checks to assess the robustness of our results. First, we run the

same probit model at placebo cut-offs. To do so, we replicate the previously described

method on EPCs that are not in the "areas of manipulation" but in the middle of EPC

classes. Placebo cutoffs selected are 121, 191, 281, 401 kWh/m2/year, the bandwidth

is still set at 5kWh/m2/year. EPCs below these respective cut-offs are again attributed

a value of 1, and 0 otherwise. Results, presented in column (2) of table V, show no

significant effect of competition on bunching at the placebo cut-offs. These results sug-

gest that competition only increases the likelihood of manipulation when it matters to

sellers. Second, we check that the results are not sensitive to the definition of the level of

competition. To do so, we compute an HHI at the certifier/year level (rather than at a

transaction/year level), defining the relevant market for each certifier as all the zipcodes

where she is active in a given year (see appendix for a detail of the calculation). Al-

ternative measures of competition lead to a similar negative and significant relationship

between concentration and certification (column (3) of table V). Finally, we check that

the choice of the bandwidth around the cut-off used to measure the manipulation does

not affect the results. Results confirm that choosing a larger bandwith of 10Kwh instead

of 5KWh yields similar results (column (4) of table V). Overall, these results confirm the

robustness of the finding that markets with higher levels of competition for certifiers have

higher levels of manipulation. These results are consistent with predictions from theo-

retical models that certifiers have incentives to offer more favorable ratings to property

owners to increase their market share in the presence of competitors. In the next section,

we examine the welfare consequences of manipulation by providing new evidence that a

better EPC class does indeed trigger a significant housing premium.
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5 Assessing the welfare effects of manipulation: Mea-

suring the willingness to pay for better EPCs

Many studies have measured the green premium associated with energy-efficient homes

using hedonic regression models, in which the price of houses is assumed to be a function

of their various characteristics, including energy efficiency indicators. However, the main

difficulty in interpreting estimates from hedonic models is the potential correlation of the

green premium with other unobservable factors affecting house prices. In addition, it is

difficult in these models to disentangle the value associated with achieving a particular

EPC class from a broader green premium due to the better energy efficiency of the

dwelling.

Our aim here is not to measure the house price premium associated with energy-

efficient homes but to assess whether there is an effect of "crossing the threshold" between

two EPC classes. More specifically, we want to compare the house prices of houses

with similar energy consumption that have been assigned different EPC labels, to assess

whether the salience of the label has a specific effect on house prices.

Empirically, we can measure the impact of crossing the threshold in a regression

discontinuity (RDD) framework, restricting the sample to houses located near an EPC

label cutoff that are sold between 2014 and 2024. Figure 8 shows how the log of house

prices evolves around each cutoff. We observe a clear discontinuity in house prices when

crossing the cutoffs for a better EPC class, suggesting that households are willing to

pay a higher price for houses with a better label, even if they have very similar levels of

predicted energy consumption. To measure the price premium empirically, we apply a

RDD regression model, following the literature (Lee and Lemieux (2010) and Cattaneo

and Titiunik (2022)):

ln(Pi) = α̂ + β̂ · Xi + τ̂ · Di + γ̂ · Xi · Di + ϵ̂, (4)

where the dependent variable is the logarithm of the price of houses ln(Pi) located

just below and above each cutoff, β̂ and γ̂ are the estimated coefficients for energy con-
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sumption Xi and the interaction effect between energy consumption and treatment status

Xi · Di of house i, respectively. ϵ̂ is the estimated random error term and α̂. The impor-

tant underlying assumption on which relies RDD is the density continuity of the running

variable. The observed manipulation occurring at the thresholds poses, therefore, a threat

to identification, as we might be concerned that houses located close to the cutoff, but

on different sides, might be different in unobservable characteristics. If these unobserved

characteristics are positively linked to the dwelling’s quality, the previously observed pre-

miums might be misallocated to EPC classes. To overcome this problem, we adopt a

donut-hole RDD strategy, which consists of dropping observations near the cutoff that

have potentially been manipulated and conduct the RDD only on observations out of this

window. This is a standard strategy adopted in the literature to treat similar situations

(Barreca et al. (2011), Cattaneo and Titiunik (2022) and Barr et al. (2022)).17

The results in table VII confirm the visual evidence: crossing an RDD threshold is

associated with a significant house price premium. For the thresholds B/C C/D, D/E,

E/F, a better energy class is related to an increase in house prices of around 6%. The

effect is even higher for the extreme thresholds (A/B and F/G), with increases close to

0.15 and 0.20 of the log or price, respectively. We run the same RDD analyses at placebo

cutoffs corresponding to the mid-points between each class as a robustness check. We

find no significant price premium from crossing a placebo cutoff.

While these effects might seem significant, they align with the behavioral literature

showing inattention biases may lead consumers to focus on salient product information

features. In the market for used homes, Civel and Cruz (2018) shows that a substantial

share of individuals have difficulty processing information about energy efficiency and that

they focus their attention on the EPC class, which is the most salient element of the EPC

document. Our results show that this focus on the label translates into a significant price

premium for a better label, even after controlling for the predicted energy performance
17Bandwidth selection and confidence intervals adjustment for robust bias-correction are selected fol-

lowing the procedure developed in Cattaneo and Vazquez-Bare (2017) to accommodate for the potential
misspecification bias. The nearest-neighbor method is used for variance estimation.
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of the house.

6 Conclusion

This paper explores the relationship between competition and certification quality in the

Energy Performance Certificates (EPCs) market. Leveraging French administrative data,

we uncover evidence of bunching in the distribution of EPCs at the thresholds between

energy performance classes, signaling potential manipulation to secure more favorable

ratings. Our empirical findings reveal that the likelihood of manipulation increases as

competition among certifiers intensifies. Furthermore, we demonstrate that higher en-

ergy performance labels are associated with substantial house price premiums. These

findings highlight the distributional consequences of manipulation, as informed sellers

reap benefits at the expense of uninformed buyers.

These findings have significant policy implications, as accurately identifying energy-

inefficient homes is crucial for prospective buyers or tenants and is a key step in renovating

residential buildings and transitioning to a low-carbon economy. The results underscore

the challenge and importance of designing labels resistant to manipulation and com-

municating information clearly and transparently. Compared to the existing literature,

our results for France point to larger incentives for manipulation than in other coun-

tries. Indeed, existing analyses on energy performance certificates, their manipulation,

and the price premium associated with higher ratings reveal significant heterogeneity

in results. One possible explanation for this variability is the lack of harmonized EPC

rules across countries, which creates very different market incentives. Energy efficiency is

a cornerstone of the European decarbonization policy, so we suggest that implementing

standardized rules at the European level, based on the characteristics of non-manipulable

certificates (for instance, preventing sellers from freely shopping for certifiers, or limiting

threshold effects), would effectively address the inefficiencies and welfare losses caused by

current certifier practices.
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Figures and Tables

Figure 1: Example of an EPC label issued before July 2021
Source: French Minister for Ecological Transition
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Figure 2: Distribution of EPCs for houses (Jan 2013 - June 2021)
Notes: This figure shows the distribution of EPC energy labels as a function of theoretical energy consumption for the
period January 2013 to June 2021. Each colour corresponds to a different EPC class. The dotted lines correspond to
cut-off values between two classes, as defined by the French regulation before July 2021. Sample: All EPC issued for
houses in France between January 2013 and June 2021, from the ADEME EPC database.

Figure 3: Distribution of EPCs for houses, by method used for computation
Notes: This figure shows the distribution of EPC energy labels as a function of theoretical energy consumption and the
method used for computation from January 2013 to June 2021. The left panel corresponds to EPCs issued using the
thermal model 3CL (80% of the sample), and the right panel corresponds to EPCs issued using the method based on
past energy bills for houses constructed before 1949 (20% of the sample). Each color corresponds to a different EPC
class. The dotted lines correspond to cut-off values between two classes, as defined by the French regulation before
July 2021. Sample: All EPC issued for houses in France between January 2013 and June 2021, from the ADEME EPC
database.
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Figure 4: Distribution of EPCs for houses (July 2021-April 2024)
fromsize Notes: This figure shows the distribution of EPC energy labels as a function of
theoretical energy consumption from July 2021 to April 2024. Each colour corresponds
to a different EPC class. The thin dotted lines correspond to cut-off values between
two classes, as defined by the French regulation before July 2021, and the thick dotted
lines correspond to the new cutoff values, as defined by the regulation after the July
2021 reform. Sample: All EPC issued for houses in France between July 2021 and April
2024, from the ADEME EPC database.

Figure 5: Herfindahl-Hirschman Index per Zipcode
Notes: This figure shows the distribution of HHI computed at the zipcode level for a given year, for the period 2013
to 2021. Calculations from the authors, using the database for all EPCs for houses and flats issued in France between
January 2013 and June 2021, taken from the ADEME EPC database.
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Figure 6: Manipulation intensity vs weighted HHI defined by zipcode:year
Notes: This figure shows the relationship between the average concentration of certifiers at departmental level and the
intensity of manipulation of EPC certificates at the same level. Metropolitan France is divided into 96 departments, ad-
ministrative areas similar to English counties. Manipulation is calculated as the average at the departmental level at
cutoffs from C to G for a given year. For each cut-off, we calculate the difference between the number of EPCs to the
left of the threshold in the department and the number to the right, normalized by the total number of EPCs in the in-
terval. Average concentration at the department level is computed as the weighthed HHI of certifiers operating in each
zip code of the department and year (with weights taking into account the certifier activity in each zip code). The cor-
responding fitted linear model gives a significant negative effect of weighted HHI on manipulation intensity (coefficient
: -0.11003**). Calculations from the authors, using the database for all EPCs for houses and flats issued in France be-
tween January 2013 and June 2021 taken from the ADEME EPC database.
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(a) Cutoff between class A and B (b) Cutoff between class B and C

(c) Cutoff between class C and D (d) Cutoff between class D and E

(e) Cutoff between class E and F (f) Cutoff between class F and G

Figure 7: Reported Surface area of the house at the cutoffs between energy classes
Notes: This figure plots the binned averages and confidence intervals of the surface area of houses (in square meters)
reported by EPC certifiers as a function of the predicted energy consumption of the house in the vicinity of each of the
cut-off between two neighboring energy consumption classes. The thick vertical lines represent the value of the energy
consumption cut-off between two energy classes. The blue lines represent the linear fit computed separately on either
side of the cut-off. Calculations from the authors, using the database for all EPCs for houses issued in France between
January 2013 and June 2021 taken from the ADEME EPC database. Bandwidths are selected following the procedure
developed in Cattaneo and Vazquez-Bare (2017).
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(a) Cutoff between class A and B (b) Cutoff between class B and C

(c) Cutoff between class C and D (d) Cutoff between class D and E

(e) Cutoff between class E and F (f) Cutoff between class F and G

Figure 8: RDplots - Log of house price vs energy consumption.
Notes: This figure plots the binned averages and confidence intervals of the log of house price, as a function of the pre-
dicted energy consumption of the house in the vicinity of each of the cut-off between two neighbouring energy consump-
tion classes. The thick vertical lines represent the value of the energy consumption cut-off between two energy classes.
The blue lines represent the linear fit computed separately on either side of the cut-off. Calculations from the authors,
using the database of houses sold in France between 2014 and 2022 houses merged with a corresponding EPC from the
ADEME database database. Bandwidths are selected following the procedure developed in Cattaneo and Vazquez-Bare
(2017).
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Table I: Summary Statistics - Certifiers

Statistic Value / Mean (SD)

Number of Certifiers 14,443
Mean number of Certificates per certifier 473.0 (836.0)
Mean number of departments of intervention 4.24 (3.25)
Mean number of zipcodes of intervention 41.0 (38.6)
Mean number of active years 3.92 (2.36)

Notes: Calculations from the authors, using the certifier’s identifier from
the ADEME database for all EPCs for houses and flats issued in France
between January 2013 and June 2021.

Table II: Summary statistics - EPCs

(1) (2) (3)
Variable All EPCs Manipulated

Cutoffs EPCs
EPCs with
Price Data

Certification method:
Thermal model (3CL) 80.6% 80.8% 80.1%
Energy bills 19.4% 19.5% 19.2%

EPC Class:
A 0.3% 0.0% 0.3%
B 3.0% 0.0% 2.6%
C 18.5% 20.7% 17.7%
D 35.5% 46.6% 36.3%
E 27.7% 23.9% 28.3%
F 11.3% 7.7% 11.5%
G 3.7% 1.1% 3.3%

Year of certification
2013 5.9% 5.7% 6.7%
2014 10.7% 10.6% 18.6%
2015 11.0% 11.1% 17.5%
2016 11.5% 11.5% 17.0%
2017 12.4% 12.3% 16.0%
2018 13.3% 13.3% 14.2%
2019 14.2% 14.3% 9.5%
2020 12.8% 12.7% 0.6%
2021 8.4% 8.3% 0.0%

Construction period
Before 1945 4.2% 4.0% 8.5%
1945-1974 40.0% 38.7% 43.8%
1974-1981 18.0% 18.1% 17.6%
1982-2000 20.0% 21.7% 17.2%
2001-2004 4.2% 4.4% 3.1%
2005-2012 11.3% 11.2% 8.2%
2012-2022 2.3% 1.8% 1.6%
Unknown 0.1% 0.1% 0.0%

Av. floor space (in m2) 111.4 (47.2) 110.6 (45.3) 105.7 (38.9)

Av. nb of heating degree days 2,220.5 (391.1) 2,225.7 (389.7)

Av. property value (in euros) 226,227 (159,888)

Av. number of rooms: 4.2 (1.3)

Av. land area (in m2) 394.7 (281.5)

Observations 3,179,609 328,478 568,436

Notes: Statistics are calculated on the different samples used in the paper. Standard deviations are shown
in parenthesis. Column (1): all EPCS for houses issued in France between January 2013 and June 2021 from
ADEME. Column (2): EPCs with predicted energy consumption between −5 and +5 KWh of a manipulated
cutoff. Column (3): all recorded houses sales in France between 2014 and 2022 merged with a valid EPC.The
ADEME database on energy performance certificates (EPCs) provides information on the method used to
predict energy consumption (thermal model or energy bills-for houses built before 1949), the EPC class, the
year of certification, the construction period, number of heating degree days in the department, and floor
space of the dwelling, as reported by the certifier. Other variables are only available for the sample of EPCs
merged with data on property sales.
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Table III: Density Discontinuity Tests

Cutoff Robust T-value

(1) (2)
All EPCs EPCs with price

51 (A/B) -1.7319* 0.4841

91 (B/C) -10.667** 2.1698*

121 (Placebo) 1.0018 1.1663

151 (C/D) -47.5297*** -20.9581***

191 (Placebo) 1.3488 1.1315

231 (D/E) -140.1038*** -65.6055***

281 (Placebo) -0.428 0.9061

331 (E/F) -89.1625*** -37.5676***

401 (Placebo) -0.7387 -0.656

451 (F/G) -38.9022*** -13.2896***
Notes: this table shows the results of the test for discontinuity in density from
Cattaneo et al. (2020), testing for discontinuities at the thresholds between each
EPC class as well as at placebo cut-offs. Column (1): sample of all EPCs issued
between January 2013 and June 2021, Column (2): sample of EPCs matched
with a house sale. Significance of the test: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table IV: Probit Model for EPC manipulation

Probability of EPC value being below cutoffs:
(1) (2)

Probit Coefficients Marginal Effects

Herfindahl-Hirschman Index (HHI) −0.325∗∗∗ −0.116∗∗∗

(0.022) (0.008)

Certification method:
• Energy bill Reference Reference

• Thermal model 0.268∗∗∗ 0.099∗∗∗

(0.006) (0.002)

Heating degree days −0.00002∗∗∗ −0.000007∗∗∗

(0.00001) (0.000002)

Number of certificates realized −0.00000 −0.000000
(0.00000) (0.000001)

Zipcode average price/m2 −0.00001∗∗∗ −0.000005∗∗∗

(0.00000) (0.000001)

Date of realization 0.00000 0.000000
(0.00000) (0.000001)

Constant 0.046 –
(0.053)

Cutoff Fixed Effects Yes Yes
Observations 328,478 328,478
Log Likelihood −199,815.700
Akaike Inf. Crit. 399,651.300

Notes: this table shows the results of the estimation of the probit model for the sample of EPCs within
−/ + 5 Kwh/m2 of a manipulated cut-off (C to G), where the dependent variable is an indicator for
the EPC falling below the cut-off. The main variable of interest is the Herfindahl-Hirschman Index
(HHI), defined at the zipcode/year level. Control variables include the certification method used to
calculate the EPC, the number of certificates already realized by the certifier, the date of realization
of the EPC, the number of heating degree days at the departement level, the average house price
per/m2 at the zipcode level and cut-off fixed effects. Column (1): results of the probit regression
and , Column (2): Marginal effects. Standard errors in parenthesis. Significance of the test: *** p
< 0.01, ** p < 0.05, * p < 0.1. Calculations by the authors from the ADEME database of EPC for
houses (January 2013-June 2021).
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Table V: Probit Model for EPC manipulation - Robustness checks

Probability of EPC value being below cutoffs:
(1) (2) (3) (4)

Main Placebo Alternative HHI Bandwidth
specification cutoffs (per certifier) of 10kWh

Herfindahl-Hirschman Index −0.325∗∗∗ 0.017 −0.754∗∗∗ −0.285∗∗∗

(0.022) (0.021) (0.066) (0.015)

Certification method:
• Energy bill Reference Reference Reference Reference

• Thermal model 0.268∗∗∗ −0.022∗∗∗ 0.269∗∗∗ 0.183∗∗∗

(0.006) (0.005) (0.006) (0.004)

Heating degree days −0.00002∗∗∗ −0.00003∗∗∗ −0.00002∗∗∗ −0.00004∗∗∗

(0.00001) (0.00001) (0.00001) (0.00000)

Number of certificates realized −0.00000 −0.00001∗∗∗ −0.00001∗∗ 0.00001∗∗∗

(0.00000) (0.00000) (0.00000) (0.00000)

Zipcode average price/m2 −0.00001∗∗∗ −0.00000 −0.00001∗∗∗ −0.00001∗∗∗

(0.00000) (0.00000) (0.00000) (0.00000)

Date of realization 0.00000 0.00001∗∗ 0.00000 0.00000∗

(0.00000) (0.00000) (0.00000) (0.00000)

Constant 0.046 −0.093∗ −0.045 0.019
(0.053) (0.049) (0.052) (0.037)

Cutoff Fixed Effects Yes Yes Yes Yes
Observations 328,478 346,093 328,478 662,026
Log Likelihood −199,815.700 −239,428.900 −199,859.800 −417,434.300
Akaike Inf. Crit. 399,651.300 478,877.700 399,739.500 834,888.700

Notes: this table shows the results of the estimation of the probit model for the sample of EPCs , where the dependent
variable is an indicator for the EPC falling below the cut-off. The main variable of interest is the Herfindahl-Hirschman
Index (HHI), defined at the zipcode/year level. Control variables include the certification method used to calculate the
EPC, the number of certificates already realized by the certifier, the date of realization of the EPC, the number of heating
degree days at the departement level, the average house price per/m2 at the zipcode level and cut-off fixed effects. Column
(1): results of main specification, on the sample of EPCs within −/+5 Kwh/m2 of a manipulated cut-off (C to G); Column
(2): results of the probit on the sample of EPCs within −/ + 5 Kwh/m2 of a placebo cut-off; Column (3): results of the
probit on the same sample as column (1) but with an alternative definition of the HHI at the certifier/year level; Column
(4) results of the probit on the sample of EPCs within −/ + 10 Kwh/m2 of a manipulated cut-off. Standard errors in
parenthesis. Significance of the test: *** p < 0.01, ** p < 0.05, * p < 0.1. Calculations by the authors from the ADEME
database of EPC for houses (January 2013-June 2021).
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Table VI: RD Estimates on House Surface

Cutoff Model Coefficient Std.Err. P>|z| CI.Lower CI.Upper

51 Conventional 13.5789*** 2.6771 0.0000 8.3319 18.8260
51 Bias-Corrected 13.4265*** 2.6771 0.0000 8.1794 18.6736
51 Robust 13.4265*** 3.2602 0.0000 7.0367 19.8164

91 Conventional 4.5694*** 0.7552 0.0000 3.0893 6.0496
91 Bias-Corrected 4.8285*** 0.7552 0.0000 3.3484 6.3087
91 Robust 4.8285*** 0.8969 0.0000 3.0707 6.5864

131 (Placebo) Conventional -0.3531 0.8541 0.6793 -2.0272 1.3209
131 (Placebo) Bias-Corrected -0.4213 0.8541 0.6218 -2.0953 1.2527
131 (Placebo) Robust -0.4213 1.0779 0.6959 -2.5340 1.6914

151 Conventional 3.8542*** 0.4423 0.0000 2.9874 4.7210
151 Bias-Corrected 4.0498*** 0.4423 0.0000 3.1830 4.9166
151 Robust 4.0498*** 0.5154 0.0000 3.0397 5.0600

201 (Placebo) Conventional -0.3240 0.4226 0.4432 -1.1523 0.5043
201 (Placebo) Bias-Corrected -0.3771 0.4226 0.3722 -1.2054 0.4511
201 (Placebo) Robust -0.3771 0.5103 0.4599 -1.3773 0.6230

231 Conventional 4.0098*** 0.3611 0.0000 3.3021 4.7176
231 Bias-Corrected 4.1555*** 0.3611 0.0000 3.4478 4.8633
231 Robust 4.1555*** 0.4137 0.0000 3.3447 4.9663

281 (Placebo) Conventional -0.0341 0.5581 0.9513 -1.1279 1.0597
281 (Placebo) Bias-Corrected -0.0757 0.5581 0.8921 -1.1695 1.0181
281 (Placebo) Robust -0.0757 0.6865 0.9122 -1.4212 1.2698

331 Conventional 1.1648*** 0.3669 0.0015 0.4457 1.8839
331 Bias-Corrected 1.2583*** 0.3669 0.0006 0.5392 1.9774
331 Robust 1.2583*** 0.4345 0.0038 0.4068 2.1098

401 (Placebo) Conventional -1.0947 0.8809 0.2140 -2.8213 0.6319
401 (Placebo) Bias-Corrected -1.2820 0.8809 0.1456 -3.0086 0.4446
401 (Placebo) Robust -1.2820 1.0778 0.2342 -3.3944 0.8304

451 Conventional 0.6586 0.5859 0.2610 -0.4897 1.8069
451 Bias-Corrected 0.8230 0.5859 0.1601 -0.3252 1.9713
451 Robust 0.8230 0.6896 0.2327 -0.5286 2.1747

Notes: This table present the coefficient of the RDD doughnut estimation, where the dependent variable is the
house surface. Each row corresponds to a different local polynomial regression discontinuity estimation at a
different threshold. Actual cut-offs are located at 51 Kwh/m2 (A/B), 91 Kwh/m2 (B/C),151 Kwh/m2 (C/D),
231 Kwh/m2 (D/E), 331 Kwh/m2 (E/F) and 451 Kwh/m2 (F/G). The thresholds 131, 201, 281 and 401
Kwh/m2 correspond to placebo cut-offs. The coefficients report the magnitude of the jump at each threshold,
with three different methods for estimation (Conventional, Bias-Corrected and Robust). Bandwidth selection
and confidence intervals adjustment for robust bias-correction are selected following the procedure developed
in Cattaneo and Vazquez-Bare (2017) to accommodate for the potential misspecification bias. Observations
between within −/ + 5 Kwh/m2 of each threshold are excluded from the regression to account for potential
manipulation. The nearest-neighbor method is used for variance estimation. Standard errors in parenthesis.
Significance of the test: *** p < 0.01, ** p < 0.05, * p < 0.1. Calculations by the authors from the ADEME
database of EPC for houses, merged with price data (2014-2022).
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Table VII: RD Estimates on the log of House Price

Cutoff Model Coefficient Std.Err. P>|z| CI.Lower CI.Upper

51 Conventional -0.1993*** 0.0458 0.0000 -0.2890 -0.1096
51 Bias-Corrected -0.2191*** 0.0458 0.0000 -0.3088 -0.1294
51 Robust -0.2191*** 0.0524 0.0000 -0.3217 -0.1165

91 Conventional -0.0652*** 0.0157 0.0000 -0.0959 -0.0345
91 Bias-Corrected -0.0700*** 0.0157 0.0000 -0.1007 -0.0392
91 Robust -0.0700*** 0.0188 0.0002 -0.1067 -0.0332

121 (Placebo) Conventional 0.0055 0.0101 0.5856 -0.0143 0.0254
121 (Placebo) Bias-Corrected 0.0097 0.0101 0.3397 -0.0102 0.0295
121 (Placebo) Robust 0.0097 0.0121 0.4245 -0.0140 0.0334

151 (donut) Conventional -0.0625*** 0.0160 0.0001 -0.0938 -0.0312
151 (donut) Bias-Corrected -0.0679*** 0.0160 0.0000 -0.0993 -0.0366
151 (donut) Robust -0.0679*** 0.0190 0.0004 -0.1052 -0.0306

191 (Placebo) Conventional 0.0041 0.0071 0.5669 -0.0099 0.0180
191 (Placebo) Bias-Corrected 0.0021 0.0071 0.7698 -0.0119 0.0161
191 (Placebo) Robust 0.0021 0.0084 0.8034 -0.0143 0.0185

231 (donut) Conventional -0.0639*** 0.0123 0.0000 -0.0880 -0.0398
231 (donut) Bias-Corrected -0.0690*** 0.0123 0.0000 -0.0931 -0.0449
231 (donut) Robust -0.0690*** 0.0140 0.0000 -0.0964 -0.0416

281 (Placebo) Conventional -0.0094 0.0085 0.2702 -0.0261 0.0073
281 (Placebo) Bias-Corrected -0.0103 0.0085 0.2252 -0.0271 0.0064
281 (Placebo) Robust -0.0103 0.0102 0.3120 -0.0304 0.0097

331 (donut) Conventional -0.0568*** 0.0119 0.0000 -0.0801 -0.0334
331 (donut) Bias-Corrected -0.0609*** 0.0119 0.0000 -0.0843 -0.0376
331 (donut) Robust -0.0609*** 0.0137 0.0000 -0.0877 -0.0342

401 (Placebo) Conventional 0.0049 0.0122 0.6872 -0.0190 0.0289
401 (Placebo) Bias-Corrected 0.0021 0.0122 0.8656 -0.0219 0.0260
401 (Placebo) Robust 0.0021 0.0145 0.8863 -0.0263 0.0304

451 (donut) Conventional -0.1553*** 0.0406 0.0001 -0.2348 -0.0758
451 (donut) Bias-Corrected -0.1737*** 0.0406 0.0000 -0.2533 -0.0942
451 (donut) Robust -0.1737*** 0.0448 0.0001 -0.2615 -0.0860

Notes: This table present the coefficient of the RDD doughnut estimation, where the dependent variable
is the log of house price. Each row corresponds to a different local polynomial regression discontinuity
estimation at a different threshold. Actual cut-offs are located at 51 Kwh/m2 (A/B), 91 Kwh/m2 (B/C),151
Kwh/m2 (C/D), 231 Kwh/m2 (D/E), 331 Kwh/m2 (E/F) and 451 Kwh/m2 (F/G). The thresholds 131,
201, 281 and 401 Kwh/m2 correspond to placebo cut-offs. The coefficients report the magnitude of the jump
at each threshold, with three different methods for estimation (Conventional, Bias-Corrected and Robust).
Bandwidth selection and confidence intervals adjustment for robust bias-correction are selected following the
procedure developed in Cattaneo and Vazquez-Bare (2017) to accommodate for the potential misspecification
bias. Observations between within −/ + 5 Kwh/m2 of each threshold are excluded from the regression to
account for potential manipulation. The nearest-neighbor method is used for variance estimation. Standard
errors in parenthesis. Significance of the test: *** p < 0.01, ** p < 0.05, * p < 0.1. Calculations by the
authors from the ADEME database of EPC for houses, merged with price data (2014-2022).
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A Appendix A - Detailed description of the datasets

A.1 EPC database
In France, certifiers must register each EPC with the French Agency for Energy Transition
(ADEME) to be considered officially valid. The resulting EPC database, produced by
ADEME, is available in open access on the French government open data portal.18 It
contains the universe of EPCs carried out since between January 2013 and July 2021
by 14,443 different certifiers. This comprehensive CPE database includes more than 90
variables that certifiers are required to fill in when assessing buildings. These variables
provide detailed information about the building, including geolocation data (latitude and
longitude) for most entries and the year of construction. They also provide detailed
information on the EPC assessment for each dwelling unit: the expected annual primary
energy consumption in kilowatt hours per square metre, the EPC label awarded, the
EPC assessment method (based on the dwelling’s heating bills or a thermal model), the
certifier’s identifier, and the date of the assessment. After excluding entries containing
missing or incorrect information (such as incorrect geolocation data, inaccurate postal
zone information or inconsistent energy consumption figures), we refined the dataset to
include dwellings with a primary energy consumption between 0 and 700 kWh/m2/year.

A.2 Real Estate Data
Real Estate data comes from the transaction data "Demande de valeur Foncieres" pro-
duced by the French Department of the Treasury, which provides information on property
transactions in mainland France (except Alsace and Moselle). The information contained
in the dataset comes from official deeds of sale and cadastral information. This dataset
comprises variables related to each transaction, including geolocation information of the
dwelling, property characteristics, and the transaction price. The last five years of the
datasets are available in open access on the French government’s open data portal.19.
Researchers can request access to historical archives of the data from CEREMA.20

We use the registry of all real estate transactions from January 1st, 2014, to December
31st, 2022. Key entries with missing or inconsistent information were removed. Addi-
tionally, luxury buildings valued over 2 million euros and dwellings priced below 10,000
euros were excluded from the analysis.

A.3 The method to merge the two datasets
To carry out our analysis, we merged the two datasets. Laking a common identifier, we
used geolocation variables (latitude and longitude) to link EPCs to transaction records.
Given the differences in the registration of coordinates in each database, a direct match
with specific latitude and longitude values was not sufficient. Our matching strategy was
to draw a circle with a radius of 20 metres around each property transaction location

18see https://www.data.gouv.fr/fr/posts/la-base-des-diagnostics-de-performance-energetique-dpe/
19see https://www.data.gouv.fr/fr/datasets/demandes-de-valeurs-foncieres/
20https://datafoncier.cerema.fr/dv3f
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and use an algorithm to identify EPCs within this area. From the pre-selected EPCs, we
assigned the one that contained consistent information about the property characteristics
(such as the house size in square metres). Where more than one EPC matched the
property characteristics, the most recent pre-sale valuation was selected. We chose to
restrict the analysis to houses, as the geographical accuracy of the match is better for
houses than for multi-family dwellings.

The resulting merged database contains 568,550 house transactions matched with
their EPC. Summary statistics (see Table II), is roughly similar to the original EPC
databases, indicating that the merged database accurately represents the initial sample.
Moreover, the sample of EPC and houses sold restricted to the manipulated cutoffs are
also roughly similar.
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B Appendix B - Robustness checks

B.1 Calculation of the HHI
Our main measure of concentration is the Herfindahl-Hirschman Index (HHI), calculated
at the zipcode year level, reflecting the local level of competition faced by property owners.
To check that the results are robust to the definition of the concentration measure, we also
compute the HHI at the certifier level for the entire period under study. To do this, we
define each certifier’s relevant market as all combinations of years and postcodes in which
she has issued at least one EPC, whether for a house or an apartment. Then, within this
defined market, the HHI is calculated in the standard way by summing the squares of
the market shares of each certifier that has operated in that market. This process results
in a specific HHI for each certifier, reflecting the concentration of the market in which
she operates, rather than the concentration of the market in the area where the property
is located. The results using this alternative measure of HHI (see Table V) are similar
to the main results: a higher level of concentration (lower HHI) is associated with less
manipulation.

Figure 9: Herfindahl-Hirschman Index defined per Certifier and per year
Notes: This figure shows the distribution of HHI computed at the certifier level for a given year, from 2013 to 2021.
Calculations from the authors, using the database for all EPCs for houses and flats issued in France between July 2021
and April 2024, taken from the ADEME EPC database.
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C Appendix C - Additional Tables

Table VIII: EPC count 5kWh below and above cutoffs

Cutoff Below Above
C/D 67,930 55,053
D/E 98,509 34,238
E/F 44,073 14,317
F/G 10,680 3,678
Total 221,192 107,286

Notes: this table shows the number
of EPCs issued above and below each
EPC cut-off, for a bandwidth of −5
to +5 kWh of predicted energy con-
sumption per m2, from the ADEME
database.

Table IX: RD Estimates - House Price in level

Cutoff Model Coefficient Std.Err. P>|z| CI.Lower CI.Upper

51 Conventional -26,997** 11,868 0.0229 -50,259 -3,735
51 Bias-Corrected -33,579*** 11,868 0.0047 -56,841 -10,317
51 Robust -33,579** 13,824 0.0151 -60,674 -6,484

91 Conventional -10,806*** 4,071 0.0080 -18,787 -2,826
91 Bias-Corrected -10,758*** 4,071 0.0082 -18,738 -2,777
91 Robust -10,758** 5,126 0.0359 -20,806 -709.5

151 (donut) Conventional -8,085** 3,913 0.0388 -15,755 -414.9
151 (donut) Bias-Corrected -9,839** 3,913 0.0119 -17,509 -2,168
151 (donut) Robust -9,839** 4,887 0.0441 -19,417 -260.5

231 (donut) Conventional -5,834* 3,017 0.0531 -11,747 79.16
231 (donut) Bias-Corrected -7,119** 3,017 0.0183 -13,032 -1,205
231 (donut) Robust -7,119** 3,629 0.0498 -14,232 -6.533

331 (donut) Conventional -6,396** 2,507 0.0107 -11,311 -1,481
331 (donut) Bias-Corrected -7,365*** 2,507 0.0033 -12,279 -2,450
331 (donut) Robust -7,365** 2,920 0.0117 -13,088 -1,641

451 (donut) Conventional -24,794*** 7,329 0.0007 -39,160 -10,429
451 (donut) Bias-Corrected -27,890*** 7,329 0.0001 -42,255 -13,525
451 (donut) Robust -27,890*** 8,902 0.0017 -45,338 -10,442

Notes: This table present the coefficient of the RDD doughnut estimation, where the dependent variable
is the house price in level. Each row corresponds to a different local polynomial regression discontinuity
estimation at a different threshold. Actual cut-offs are located at 51 Kwh/m2 (A/B), 91 Kwh/m2 (B/C),151
Kwh/m2 (C/D), 231 Kwh/m2 (D/E), 331 Kwh/m2 (E/F) and 451 Kwh/m2 (F/G). The thresholds 131,
201, 281 and 401 Kwh/m2 correspond to placebo cut-offs. The coefficients report the magnitude of the jump
at each threshold, with three different methods for estimation (Conventional, Bias-Corrected and Robust).
Bandwidth selection and confidence intervals adjustment for robust bias-correction are selected following the
procedure developed in Cattaneo and Vazquez-Bare (2017) to accommodate for the potential misspecification
bias. Observations between within −/ + 5 Kwh/m2 of each threshold are excluded from the regression to
account for potential manipulation. The nearest-neighbor method is used for variance estimation. Standard
errors in parenthesis. Significance of the test: *** p < 0.01, ** p < 0.05, * p < 0.1. Calculations by the
authors from the ADEME database of EPC for houses, merged with price data (2014-2022).
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