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Residential energy consumption accounts for approximately 30% of global final 

energy consumption and 26% of total greenhouse gas emissions. Investing in the 

energy retrofit of dwellings is widely recognized as a key strategy to reduce both. 

However, the pace of these investments remains slow, as household decisions 

are hindered by multiple factors collectively known as the energy efficiency gap. 

To mitigate this issue, financial support programs for retrofitting have been 

implemented in developed countries. However, studies assessing their 

effectiveness reveal significant heterogeneity in outcomes. To contribute to the 

design of more effective programs, this paper conducts a meta-analysis that 

clarifies the actual impact of these initiatives, identifies the key determinants of 

their effectiveness, and corrects potential publication biases in evaluation results. 

Based on the Levelized Cost of Carbon Abatement derived from the meta-

regressions, the main policy implication is that energy retrofitting is cost-effective. 

However, it should prioritize dwellings using natural gas rather than electricity in 

Europe, whereas the opposite approach is more suitable for the United States. 
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Executive summary 

 

Operations of buildings account for 30% of global final energy consumption and 26% of 

global energy-related Greenhouse Gas (GHG) emissions, 18% if we focus on indirect 

emissions from the production of electricity and heat used in buildings. Implementing energy 

efficiency in the building sector helps reduce the energy bill of households on the one hand 

while addressing climate change on the other hand. However, the weakness of new 

construction flow compared to the stock explains the relative inertia in energy consumption 

and GHG emissions. Therefore, governments in developed countries have designed 

programs to incentivize investing in energy retrofitting their dwellings by households. 

These programs are expected to be win-win to the extent that for one euro invested, at least 

one euro is saved on the energy bill during the lifetime of the installations. 

Given the magnitude of public funds mobilized in energy retrofit programs, empirical works 

have been conducted to assess their effectiveness. Nevertheless, these works' geographical 

and temporal scopes are limited due to the cost of implementation and high data 

requirements, making their comparison and synthesis uneasy. There is, therefore, a need for 

a meta-analysis that can summarize the heterogeneous and sometimes contradictory 

results of existing studies into a synthetic and transferable measure of the effect to be 

expected from retrofit programs. This paper is the first to propose such a meta-analysis. 

The proposed methodology offers several advantages: 

1. Control of heteroscedasticity: the sampling error varies from one study to another, 

making it necessary to weight the reported results to reflect their uncertainty. 

2. Control of publication bias: it is well documented in the literature that studies with 

high and significant results have a higher chance of being published, inducing a bias in 

publicly available results. 

3. Control of observed and unobserved heterogeneity: differences in the 

characteristics of retrofit programs and methods implemented to assess them have to 

be neutralized to make reported results comparable. 

The meta-regressions implemented on a set of studies reporting up to 171 estimates of the 

rate of energy savings from retrofit programs conducted all over the world during the four last 

decades leads to a significant positive synthetic rate of energy saving of magnitude 

10%, which is nevertheless 2% less than a rough average of results reported in the studies. 

The meta-regressions results also allow us to compute comparable Levelized Cost of Carbon 

Abatement (LCCA) from which two crucial policy recommendations can be drawn: 

1. It is relevant to prioritize the retrofit of dwellings to abate GHG emissions based on the 

argument that they are associated with low, or even negative, LCCA. 

 

In Europe, the retrofit of dwellings using natural gas as the main source of energy is more 

profitable than the retrofit of dwellings using electricity, but it is the opposite in the United 

States. The sharp difference between Europe and the US stems from the price gap of natural 

gas for residential use. 



1 Introduction

According to the International Energy Agency (IEA), the operations of buildings accountfor 30% of global final energy consumption and 26% of global energy-related Green HouseGas (GHG) emissions, 8% being direct emissions in buildings and 18% indirect emissionsfrom the production of electricity and heat used in buildings1. Consequently, implementingenergy efficiency in the buildings sector is akin of ”killing two birds with one stone”. It helpsreducing the energy bill of households on the one hand and addressing climate change on theother hand. These two facets of energy efficiency in buildings have long been recognized, asattested for instance by the papers by Rosenfeld et al., 1993 or Levine et al., 1996. However,the weakness of new constructions flow compared to the stock explains the relative inertiain both energy consumption and GHG emissions. In a recent report on energy efficiency(IEA, 2024), including a chapter explicitly dedicated to the buildings sector, the IEA lists arelatively large number of national building energy codes with provisions promoting energyefficiency in new buildings, but notes that significantly fewer include provisions for improvingthe energy performance of existing buildings. Yet the report points that ”improving efficiencyin existing buildings is pivotal to accelerate progress, and requires an integrated approach”.The question of whether it is relevant to subsidize or assist households in the adoptionof retrofit investments, in addition to regulatory measures as those embedded in buildingsenergy codes, arises.The argument that a public support to retrofit dwellings is required originates in the gapobserved between the expected investment rate in view of the promised profitability and theactual investment rate of retrofit. This energy efficiency gap may be due to households under-valuing the return on investment (Gerarden et al., 2017). As the improvements in buildings’energy efficiency may last for at least 12 years (Jafari and Valentin, 2017), the whole lifetimeof these installations may not be properly considered by households. Therefore, governmentsin developed countries designed multiple policies for households to undertake such invest-ments. These policies are considered win-win to the extent that for one euro invested, at leastone euro saved on the energy bill during the lifetime of the installations is expected. The
1https://www.iea.org/energy-system/buildings



motivation for this type of public policy has also sometimes been coupled with the promise ofpositive macroeconomic effects on the economy, particularly in terms of employment (Mikulićet al., 2016). This explains why some programs were launched following major shocks, such asthe Weatherization Assistance Program created by the Congress of the United States in 1976in response to the oil shocks of the 1970s (Tonn et al., 2018) or, in Europe, the requirementfor European Union member states to adopt a long-term renovation strategy set out in theEnergy Performance of Buildings Directive since 2010, which has been revised in 2018 andrecently in 2024, faced with the urgency of acting to limit global warming (Bertoldi et al.,2021) .The importance of the resources mobilized within the framework of public financial supportprograms for housing renovation called for the conduct of an evaluation of the effectivenessof these programs. Since the 1980s, a literature specially dedicated to this evaluation hasdeveloped. The first evaluation works have immediately highlighted lower results in terms ofenergy savings actually observed compared to the forecasts made ex ante using engineeringmodels. The fine granularity of the data required for the evaluation work, as well as theneed to cross-reference measurement data within homes with bill data, local weather dataand more general data on the prices of energy supplied to households, have generally limitedthe geographical scope of each study. Similarly, the cost of monitoring households that havebenefited from financial support for renovation has limited the temporal depth of the studies.The literature therefore presents a series of studies with limited geographical and temporalscope. As a consequence, it is difficult to transpose the results to new programs in order toanticipate their effects. Added to this is the evolution and diversity of quantitative methodsfor evaluating renovation support programs. Hence the need for a meta-analysis which, toour knowledge, has not yet been done.Meta-analysis refers to the statistical synthesis of results from a series of studies that havebeen collected systematically, all of these studies aiming to assess the size of a commoneffect or treatment. As stated in Borenstein et al., 2021:
If a treatment effect (or effect size) is consistent across the series of studies,these procedures enable us to report that the effect is robust across the kindsof populations sampled, and also to estimate the magnitude of the effect more
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precisely than we could with any of the studies alone. If the treatment effect variesacross the series of studies, these procedures enable us to report on the rangeof effects, and may enable us to identify factors associated with the magnitude ofthe effect size.
Consistent with this definition, the present paper aims to provide an estimate of the syn-thetic effect size, in terms of percentage of energy savings, that can be expected from programssupporting the energy retrofit of residential dwellings and to inform on the biases and de-terminants of energy savings reached. It builds on the now well established methodology ofmeta-analysis and, more specifically, meta-regressions, the historical development of which isanalyzed by Tipton et al., 2018. The idea is to reduce the uncertainty surrounding the impactof such programs, with some studies announcing energy savings of more than 20% (Raynaudet al., 2016, Wagner and Diamond, 1987) while others announce lower results of the orderof 1%, potentially not significantly different from 0% (Kaiser and Pulsipher, 2010, Zivin andNovan, 2016). The paper proceeds as follows. A first section presents the meta-data. Thechoice of the variable of interest, the collection strategy of the studies covered by the meta-analysis and then the general description of these studies are detailed. The second sectiondeals with the publication bias, a bias that appears quite recurrently in meta-analyses andwhose correction is often essential to calculate a robust synthetic effect size. A graphicalapproach completed by a first series of meta-regressions confirms the importance of this biasin our meta-data. A third section follows which aims to control various sources of observed orunobserved heterogeneity between studies. The meta-regressions correcting for these differ-ent elements are finally mobilized in order to estimate a robust synthetic effect size aroundwhich the uncertainty is greatly reduced with regard to what a rudimentary preliminary ex-amination of the meta-data could suggest. A last section concludes by examining the policyimplications of the meta-analysis results.
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2 Meta-data

2.1 Collection process

A prerequisite for a meta-analysis and meta-regressions is to identify an outcome of empiricalstudies that is comparable, computable, reliable and interpretable (Lipsey and Wilson, 2001;Cumpston et al., 2019). It must have the same meaning throughout the different studies andmust be convertible in the same unit. This outcome is referred to as the ”effect size” estimatedby each study. Reliability and comparability requires that a measure of the magnitude ofsampling errors is also available, most often in the form of the estimated standard error ofthe effect size. Looking at the most prominent articles in the field of the economics of energyretrofit programs like the ones by Fowlie et al., 2018 or Webber et al., 2015, it appears thatthe measure of energy savings post-retrofit, directly or indirectly expressed as a percentageof pre-retrofit energy consumption, is a good candidate. Even if they do not explicitly reportsuch an outcome, many studies display results that enable us to compute this energy savingsratio. For instance, if a study reports the savings in kWh, the total average energy bill inmonetary units, and a price per kWh, we are able to compute savings as a percentage ofenergy consumption. Expressing the outcome as a ratio or percentage eases the comparisonby eliminating problems inherent to the use of different units, for instance different currenciesif retrofit programs in different countries are studied. Energy savings are a common goalshared by most of energy efficiency retrofit programs due to both the consequences on theenergy bill paid by households and the collective consequences in terms of reduction ofgreenhouse gas emissions or lower investment requirements due to the potential shavingeffect on the peak load demand for electricity. As energy savings crucially depend on howmuch is invested in the retrofit program, an inclusion criteria for studies to be considered inthe meta-analysis is that they also display information on the average cost of the programper dwelling and, potentially, information on the decomposition of this cost between differenttypes of actions aimed at improving the energy efficiency of dwellings2. In addition to energy
2All variables in monetary units have been deflated and converted in 2021 Euros equivalent by using inflationrates and exchange rates data from the OECD. Tests of robustness have been conducting by using the ConsumerPrice Index instead of the inflation rate and the Purchasing Power Parity instead of the exchange rate.
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savings as a percentage of the pre-retrofit energy consumption and to the average cost ofthe retrofit program per dwelling, we also need to gather information on the retrofit programitself and on the quantitative methods implemented in each study to estimate the effect of theprogram in terms of energy savings.With these selection criteria in hand, the next step of a meta analysis is to collect all eli-gible studies. It can be made by combining two complementary strategies. The first strategyis to build on existing and recent systematic reviews. In our case, we have identified twoliterature reviews. The first review (Giandomenico et al., 2022) is a census of all studiesevaluating energy savings and cost-effectiveness of energy retrofit programs. The secondone (Berretta et al., 2021) aims to identify, appraise and synthesize the evidence availableon the effectiveness of energy efficiency measure installations, including those bundled withbehavioral interventions. The second strategy consists in complementing the set of studiesby focusing on papers cited by and citing the most prominent studies identified with the firststrategy, namely in our case the two articles by Fowlie et al., 2018 or Webber et al., 2015,including papers published up to October 2023. A check of the relevance of each paper hasbeen made on the basis of its title and its abstract before reading the full paper and searchingfor the key variables for the meta-regressions. Details on the process and the count of studiescollected with these two complementary strategies are given by the Preferred Reporting Itemsfor Systematic Reviews and Meta-Analyses (PRISMA) diagram displayed in Figure 1. Weended up with 44 studies, two of which provide two analyses, providing us with 46 differentcases. The different studies are listed in Table 1 in chronological order.

2.2 Overview of studies

The period covered by the studies gathered for our meta-analysis ranges from 1981 to 2022.Nevertheless, Figure 2 highlights that these studies are not evenly distributed over the entireperiod. They are rather concentrated in two waves. The first wave has spread on the firstdecade and mainly involves studies at a local scale of the US weatherization assistanceprogram launched in 1976, a detailed presentation of which can be found in Tonn et al.,
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Table 1: Studies included in the analysis

Id Study Id Study1 Talwar and Hirst, 1981 23 Raynaud, 20142 Hirst et al., 1984 24 Webber et al., 20153 Newcomb, 1984 25 Zivin and Novan, 20164 Hirst et al., 1985a 26 Grimes et al., 20165 Hirst et al., 1985b 27 Adan and Fuerst, 20166 Hirst, 1985 28 Hamilton et al., 20167 Hirst and Goeltz, 1985b 29 James and Ambrose, 20178 Hirst and Goeltz, 1985a 30-31 Allcott and Greenstone, 20179 Hirst, 1986 32 Coyne et al., 201810 Goldberg, 1986 33 Giraudet et al., 201811 Keating and Hirst, 1986 34-35 Fowlie et al., 201812 Goldman and Ritschard, 1986 36 Liang et al., 201813 Rodberg, 1986 37 Beagon et al., 201814 Wagner and Diamond, 1987 38 Peñasco and Diaz-Anadon, 201815 Hirst and Trumble, 1989 39 Blaise and Glachant, 201916 Brown and Berry, 1995 40 Alberini et al., 201917 Kaiser and Pulsipher, 2010 41 Filippini and Zhang, 201918 Scheer et al., 2013 42 Boampong, 202019 Maher, 2013 43 Davis et al., 202020 Suter and Shammin, 2013 44 Coyne and Denny, 202121 Alberini et al., 2014 45 Peñasco and Anadon, 202122 Blasnik et al., 2014 46 Hancevic and Sandoval, 2022
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Figure 1: Prisma Diagram

2018. The second wave ranges over the last decade and encompasses geographically morediversified studies, including for instance several European countries like the United Kingdom,Italy, Ireland and France. In Figure 2, the average effect size during the first and second wavesis signaled by the solid horizontal line in respectively red and blue, with the associated 95%confidence interval’s bounds drawn as dashed lines. Figure 2 exhibits no striking differencein terms of the estimated effect size (points), with an average effect size only slightly lowerduring the second period. In contrast, the confidence interval sharply widens for the secondwave of papers, due to a higher dispersion (vertical segments correspond to 95% confidenceintervals individually reported in each study) of estimated effect sizes reported by papers inthe second wave compared to papers in the first wave. Moreover, some papers belonging tothe second wave do not rule out the hypothesis that there are no significant energy savings,as indicated by the associated confidence interval that includes an energy savings ratio equalto zero. These papers contribute to slightly lowering the average effect size for the secondwave and, more importantly, to increase uncertainty surrounding the synthetic effect size as
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captured by the widened synthetic confidence interval that also includes zero.
Figure 2: Studies by year of publication, with estimated effect size and confidence interval

Examination of papers in the first wave indicates that the main policy stakes they focus onis the reduction of the energy bill paid by households and, more marginally, the shaving ofpeak load demand when the main source of energy is electricity. In the latter case, the ideais to test whether the weatherization assistance program can avoid having to invest in costlynew generation capacities. The focus on the energy bill is consistent with the long lastingimpact of the two oil shocks that occurred in 1973 (following the embargo on oil exportsto the US and the cuts in oil extraction decided by the Organization of Arab PetroleumExporting Countries) and 1979 (following a drop in oil production in the wake of the IranianRevolution). These shocks altered the world oil market and induced a sharp increase in theprice of a barrel of oil which has been transmitted to the price of natural gas. A cornerstone ofpapers in the first wave of studies is the search for an explanation of the gap between energysavings as predicted by engineering models and energy savings actually observed in most
ex post assessments of the weatherization assistance program conducted for the different USjurisdictions treated in the papers. It led to the emergence of the concept of a rebound effect:improvements in energy efficiency reduce the cost of energy services which can in turn leadto increased energy consumption (Greening et al., 2000). The literature has identified twoversions of the rebound effect, the direct rebound effect and the indirect rebound effect. The

9/44



direct rebound effect can be interpreted as a change in the behavior of households resultingfrom energy retrofits, meaning that households may adjust their attitudes due to the lowerenergy use (Belaıd et al., 2018), by increasing their comfort with higher temperatures in thedwelling, by heating rooms that were previously not heated, or by wearing fewer clotheslayers on average among other examples. The indirect rebound effect results from householdsspending money saved thanks to energy efficiency improvements in the purchase of newappliances that use energy. By contrast with the rebound effect which is post-retrofit, a pre-retrofit effect is also mentioned: the pre-bound effect. Indeed, different papers report that olddwellings have an actual energy consumption below their theoretical energy rating (Galvinand Sunikka-Blank, 2016). Overestimating the pre-retrofit consumption therefore leads tooverestimating the actual savings post-retrofits.The renewed interest in the evaluation of energy efficiency programs that gave rise to thesecond wave of papers seems to stem from the contribution of energy use in buildings toglobal warming. Indeed, most papers belonging to this second wave point to climate changeas an argument to implement such programs. For instance Maher, 2013 starts his intro-duction by recalling that ”buildings account for 42 percent of energy use and 38 percent of
CO2 emissions in the United States”. Suter and Shammin, 2013 for their part, start theirintroduction by stating that ”In the face of growing concerns regarding climate change, theextraction and transport of conventional fuels, and energy market volatility, demand-sidemanagement through energy efficiency is now at the forefront of energy policy and planning”.Similarly, referring to energy efficiency programs based on rebates and tax credits, Alberiniet al., 2014 write that ”a major goal of these policies is to reduce the emissions of green-house gases associated with electricity generation and energy use in the home”. The twoprominent papers are no exception: Webber et al., 2015 explicitly report results in terms ofcarbon emissions savings while Fowlie et al., 2018 display estimates for CO2 abatement costs.
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2.3 Main characteristics of studies

Extracting and codifying the information contained in each relevant study on energy savingsinduced by public policies, more specifically the estimated effect size and its standard de-viation, provides with a dataset {
(θ̂i, σ̂i, Xi)

}N

i=1
where θ̂i denotes the estimated effect sizein study i, σ̂i stands for the estimated within-study standard deviation of the effect size instudy i and Xi is a range of covariates of the effect size. In our specific data analysis, thedata set comprises N = 171 different estimates of the outcome based on 46 different sub-samples of the whole population of statistical units which are households all over the world,some studies on a same sub-sample of the population providing several estimates from dif-ferent models. Moreover, we have not been able to retrieve covariates informing about whichcomponent of dwellings were subject to retrofit and, more important, about the associatedcost per component for each of the 171 different estimates so that we are left with N = 161studies if we are willing to use this kind of information. Thereafter we present results forthe three samples referred to as sample (1) with N = 46 when only one main estimate perstudy is used, sample (2) with N = 171 when all estimates available in each study are usedand sample (3) with N = 161 when all estimates in each study are used, conditional on theavailability of information on which parts of the dwellings were subject to retrofit and whatwas the associated cost.The upper part of Table 2 reports descriptive statistics of the two key elements of themeta analysis, namely the effect size and its standard deviation, which are also illustratedby Figure 2. Overall, the average energy efficiency savings amounts to 12.29% of the initialenergy consumption (13.93% for the first wave of studies and 11.41% for the first wave) whilethe standard deviation equals 3.47% (3.72% and 6.87% for respectively the first wave and thesecond wave). Hence, energy savings are always significant but the rate of savings is lowerand more dispersed across recent studies.The middle part of Table 2 displays descriptive statitics for covariates used in the metaregressions presented infra and related to the retrofit programs assessed by the differentstudies. These covariates typically inform on the average cost of retrofit in the program,either at the aggregate level (variable ”Cost”) for samples (1) and (2) or per component
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of dwellings subject to retrofit for sample (3). In the latter case, the different componentsconsidered are walls (variable ”Wall”) which is ranked fourth in terms of the average cost,attic (variable ”Attic”) which is ranked second, floor (variable ”Floor”) which is associated toa low average cost, ducts (variable ”Ducts”) which is also low in terms of the average cost,heating and cooling system (variable ”H/C”) which is by far associated to the most expensiveaverage cost, air sealing (variable ”Air S.”) which is ranked third in terms of the average cost.The last variable ”Syst.” refers to a retrofit plan to improve the energy efficiency of dwellingsviewed as a system, thus selecting one or several components in a comprehensive approach toenergy retrofit. It is associated to a low average cost. In addition to these variables expressedin constant 2021 Euros, three other variables characterizing the retrofit programs have beenconsidered. The fist one is a dummy variable indicating whether the retrofit program wasmore specifically targeting low income households (variable ”Low inc.”). A little bit less thana third of studies deals with programs that target low income households. The second one isthe initial energy consumption (variable ”In. Con.”) expressed in kWh and the third one is adummy variable indicating whether natural gas was the main source of energy of dwellingsin the study (variable ”En. Gas”). depending on the sample considered, more or less half ofcases focus on natural gas as the primary source of energy of dwellings.The lower part of Table 2 relates to the estimation method used in the studies to obtainthe effect size. These covariates take the form of dummy variables with value 1 if the methodis used in the study and value 0 otherwise. The reference method is a basic Ordinary LeastSquares (OLS) regression. It was used by either pioneering works like the one by Hirst et al.,1985a or when it was not possible to adopt another estimation strategy due to data limitations.Among the pioneering works, Hirst et al., 1985a for instance regress actual energy savingsobserved after a retrofit on characteristics of the dwellings, on the measures undertaken inthe context of the weatherization assistance program, on the conservation practices adopted,and on the characteristics of the occupants. This reference method also encompasses earlyworks, the focus of which was to control for weather conditions to make energy consumptionbefore and after the retrofit comparable. In that case, a regression was made of energyconsumption on weather conditions before the retrofit and estimation results were then usedto compute, for the post retrofit period, what would have been the energy consumption under
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similar weather conditions without the retrofit (see e.g. Hirst et al., 1985b). The study byAlberini et al., 2014 is illustrative of data constrained regression. Indeed these authors onlyhad access to aggregate energy consumption data before and after the launch of a nation widetax credit program designed to incentivize Italian homeowners to invest in energy efficiency.Due to the use of structural models (e.g. Allcott and Greenstone, 2017) or the properties ofthe dependent variable (e.g. Hamilton et al., 2016), some authors rely on alternatives to theOLS estimation method like the maximum likelihood or the simulated moments estimationmethods. The corresponding studies are associated to a value 1 for the variable ”altOLS”in Table 2. A drawback of basic regression approaches is that households are generallynot randomly selected. In a typical retrofit program, a target population is first defined andthen members of the targeted population are proposed to enroll in the program if they areeligible. Hence, there is a potential endogeneity of the participation of households or of theamount of financial support provided to retrofit the dwelling. Such an endogeneity occurs if,for instance, those who choose to enroll do it because they anticipate future increased needsof energy due to a change in their own life like the birth of a child or retirement. This riskof endogeneity can be tackled with an instrumental variable (IV) approach as done in earlyworks like the one by Hirst et al., 1984 or lately but with a more elaborated IV strategy byFowlie et al., 2018. It is referred to as the covariate ”IV” in Table 2 and is used in about10% of studies. Another key issue in the assessment of public programs is to compare theimpact on the ”treated” group to what happened for a ”control” group. Indeed, in the contextof retrofit programs for buildings, energy savings for the ”treated” group may arise from achange in unobserved variables that actually also had an impact on energy consumption in the”control” group. Matching methods, for instance the Coarsened Exact Matching implementedby Boampong, 2020, help comparing each treated dwelling or household with another onethat has not benefited from the program but has similar characteristics. Studies relying onsuch matching methods are identified by a value 1 of the variable ”Matching” in Table 2.Note that, with a matching method, net savings implied by the treatment are not estimatedas a coefficient in a regression. An alternative, regression-based, method to compute energysavings net of the variation in the energy bill that also occurred for a control group is thewell-known Difference in Differences approach (variable ”DiD” in Table 2). About a quarter
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of the studies rely on a Difference in Differences method. Earlier works like the one byHirst and Goeltz, 1985b already attempted to compare the change in the energy bill of a”treated” population to that observed for a ”control” population without explicitly relyingon matching or on the standard DiD regression. The variable ”Diff.” is then used in Table2 to refer to this method. Finally, authors have implemented Randomized Controlled Trial(variable ”RCT” in Table 2) to avoid self selection bias and endogeneity. In the study bySuter and Shammin, 2013 for instance, students are randomly allocated to different familyhomes specifically rented to undergraduate students of a same College.
3 Test and correction of publication bias

3.1 General setting

The general specification of a meta analysis may be written as follows
θ̂i = θi + β0Bi + ϵi (1)

where θ̂i stands for the estimated effect size reported in study i and is associated with asampling error ϵi ∼ N(0, σ̂2
i ). A peculiarity of meta analysis is the strong suspicion ofpublication bias which has to be dealt with before to obtain reliable results from the metaregression. One way to correct for the publication bias is to introduce a variable Bi supposedto correctly capture the nature of the bias, as detailed in the next section. A statisticallysignificant coefficient β0 signals the existence of this type of bias and helps correcting theestimation of the true effect size from this bias. The true effect size θi of study i is characterizedby

θi = θ +
J∑

j=1

βjXij + µi (2)
where the Xij (j ∈ 1, ..., J) are covariates that capture observed heterogeneity between thedifferent studies whereas µi ∼ N(0, τ 2) captures unobserved between-studies heterogeneityand θ is a component of the true effect size which is invariant for all studies. Due to theintrinsic heteroscedasticity induced by sampling errors which are study specific, the linearmeta regression defined by (1) and (2) can not be estimated by standard Ordinary Least
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Table 2: Descriptive statitics of studies

Sample (1) (2) (3)
Obs 46 171 161Mean Std Mean Std Mean Std
θ̂i (%) 12.29 6.05 10.60 7.56 10.61 7.51
σ̂i (%) 3.47 2.97 2.68 2.61 2.80 2.65Cost (constant 2021 =C) 3 970 2 777 3 159 2 296 3 199 2 346Wall (constant 2021 =C 398 1281Attic (constant 2021 =C 673 885Floor (constant 2021 =C 66 272Ducts (constant 2021 =C 51 156H/C (constant 2021 =C 1289 1712Air S. (constant 2021 =C 423 812Syst. (constant 2021 =C 66 206Low inc. (dummy) 0.2826 0.4552 0.3043 0.4615 0.3216 0.4684In. Con. (kWh) 26 302 16 568 21 309 11 320 21 641 11 984En. Gas (dummy) 0.4583 0.4261 0.5992 0.4274 0.5809 0.4335IV (dummy) 0.1304 0.3405 0.0931 0.2914 0.0935 0.2920Matching (dummy) 0.0434 0.2061 0.0124 0.1111 0.0116 0.1078DiD (dummy) 0.2173 0.1474 0.2795 0.4501 0.2690 0.4447altOLS (dummy) 0.0217 0.1474 0.1242 0.3308 0.1169 0.3223Diff. (dummy) 0.1304 0.3405 0.1863 0.3905 0.1754 0.3814RCT (dymmy) 0.1739 0.3832 0.1180 0.3236 0.1345 0.3421Year 2000.79 14.05 2006.23 10.03 2005.85 10.43
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Squares (OLS) but either by Weighted Least Squares (WLS) or likelihood based alternativemethods as mentioned infra.
3.2 Graphical investigation of publication bias

An issue often encountered in meta-analysis is that papers collected for the analysis are mostoften published papers and that authors may orient results in a specific direction to increasethe chance of a paper to be published while editors may prefer to publish papers highlightingsignificant results. This issue is referred to as the publication bias. Another argument in favorof a risk of publication bias in our specific meta analysis arises from the fact that at leastsome studies may have been conducted by research centers which have themselves played arole in the inception of public policies to enhance the energy efficiency of buildings. Thesecenters may have been more inclined to highlight evaluations validating the public policiesthat they have helped to bring about.It is conventional practice to detect the presence of a publication bias through a funnelplot (T. D. Stanley and Doucouliagos, 2010). Figure 3 displays this funnel plot for our meta-analysis. The areas with different intensity of grey are associated with the usual differentp-values for testing whether the result from a given study, as located by its estimated effectsize in abscissa and its sampling standard error in ordinates, is significantly different fromzero or not3. Consistently with Figure 2, Figure 3 highlights that most of studies in ourdataset (sample (1)) report a significantly positive effect size, at least when considering 0.1as the p-value. The thin dashed vertical line positions the average effect size that amountsto 0.123, providing a first but potentially biased estimate of the synthetic effect size andmeaning that the energy savings is about 12,3%. In the absence of publication bias, dotsshould be evenly dispersed on the right and the left of this vertical line, close to it whenthe standard error is low and more dispersed when the standard error is high. By contrast,a strong asymmetry is observed in Figure 3. Indeed, whereas dots associated with a lowstandard error are evenly located either on the left side or the right side compared to theaverage effect size, they all are on the right side when they are associated with a high stan-
3This is the ”contour enhanced” component of the funnel plot displayed in Figure 3.
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dard deviation. This is indicative of a publication bias where only studies obtaining a highestimated effect size are published if the sample size is small and/or the sampling error is high.
Figure 3: Contour Enhanced Funnel Plot

The asymmetry observed in the funnel plot for high sampling errors suggest to check forthe presence of p-hacking. The phenomenon of p-hacking refers to researchers who tweaktheir analysis until the conventional significance threshold of 0.05 for the p-value of the re-ported effect size is reached. As suggested by Simonsohn et al., 2014, drawing the p-curvewhich plots the share of studies obtaining a significant (i.e p-value equal or less than 0.05)estimated effect size as a function of the reported p-value helps detecting p-hacking. Indeed,under the null hypothesis that the true synthetic effect is null the resulting distribution ofp-values should be uniform. In case of p-hacking there is an excess of studies with high,though just lower than 0.05, p-values and the distribution is left skewed. Conversely, if thetrue effect is non-null the distribution should exhibit an excess of low p-values and be rightskewed. Figure 4 shows that there is no strong evidence of p-hacking in our set of studies.
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Yet, there is a small excess of studies with a p-value just equal to the 0.05 threshold, whichsuggests that some studies have been tweaked until the threshold is reached. By contrast,Figure 4 indicates that the null hypothesis of no true effect is very likely rejected due to thesharp right skewness of the distribution of p-values.
Figure 4: P-curve

Simonsohn et al., 2014 proposed to go one step further in the analysis of p-curves anddeveloped the pp-curve which minimum, when a V shaped curve is obtained, provides anestimate of the true synthetic effect size corrected from publication bias. As shown in Figure5, the resulting synthetic effect size amounts to 9% for our dataset and is 3.3% less than thebasic average effect size suggesting that there is an overestimation of energy savings of moreor less a third when publication bias is disregarded. Going back to the funnel plot, the thickdashed vertical line in Figure 3 positions the corrected average effect size whereas the coneformed by the two other thick dashed lines indicate the 95% confidence interval for testingwhether the different studies significantly depart from the corrected average effect size or not.We find that numerous studies with small sampling error seem to generate significantly higherestimates than the corrected synthetic effect size. However, contrary to the expected shapeof a standard funnel plot (T. D. Stanley and Doucouliagos, 2010), the effect sizes reported instudies with low standard errors are abnormally dispersed, which may be indicative of het-
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erogeneity across these studies. Van Aert et al., 2016 found that the PP-curve analysis doesnot provide a robust estimate of the synthetic effect size when the between study heterogene-ity is high, which calls for a specific treatment of heterogeneity as proposed in the next section.
Figure 5: PP-curve

3.3 Regression based tests and correction of publication bias

A commonly used alternative to the pp-curve to correct the synthetic effect size for publicationbias, and also a first step towards meta-regressions, is the Precision Effect Test (PET). Itrelies on the estimation of (1) and (2) under the assumption that there is neither unobservednor observed between-studies heterogeneity except the one resulting from the publicationbias and proxied by the standard error (T. D. Stanley, 2008, T. D. Stanley and Doucouliagos,2014). Said another way, PET posits that Bi = σi in (1) and thus consists in estimating therelation
θi = θ + β0σi + ϵi (3)

In (3), heteroscedasticity stems from ϵi ∼ N(0, σ̂2
i ). It can be tackled either by dividingboth sides of (3) by σi or equivalently by using a Weighted Least Square (WLS) estimation
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method with weights 1/σi. Egger et al., 1997 proposed the conventional t-test of β0 = 0 asa test of publication bias, but highlighted that it has low power. The test is actually alsoa Funnel Asymmetry Test (FAT) to the extent that studies with a larger standard deviationreport a larger value of the estimated effect size. Conversely, the t-test for the intercept
θ is a powerful test for the existence of a genuine synthetic effect size beyond publicationselection. Estimation results reported in Table 3 advocate in favor of a positive genuinesynthetic effect size in spite of a highly significant publication bias whatever the sampleconsidered. According to the PET method, energy saving would nevertheless amount to4.46% with sample (1) or 2.28% and 2.27% with samples (2) and (3), which is three timesto six times lower than the rough estimate based on the average of reported effect sizesand also less than the corrected synthetic effect size computed with the PP-value approach.Table 3 complements the picture by providing an alternative to the basic average of reportedeffect sizes as a benchmark. This alternative is the fixed effect model corresponding to theestimation of (1) and (2) under the assumption that there is no source of heterogeneity andno publication bias. It amounts to computing the weighted average of reported effect sizes,with the inverse of the sampling variances of studies as weights. Interestingly, the estimatedsynthetic effect size with this fix effect model is close to the one obtained with the PP-curveapproach. Thereafter, the fix effect model is referred to as Model A and the more elaboratedmodel that accounts for a publication bias as described in (3) is referred to as Model B.PET is attractive and extensively used due to its simplicity, but the method admits somedrawbacks. In the presence of publication bias, only significant effect sizes are reported, hencethe sampling errors are drawn from a truncated distribution. Rosenberger and T. Stanley,2009 explain that the reported effect size and its standard deviation then do not have alinear relationship but a non linear relationship that stems from the truncation. T. D. Stanleyand Doucouliagos, 2014 simulations show that this non linearity is satisfactorily treated bysetting Bi = σ2

i instead of Bi = σi in (1). This results in the Precision Effect Estimate withStandard Error (PEESE) associated to the following regression:
θi = θ + β0σ

2
i + ϵi (4)

Heteroscedasticity in (4) is treated as in (3). As for the PET method, testing for the sig-
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nificance of the slope and the intercept respectively reveals the existence of a publicationbias and of a genuine non zero synthetic effect size. Table 3 shows that PEESE resultsare consistent with that of PET. The synthetic effect size corrected for publication bias withPEESE indicates that energy saving amounts to 6.05% with sample (1) and 4.25% and 4.26%with samples (2) and (3), which is higher than with PET but is still half the basic average ofreported effect sizes and less than the corrected synthetic effect size computed with the PP-value approach or the estimated synthetic effect size with the fix effect model. Nevertheless,in the absence of control of between studies heterogeneity other than the one captured bythe standard deviation or its squared value, PET and PEESE models may be misspecified asdiscussed in the next section.
Table 3: Fixed effect model without and with control of publication bias

Sample (1) (2) (3)Obs 46 171 161
Model A (Fixed effect)

θ 0.095179∗∗∗ 0.071857∗∗∗ 0.071613∗∗∗

Model B (PET version)
θ 0.044639∗∗∗ 0.028039∗∗∗ 0.027307∗∗∗

β0 3.277422∗∗∗ 4.126395∗∗∗ 4.357351∗∗∗

Adj R2 0.1995 0.19 0.1968
Model B (PEESE version)

θ 0.060572∗∗∗ 0.042748∗∗∗ 0.042679∗∗∗

β0 30.069906 42.591316∗∗∗ 45.373273∗∗∗

Adj R2 0.03598 0.04252 0.04254
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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4 Meta-regressions

4.1 Observed between-studies heterogeneity

The funnel plot displayed in Figure 3 exhibits an abnormal dispersion of effect sizes reportedfor studies with low standard deviation. Indeed, when their standard deviation is low, studiesshould report effect sizes close to the common synthetic effect size θ according to (3) and(4), and thus also close to each others. By contrast, a high dispersion indicates that thesestudies do not share a common true effect size due to some sources of heterogeneity. Partof the heterogeneity is actually observed and can be directly controlled for, the remainingheterogeneity having to be dealt with by introducing a random effect.Meta-regressions allow to control for observed between-studies heterogeneity. Indeedheterogeneity arises from the fact that the sample of individuals are not the same or theimplementation of the different studies has not been strictly identical. Typically, the totalbudget devoted to the retrofit of dwellings of programs evaluated by the different studies arenot the same, as indicated by the relatively high standard deviation of the ”Cost” covariatein Table 2, leading to a different amount of investment per dwelling and different degreesof retrofit. To control for this major source of heterogeneity in a meta regression it was keycollecting only studies which explicitly report the amount of investment per unit of dwelling.The period covered by the studies included in our meta-analysis also span several decadesand the technical solutions involved in retrofit programs may have evolved and improved interms of cost-efficiency, resulting in higher energy savings. As all studies do not displayinformation on all potential sources of heterogeneity, there is a trade-off between, on theone hand, collecting studies with information available on many potential sources at thecost of ending up with a small dataset of studies and, on the other hand, disregarding somepotential sources to prioritize the dataset size when information is not provided often enough.The trade off led to the set of covariates reported in Table 2. Moreover, given the significantpublication bias outlined in the previous section, we kept on correcting it in the followingPET-like meta-regression that accounts for observed heterogeneity through the vector Xi of
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values for study i of the different covariates
θi = θ + β0σi +

J∑
j=1

βjXij + ϵi (5)
In parallel, we also considered a PEESE-like meta-regression to address the truncation aris-ing from the selection of only studies with a significant effect size. The associated estimatedequation is

θi = θ + β0σ
2
i +

J∑
j=1

βjXij + ϵi (6)
Being subject to the same heteroscedasticity than (3) and (4), models in (5) and (6) have alsoto be estimated by WLS. With the aim to identify the contribution of covariates to observedhetereogeneity, we proceed in two steps.In a first step we only consider covariates related to the context of the different studies, alsonamed substantive variables. The corresponding estimation results are reported in Table 4and are referred to as results for Model C, . As expected, the cost of the retrofit has a highlysignificant positive impact on the energy savings. The reported coefficients for the ”Cost”variable for samples (1) and (2) and its decompositions in different elements for sample (3)are quasi elasticities. Hence, they directly inform on the percentage of energy savings perconstant 2021 Euro invested in retrofit, all other things being equal. For instance, everythousand constant 2021 Euros invested in retrofit is estimated to have resulted in 1.29% ofenergy savings according to estimation results of the PET version of the model for sample (1).The decomposition of the total cost in its different components as done in sample (3) indicatesthat retrofit acting on walls, attic, floor and heating/cooling system has a significant positiveimpact on energy savings whereas no significant impact is obtained for action on ducts, airsealing and on the whole system. These results are robust with respect to the sample ofstudies used and whether the PET or PEESE version of the model is considered. Similarly,a robust result is obtained as regards the higher energy savings resulting from the retrofitof dwellings the main source of energy of which is natural gas. By contrast, energy savingsare not significantly sensitive to the initial consumption in regressions on sample (3) whereasthey are when using samples (1) and (2). The focus made by a retrofit program on low incomehouseholds does not have a clear cut impact on energy savings, regressions on samples (2)
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and (3) suggesting a significant positive impact that does not appear when using sample (1).
Table 4: Meta regression (Model C)

PET PEESE

Sample (1) (2) (3) (1) (2) (3)Obs 46 171 161 46 171 161
θ -0.053083∗∗∗ -0.028533∗∗∗ -0.002468 -0.050779∗∗∗ -0.028292∗∗∗ -0.000229
β0 1.063492 1.596146∗∗∗ 0.732057 9.310312 17,537984 9.312729Cost 1.29E-05∗∗∗ 9.29E-06∗∗∗ 1.25E-05∗∗∗ 9.48E-06∗∗∗

Wall 3.88E-05∗∗∗ 3.90E-05∗∗∗

Attic 4.83E-06∗∗ 4.47E-06∗∗

Floor 1.01E-04∗∗∗ 1.01E-04∗∗∗

Ducts 7.91E-06 1.87E-05H/C 1.37E-05∗∗∗ 1.39E-05∗∗∗

Air S. 1.25E-05 1.36E-05Syst. 3.68E-05 4.64E-05Low inc. 0,003256 0.065319∗∗∗ 0.088330∗∗∗ 0.009813 0.068604∗∗∗ 0.090435∗∗∗

In. Con. 3.15E-06∗∗∗ 9.42E-07∗∗ -5.49E-07 3.41E-06∗∗∗ 1.27E-06∗∗∗ -5,05E-07En. Gas 0.026249∗ 0.047259∗∗∗ 0.038820∗∗∗ 0.026247∗ 0.048790∗∗∗ 0.039057∗∗∗

Adj R2 0.6981 0.5329 0.6207 0.6858 0.5195 0.6194
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In a second step we add covariates related to the estimation method used in the differentstudies. It yields estimation results for Model D reported in Table 5. This second step followson from a focus made in the literature on meta-regressions on the risk of confounding betweenmethodological factors and other substantively interesting moderators describing the contextof the studies. Durlak and Lipsey, 1991 and later Lipsey, 2003 provide examples of howmethodological differences in studies can lead to misinterpretation of the impact of substan-tive variables and argue in favor of the inclusion of methodological variables in addition to
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substantive variables in meta-regressions to correctly tackle the risk of confounding. Such aconfounding problem would arise if results reported for substantive variables in Table 5 weredrastically different from those reported in Table 4. It is actually not the case. The mainresults stressed for Model C remain valid for Model D, except for the magnitude of the ”Cost”covariate if sample (2) is used and the significance and/or magnitude of coefficients associ-ated to the different cost components when the regression is conducted on sample (3). Theother results that depart in Model D from Model C are limited to substantive variables thatalready had no clear cut impact in Model C (e.g. variables ”Low inc.” and ”In. Con.”). Finally,consistent with the absence of a strong confounding problem, only a few of the methodologicalvariables have a significant impact in Model D and, when they do have one, the significanceof the impact varies depending on the sample under consideration.
4.2 Unobserved between-studies heterogeneity

In addition to observed heterogeneity, the different studies collected for a meta-analysisalso entail unobserved sources of heterogeneity, for instance differences in the details ofimplementation of each study. In that case, it is generally assumed that the ”true” effectsizes of the different studies are drawn from a same normal distribution. Combined with theexistence of observed heterogeneity and with the PET/PEESE correction for publication bias,this random effect yields the general model setting described by (1) and (2) or, equivalently,by a more condensed form that expresses the observed effect size of a study as the sum offour terms:
θ̂i = (θ +

J∑
j=1

βjXij) + β0Bi + µi + ϵi (7)
The first term in brackets yields the expected effect size for study i, conditional on thesubstantive and methodological variables characterizing that study. The second term capturesthe publication bias with Bi = σi in the PET version of the meta-regression and Bi = σ2

i in thePEESE version. The last term captures the sampling error of study i. Finally µi ∼ N(0, τ 2)captures the unobserved between-studies heterogeneity. The total variance of θ̂i is now
σ̂i

2 + τ 2. WLS can no longer be used in that kind of meta-regression because τ is unknownand has to be estimated jointly with the other parameters. A Restricted Maximum Likelihood
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Table 5: Meta regression (Model D)

PET PEESE

Sample (1) (2) (3) (1) (2) (3)Obs 46 171 161 46 171 161
θ 2.549232∗ 1.754380 1.083312 2.758120∗ 2.353606 1.303242
β0 1.432695∗∗ 1.921848∗∗∗ 0.799912 13.226047 18.923832∗ 10.051915Cost 1.18E-05∗∗∗ 7.57E-06∗∗∗ 1.23E-05∗∗∗ 7.30E-06∗∗∗

Wall 4.86E-05∗∗∗ 4.90E-05∗∗∗

Attic 2.88E-06 2.48E-06Floor 5.76E-05∗∗ 5.61E-05∗∗

Ducts 2.81E-05 3.90E-05H/C 1.35E-05∗∗∗ 1.37E-05∗∗∗

Air S. 2.09E-05∗∗ 2.18E-05∗∗

Syst. 3.41E-06 9.11E-06Low inc. 0.037477∗ 0.015306 0.044349∗ 0.046357∗ 0.024114 0.047421∗∗

In. Con. 2.92E-07 4.06E-07 -7.99E-07 4.91E-07 7.85E-07 -7.21E-07En. Gas 0.043004∗∗ 0.049561∗∗∗ 0.038868∗∗ 0.047680∗ 0.052398∗∗∗ 0.039528∗∗∗

IV -0.053042∗∗ -0.007894 -0.031305 -0.058617∗∗ -0.012119 -0.031814Matching 0.040596 0.053256 0.070539 0.051206 0.065097 0.077020DiD -0.032128∗ 0.003519 0.007953 -0.039696∗∗ -0.005976 0.006453GLM 0.021019 -0.008429 -0.012735 0.008338 -0.021803 -0.015811Diff. 0.007692 0.072411∗∗∗ 0.060046∗∗ -0.002772 0.054751∗∗ 0.056312∗∗

RCT -0.023010 0.004641 0.014953 -0.026898 0.008405 0.016286Year -0.001269∗ -0.000884 -0.00053 -0.001369∗ -0.001176 -0.000647
Adj R2 0.8383 0.5808 0.6613 0.8212 0.5657 0.6602
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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(RML) method can then be used. This estimation method fixes the problem of high-dimensionaldata caused by a small number of observations and a high number of variables. It providesunbiased estimates of the magnitude of unobserved heterogeneity (Langan et al., 2019).Estimation results for this so-called mixed effects model, thereafter referred to as Model E,are reported in Table 6.Estimation results seem to be slightly sensitive to the introduction of the random effectcapturing unobserved heterogeneity. The magnitude and the ranking of the quasi elasticitiesassociated to expenditures in the different retrofit components when estimating the model onsample (3) are affected, as well as the magnitude of the total cost when using sample (2).The only cost component with a non significant impact on energy savings is that associatedto ducts retrofit. It is nonetheless consistent with the non significance obtained in Models Cand D. A noticeable difference compared to Models C and D is also that a retrofit treatingthe dwelling as a whole system (substantive variable ”Syst.”) is now ranked first in termsof energy savings per invested Euro. Methodological variables do not significantly affectestimated energy savings, except for the ”Diff.” method which was already found to be the mostimpactfull method in Model D. But, before all, the systematically highly significant estimatedvalue of parameter τ strongly supports the rationale for estimating the mixed effects model.It reveals that there is indeed unobserved heterogeneity at play in our meta-analysis andthat accounting for it is key to provide reliable results as regards the synthetic effect size. Itis also noteworthy that coefficient β0 measuring publication bias is systematically significantand positive whatever the sample used and the choice between the PET and PEESE controlmethod, whereas it was not the case in Models C and D, more specifically in the PEESEversion of the meta-regression. This result suggests that the publication bias is probably notcorrectly controlled for if unobserved heterogeneity is disregarded.
4.3 Estimates and distribution of the synthetic effect size

In view of the previous results and in order to produce a synthetic effect size that bestsummarizes the results of the different studies, this section proposes to reason on a studythat is itself synthetic. Indeed, it appears necessary to neutralize the strong heterogeneity
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Table 6: Meta regression (Model E)

PET PEESE

Sample (1) (2) (3) (1) (2) (3)Obs 46 171 161 46 171 161
θ 0.116293 1.276990 -0.807678 0.252075 -1.229777 -0.475342
β0 0.984533∗∗ 1.196596∗∗∗ 1.086513∗∗∗ 8.606994∗ 11.523741∗∗∗ 10.198118∗∗∗

Cost 1.33E-05∗∗∗ 1.25E-05∗∗∗ 1.39E-05∗∗∗ 1.30E-05∗∗∗

Wall 1.52E-05∗∗∗ 1.67E-05∗∗∗

Attic 1.44E-05∗∗∗ 1.26E-05∗∗∗

Floor 4.11E-05∗∗ 3.97E-05∗∗

Ducts 3.16E-05 4.04E-05H/C 1.20E-05∗∗∗ 1.29E-05∗∗∗

Air S. 1.28E-05∗∗ 1.40E-05∗∗

Syst. 5.74E-05∗∗ 6.19E-05∗∗

Low inc. 0.028030 0.012928 0.018528 0.032638∗ 0.018675 0.024127∗∗

In. Con. 1.24E-06 1.51E-06∗∗∗ 1.57E-06∗∗∗ 1.41E-06∗ 1.72E-06∗∗∗ 1.71E-06En. Gas 0.027745 0.047003∗∗∗ 0.051828∗∗∗ 0.027067 0.044494∗∗∗ 0.050084∗∗∗

IV -0.044485∗ -0.013957 -0.018979 -0.047188∗ -0.020142 -0.022375Matching 0.040120 0.054356∗ 0.058734∗ 0.043303 0.056954∗ 0.063336∗∗

DiD 0.000516 0.010322 0.007897 0.000629 0.006282 0.006171GLM 0.019137 -0.018892 -0.020864 0.007205 -0.026793∗ -0.027074∗∗

Diff. 0.01097 0.063498∗∗∗ 0.050923∗∗∗ 0.002413 0.054503∗∗∗ 0.044712∗∗∗

RCT -0.032307 -0.012672 -0.011595 -0.032380 -0.009414 -0.004640Year -6.28E-05 0.000616 0.000380 -0.000125 0.000599 0.000220
τ 0.037906∗∗∗ 0.039073∗∗∗ 0.036529∗∗∗ 0.038350∗∗∗ 0.039774∗∗∗ 0.036974∗∗∗

Adj R2 0.3145 0.6456 0.6814 0.2983 0.6328 0.6736
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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observed between studies. To do this, this section considers a fictitious study having theaverage characteristics of the studies used for each sample. By substituting the parametersestimated using meta-regression (7) for model E and the values of the variables at the averagepoint, a synthetic effect size associated with the study that is itself synthetic can be calculated.The evaluation at the mean point neutralizes the impact of the heterogeneity observedbetween studies. However, the resulting synthetic effect size is itself only an estimate, theprecision of which has to be assessed. The uncertainty around this estimate more specificallyfollows on from that of the estimated parameters whose synthetic effect size is a linearcombination. It is evaluated by using Monte Carlo simulations of the vector of coefficientsinvolved in (7) drawn from a multinormal distribution whose expectation vector is the vector ofestimated parameters and the variance-covariance matrix is that of the estimated coefficientsresulting from the meta-regression. 10 000 random draws have been carried out, from which a95% confidence interval has then been computed for the synthetic effect size at the mean pointof the observations. The effect of unobserved heterogeneity can be isolated by comparing, onthe one hand, the synthetic effect size obtained using 10 000 random draws of the randomterm µi knowing the estimated value of its standard deviation τ (Model E bis in Table 7,Table 8 and Table 9), and on the other hand, the synthetic effect size obtained by assumingthat the random term µi is equal to zero (Model E in Table 7, Table 8 and Table 9).It may be informative to isolate the impact of publication bias as well. In the basic PETand PEESE models as presented in (3) and (4), it is generally considered that the ”true”synthetic effect size is given by the intercept, whereas the publication bias is evaluated bythe additional term β0σi or β0σ
2
i . We follow this logic by comparing the estimates of themean effect size and its confidence interval obtained in two ways. The first way is to assumethat σi (PET version) or σ2

i (PEESE version) takes the mean value over the sample, likethe other variables. It corresponds to the estimates and confidence intervals in the columnsheaded ”No” in Table 7, Table 8 and Table 9 for the adjustment of the publication bias.The second method is to assume that the sampling error measure of the synthetic study iszero. It corresponds to the estimates and confidence intervals in the columns headed ”Yes”in Table 7, Table 8 and Table 9 for the adjustment of the publication bias. It is important toemphasize that the ”No” and ”Yes” columns only differ by the value given to the sampling
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error for the synthetic study, the estimated coefficients being those obtained by controllingfor the possible publication bias in the meta-regressions.
Table 7: Synthetic effect size with sample (1)

Method PET PEESE
Adjustment for

the publication No Yes No Yes
biasModel A θ̄ 0.095 0.095CI [0.078 , 0.112] [0.078 , 0.112]
Model B θ̄ 0.158 0.044 0.096 0.060CI [0.092 , 0.224] [0.027 , 0.061] [0.050 , 0.143] [0.044 , 0.075]
Model C θ̄ 0.130 0.094 0.114 0.103CI [0.095 , 0.166] [0.074 , 0.114] [0.089 , 0.139] [0.088 , 0.118]
Model D θ̄ 0.129 0.079 0.111 0.095CI [0.103 , 0.155] [0.059 , 0.100] [0.092 , 0.130] [0.080 , 0.110]
Model E θ̄ 0.123 0.089 0.115 0.105CI [0.107 , 0.139] [0.064 , 0.114] [0.101 , 0.129] [0.088 , 0.121]
Model E bis θ̄ 0.123 0.088 0.115 0.105CI [0.046 , 0.199] [0.009 , 0.168] [0.039 , 0.191] [0.029 , 0.182]
The process described above to compute a synthetic effect size and to assess its sensitivityto the publication bias and to unobserved heterogeneity is replicated for the three samples ofcases. Table 7, Table 8 and Table 9 present the estimated synthetic effect size and confidenceinterval for respectively sample (1) sample (2) and sample (3). A noticeable feature is thatthe confidence interval never includes zero. Hence, all our estimates of the synthetic effect
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size attest the existence of positive and significant energy savings resulting from retrofitprograms. The confidence interval also never includes the basic average effect size reportedin Table 2 (which is 0.1229 for sample (1), 0.106 for sample (2) and 0.1061 for sample (3))when there is adjustment for the publication bias, except for Model E bis which accountsfor unobserved heterogeneity. When outside the confidence interval, the basic average effectsize is systematically higher than the upper bound of the confidence interval. In contrast,in the absence of adjustment of the synthetic effect size for the publication bias, the basicaverage effect size is most often included in the confidence interval of the synthetic effect size,except for Model A whatever the sample, and some other Models depending on the sampleconsidered. The basic average of reported effect sizes of the studies thus encompasses apublication bias which makes it significantly overstate the estimated ”true” synthetic effectsize. It is only when accounting for the high unobserved heterogeneity between studies (ModelE bis) that the publication bias between the basic average effect size and the estimated ”true”synthetic effect is no longer significant.Figure 6 to Figure 9 complement the analysis of the synthetic effect size by comparing thebox and whisker plot of its distribution generated with Monte Carlo simulations of the differentmodels and that generated with similar simulations for a basic model based on the averagevalue and variance of observed effect sizes for sample (1). The box and whisker plots highlightthat the range of values of the estimated ”true” synthetic effect size is narrower than the rangeof values of the ”basic” approach to the effect size. Meta-regressions thus appear to generatea more precise summary of energy savings reported in the surveyed studies, whatever themodel and the sample used, even when adding uncertainty resulting from unobserved betweenstudies heterogeneity (Model E bis). The comparison between Figure 6 and Figure 7 confirmsthe impact of the publication bias for the PET version of meta-regressions: adjusting for thepublication bias results in a lower and narrower dispersion of simulated values of the syntheticeffect size, at least for Models B C and D. Similar results are obtained for the PEESE versionof the meta-regressions on the basis of the comparison between Figure 8 and Figure 9.
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Table 8: Synthetic effect size with sample (2)

Method PET PEESE
Adjustment for

the publication No Yes No Yes
biasModel A θ̄ 0.071 0.071CI [0.062 , 0.081] [0.062 , 0.081]
Model B θ̄ 0.144 0.028 0.076 0.042CI [0.107 , 0.181] [0.019 , 0.036] [0.052 , 0.100] [0.035 , 0.049]
Model C θ̄ 0.114 0.070 0.093 0.080CI [0.089 , 0.139] [0.058 , 0.082] [0.077 , 0.110] [0.071 , 0.088]
Model D θ̄ 0.114 0.060 0.093 0.078CI [0.090 , 0.138] [0.041 , 0.079] [0.076 , 0.109] [0.064 , 0.091]
Model E θ̄ 0.108 0.081 0.098 0.089CI [0.100 , 0.116] [0.068 , 0.093] [0.091 , 0.105] [0.080 , 0.097]
Model E bis θ̄ 0.109 0.080 0.098 0.088CI [0.032 , 0.185] [0.002 , 0.158] [0.020 , 0.177] [0.010 , 0.166]
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Table 9: Synthetic effect size with sample (3)

Method PET PEESE
Adjustment for

the publication No Yes No Yes
biasModel A θ̄ 0.071 0.071CI [0.061 , 0.081] [0.061 , 0.081]
Model B θ̄ 0.144 0.027 0.075 0.042CI [0.107 , 0.181] [0.018 , 0.035] [0.051 , 0.098] [0.035 , 0.050]
Model C θ̄ 0.107 0.087 0.099 0.093CI [0.083 , 0.130] [0.070 , 0.104] [0.085 , 0.114] [0.081 , 0.104]
Model D θ̄ 0.106 0.084 0.099 0.092CI [0.083 , 0.129] [0.064 , 0.105] [0.084 , 0.113] [0.079 , 0.104]
Model E θ̄ 0.106 0.077 0.099 0.091CI [0.099 , 0.114] [0.065 , 0.089] [0.092 , 0.106] [0.083 , 0.099]
Model E bis θ̄ 0.106 0.077 0.099 0.091CI [0.034 , 0.179] [0.004 , 0.150] [0.026 , 0.173] [0.018 , 0.164]
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Figure 6: Box and Whisker Plot of the distribution of the synthetic effect size: PET model

without adjustment for the publication bias

Figure 7: Box and Whisker Plot of the distribution of the synthetic effect size: PET model

with adjustment for the publication bias
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Figure 8: Box and Whisker Plot of the distribution of the synthetic effect size: PEESE

model without adjustment for the publication bias

Figure 9: Box and Whisker Plot of the distribution of the synthetic effect size: PEESE

model with adjustment for the publication bias
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5 Conclusion and policy implications

The meta-analysis carried out in this paper confirms the importance of correcting for publica-tion bias on the one hand, and of taking into account the heterogeneity of studies, includingand especially unobserved heterogeneity, on the other hand. The correction of the publicationbias leads to reducing the energy savings rate by at most 2% compared to a basic average ofthe rates reported in the studies. In return, and under the joint effect of taking into accountthe observed or unobserved heterogeneity and a correct treatment of heteroscedasticity, asubstantial reduction in the uncertainty around the measurement of the synthetic energysavings rate is obtained. In view of the initial uncertainty surrounding this measurement, thegain is appreciable and offers greater visibility as to the effects to be expected from publicpolicies promoting the retrofitting of household housing. Based on the mean point of theobservations for the largest sample, knowing that the observed and estimated values differlittle when considering a sample enlarged to different versions of the results per study, andusing the PEESE version of the most complete meta-regression model with correction of thepublication bias, the estimated energy saving rate is 6.31% and amounts to an annual savingof 1 345 kWh if an energy other than natural gas is used by the dwelling. The estimatedenergy saving rate increases to 10.76% if natural gas is the main energy source, i.e. an annualsaving of 2 293 kWh. All of these figures result from an average retrofit cost of 3 159 Eurosor, at the average exchange rate for the year 2023, 3 490 US dollars.A first lesson in terms of policy recommendation, consistent with the motivations of theretrofit programs evaluated during the first decade of the period covered by our meta-analysis,concerns the profitability of the investments thus made. To do this, even with a back of theenvelope calculation, it is necessary to know the price of energy in order to calculate the billreduction. As this calculation depends on the energy source, the geographical area, and theyear considered, we consider four cases by crossing the case of gas versus electricity and thecase of the European Union versus the United States for the year 2023. Let first considerthe case of electricity as the primary source of energy for dwellings. According to Eurostat,the average price within the European Union was 0.1125=C/kWh in 2023. It results in yearlyenergy savings of 151.36=C. According to the US Energy Information Agency, the average
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price of electricity for residential end use was 0.1648$/kWh and results in yearly energysavings of 221.73$. When natural gas is considered as the primary source of energy, itsaverage price for residential consumers amounts to 0.2937=C/kWh within the European Unionaccording to Eurostat and to a much lower value of 0.0509$/MWh in the US according to theUS Energy Information Agency. As a consequence, we compute that yearly energy savingsare 673.64=C in the European Union and 119.03$ in the US. Retrofit of dwellings with gas asthe primary source of energy is thus much more attractive in the European Union comparedto the US, due to gap in the price of gas for residential use between the two sides of theAtlantic. Note also that retrofit of dwellings using gas is more profitable than retrofit usingelectricity in Europe and conversely in the US.
Figure 10: Sensitivity of the Levelized Cost of Carbon Abatament (=C/t) in Europe with

respect to the discount rate (abscissa) and the project lifespan (T, in years)

A second lesson in terms of policy recommendations can be drawn, inspired by the focusof the second wave of studies mostly concentrated on the last decade of the period coveredby our meta-analysis: is retrofit of dwellings a low cost strategy to reduce Green HouseGas emissions? To address this question, we need to complement our back of the envelopecalculation with data on electricity carbon intensity and carbon intensity of natural gasburned as a fuel. Electricity carbon intensity in 2023 is assumed to be 0.00021 tonnes ofequivalent CO2 per kWh in Europe according to Eurostat and 0.00394 tonnes of equivalent
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Figure 11: Sensitivity of the Levelized Cost of Carbon Abatament (=C/t) in the United States

with respect to the discount rate (abscissa) and the project lifespan (T, in years)

CO2 per kWh in the United States according to the US Energy Information Administration,the difference stemming from the electricity mix. We assess the profitability of retrofit withthe Levelized Cost of Carbon Abatement (LCCA) proposed by Baker and Khatami, 2019. TheLCCA is the threshold value of the price of a tonne of equivalent CO2 that makes a low carbonproject just profitable according to the Net Present Value criteria. As a result, the LCCA canbe computed as the ratio between the retrofit cost net of the sum of discounted yearly energysavings in the numerator and the discounted sum of avoided tonnes of equivalent CO2 in thedenominator. Where there is pricing of GHG emissions, either in the form of a carbon taxor in the form of a price on an Emission Trading System, a LCCA lower than the level ofpricing implies that the low carbon project is profitable and conversely. Prior computing theLCCA, we have to set the lifespan of the project and the discount rate. In order to make ourcalculation comparable to that of Fowlie et al., 2018, we consider a lifespan of 16 years anda 3% interest rate. It follows on that the LCCA of the retrofit of a dwelling using electricityas the main source of energy amounts to 18.03=C/t in Europe whereas it is 1.19=C/t in the US.If we compare it to the price of a tonne of carbon on the EU-ETS that was higher than orclose to 80=C/t all along year 2023, we conclude that retrofit programs are clearly profitablein Europe and even more in the US. When it comes to natural gas as the main source of
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energy for dwellings, the carbon intensity of gas burned as a fuel has the same value of0.00018088675 tonnes of equivalent CO2 per kWh in Europe and the US. It follows on thatthe LCCA is -66.38=C/t in Europe and 15.52=C/t in the US. The negative LCCA in Europe is dueto energy savings offsetting the gross cost of the retrofit, hence the negative numerator. It isconsistent with the Enkvist et al., 2007 abatement cost of emissions in buildings but sharplycontrasts with the high positive net cost obtained by Fowlie et al., 2018. Actually the rate ofenergy savings obtained by the latter is similar to that estimated in our meta-analysis, butFowlie et al., 2018 stress the particularly, not to say abnormal, high average cost of retrofitin their study which lead to a positive and significantly higher LCCA for the US. The sharpdifference between the highly negative LCCA in Europe and the positive LCCA in the USstems from the price gap of natural gas for residential use in the two geographical zones.A sensitivity analysis of the results with respect to the discount factor and the lifespan ofthe project reveals that our main results as regards the LCCA are robust, as illustrated byFigure 10 and Figure 11. We conclude from these calculations that prioritizing the retrofitof dwellings to abate GHG emissions based on the argument that there are associated tolow, or even negative, net abatement cost is relevant. Nevertheless, the magnitude of theprofitability as measured by the LCCA of such low carbon investments crucially depends onwhat is the main source of energy used in these dwellings and what is the price of this sourceof energy in the geographical zone under consideration.
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