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Executive summary

On 29 January 2025, the European Commission unveiled the Competitiveness Compass, a set of
policy guidelines aimed at “reigniting economic dynamism in Europe” (European Commission,
2025b). A central pillar of this initiative is the creation of a joint road map that aligns industrial
decarbonization with long-term competitiveness. Designing effective policies that promote green
innovation and industrial decarbonization while maintaining competitiveness requires a nuanced
understanding of how these objectives interact, of the policy instruments capable of shaping their
alignment, and of how industrial production systems function (Dakpo et al., 2016; Diesing et al.,
2025; Morfeldt & Silveira, 2014).

Building on this need for a better understanding of industrial production systems in view of
decarbonization, this paper contributes to research on directed technical change and the impact of
the EU’s carbon market, the EU ETS, on heavy industry by addressing a key gap in the literature:
the missing link between green inventions and actual firm-level decarbonization and production
outcomes. While prior studies have established that the EU ETS has spurred low-carbon patenting
activity (Calel, 2020; Calel & Dechezleprétre, 2014), and others have assessed general trends in
technical change within EU~ETS sectors Dzemydaité & NaruSeviCius, 2023; Morfeldt & Silveira,
2014), there remains limited evidence on whether such patented inventions have translated into
measurable emission reductions or efficiency gains.

This study complements existing literature by jointly analyzing technical and climate efficiency at
the firm level among industrial firms regulated under the EU ETS' third phase (2013-2020).
Applying a Technological Frontier approach, the analysis goes beyond identifying innovation
signals to evaluate whether firms that engage in low-carbon patenting are also those that shift or
approach the technological frontier. In a second step, patent data is added to run a firm-level panel
econometric analysis in which a firm's distance to the frontier is explained by firm characteristics
and patenting behavior.

Key Findings:

o Efficiency dispersion is uneven across EU ETS sectors. Sectors like paper, chemicals,
and non-metallic minerals display significant heterogeneity in their firms' efficiency levels,
highlighting a large potential for efficiency gains among laggards, while firms in sectors such
as cement and steel produced via electric arc furnaces (EAF) are more uniform.

e Technological progress is driven by a small number of firms within each sector. This
suggests the presence of a strong leader—laggard dynamic.

¢ Green patenting does not directly imply improvements in firm-level efficiency, even
when the measure of efficiency includes both emission and output in its measure. This
counterintuitive result could be explained by brown technological lock-in: firms diverting
resources from brown innovation to green innovation lose out to firms that are pushing the
technological frontier faster by continuing their investments in brown technologies.

Ultimately, achieving deep decarbonization in heavy industries will require a dual focus on
accelerating technological breakthroughs among sectoral leaders while ensuring broader diffusion
of innovations and process changes across lagging firms. Policymakers must also look beyond
patent-based metrics and prioritize direct evidence of emission reductions when evaluating the
effectiveness of climate regulations.



1 Introduction

On 29 January 2025, the European Commission unveiled the Competitiveness Compass, a set
of policy guidelines aimed at “reigniting economic dynamism in Europe” (European Commission,
2025b). A central pillar of this initiative is the creation of a joint road map that aligns indus-
trial decarbonization with long-term competitiveness. This vision was formalized in the Clean
Industrial Deal, which identifies heavy industry as one of two priority sectors requiring policy in-
tervention to support the EU’s climate and competitiveness objectives (European Commission,
2025a). These recent policy developments underscore the challenge policymakers are facing to de-
sign decarbonization policies without harming the industrial sector’s competitiveness in a globally

fragmented climate policy context.

A major barrier preventing heavy industry from significantly decarbonizing without policy inter-
vention is that most low-carbon technologies are either not yet market-ready or are more expensive
than their business-as-usual counterparts (Diesing et al., 2025; International Energy Agency, 2024;
IPCC, 2023). This highlights the need for investments in low-carbon innovation to develop or scale
up the industrial technologies needed for the transition. The EU’s carbon market—the EU Emis-
sions Trading Scheme (EU ETS)—recognizes this and aims to spur low-carbon innovation through

market-based incentives (European Parliament and Council, 2003).

Designing effective policies that promote green innovation and industrial decarbonization while
maintaining competitiveness requires a nuanced understanding of how these objectives interact,
and of the policy instruments capable of shaping their alignment. A deeper grasp of industrial
production systems can allow policymakers to design interventions that are both well-targeted and
efficient—ensuring that they support climate goals while remaining compatible with the physical
science and security requirements inherent to many industrial processes and products (Dakpo et al.,
2016; Diesing et al., 2025; Morfeldt & Silveira, 2014).

Building on this need for a better understanding of industrial production systems in view of de-
carbonization, this paper contributes to the research on directed technical change and the impact
of the EU ETS in heavy industry by addressing a key gap in the literature: the missing link be-
tween green inventions and actual firm-level decarbonization and production outcomes. While prior
studies have established that the EU ETS has spurred low-carbon patenting activity (Calel, 2020;
Calel & Dechezleprétre, 2014), and others have assessed general trends in technical change within
EU ETS sectors (Dzemydaité & NaruSevicius, 2023; Morfeldt & Silveira, 2014), there remains
limited evidence on whether such patented inventions have translated into measurable emission

reductions or efficiency gains.

This study complements and extends the existing literature by jointly analyzing technical and
climate efficiency at the firm level among industrial firms regulated under the EU ETS’ third phase
(2013-2020). Applying a Technological Frontier approach, the analysis goes beyond identifying

innovation signals to evaluate whether firms that engage in low-carbon patenting are also those



that shift or approach the technological frontier. In doing so, the paper provides new insights into
the effectiveness of patented inventions to transform heavy industry production systems. This can
help policymakers to better target innovation policies towards firms that have not been able to
innovate so far and investment policies towards firms that struggle to transform their inventions

into tangible efficiency gains.

The choice of employing a Technological Frontier Analysis (TFA) stems from this methodology’s
capacity to model the joint production of industrial products (like cement or steel) and emissions.
This reflects the fact that emissions are an inevitable and undesirable by-product of industrial
processes (Fare et al., 2005). This paper uses data on firm-level emissions from the EU Transaction
Log and on financial and operational data from ORBIS to run a TFA via a deterministic linear-
quadratic minimization program. The TFA is applied to a sample of around 900 firms in 17 heavy
industry sectors. This yields a measure of sector-level technological frontiers. These frontiers
represent the best available performance within a sector. A firm’s distance to the frontier is taken
as a measure of its relative efficiency within its sector. In a second step, patent data is added and
used to run a firm-level panel econometric analysis in which a firm’s distance to the frontier is

explained by firm characteristics and patenting behavior.

The TFA in this paper highlights two main insights into EU ETS sectors’ efficiency and technological
patterns. First, the level of dispersion in firm-level efficiency varies widely across sectors. Sectors
like paper, chemicals, and non-metallic minerals display significant heterogeneity in their firms’
efficiency levels, while firms in sectors such as cement and steel produced via electric arc furnaces
(EAF) are more uniform. Second, technological frontier displacement—used here as a proxy for
technological progress—is highly concentrated among a few firms, often the same ones year after
vear. These findings reveal the uneven pace of progress and point to the potential of targeted

policies to boost lagging firms.

Our second-stage econometric analysis finds that firms that file green patents become less efficient
than their competitors. The most plausible explanation for this is that brown innovation in heavy
industry benefits from decades of research and technological lock-in, while green innovation has a
large research gap to make up for. As a result, firms diverting resources from brown innovation
to green innovation lose out to firms that are pushing the technological frontier faster by contin-
uing their investments in brown technologies. This is in line with the mechanisms of innovation
path dependency as theorized by Acemoglu et al. (2012) and empirically studied by Aghion et al.
(2016). We highlight further research avenues that could be pursued to strengthen this claim in

our discussion.

The rest of this paper is organized as follows. Section 2 reviews the literature that relates to
innovation, the EU ETS, and technical efficiency. Section 3 presents the theoretical framework of
technological frontiers as it is applied in this paper. Section 4 and Section 5 respectively present

the data and empirical approach that are used. Section 6 presents the results from our two-stage



analysis, which Section 7 discusses. Finally, Section 8 concludes and presents avenues for future

research.

2 Related literature

2.1 Directed technical change

One of the core objectives of the EU ETS is to “encourage the use of more energy-efficient tech-
nologies”, as outlined in its founding directive (European Parliament and Council, 2003). Since
the market’s launch in 2005, policy reforms have further institutionalized this objective and lever-
aged the transition from free allocation of allowances to auctioning as the default allocation mode.
These reforms include (1) the earmarking of some of the revenues from auctioning allowances to the
Innovation Fund, which channels funds into large-scale low-carbon projects, and (2) requirements
that Member States reinvest national ETS revenues into climate adaptation and mitigation, with a
focus on research and innovation (European Commission, 2023; European Parliament and Council,
2024).

This objective is in line with the idea known as directed technical change, which posits that the
direction of innovation responds to economic incentives (Hicks, 1932). In the case of climate change
mitigation, instruments like the EU ET'S create incentives for firms to reduce their emissions by im-
posing a price on carbon (Porter & van der Linde, 1995). This type of directed technical change is a
necessary (but insufficient) condition to meet climate objectives (Bataille et al., 2018; IPCC, 2023).
However, decades of climate inaction have entrenched a brown technological lock-in—a situation
where industrial systems, infrastructure, and knowledge bases are deeply embedded in fossil-fuel
technologies. This lock-in creates structural inertia which makes it difficult for green innovation
to compete without targeted support. Empirical studies have found evidence of carbon-intensive
technology lock-in in the automobile (Aghion et al., 2016) and chemicals industries (Janipour et
al., 2020) for instance. To break this cycle, complementary policies like innovation subsidies are

essential (Acemoglu et al., 2012).

2.2 Trends in EU ETS sectors’ technical change

Some studies document technical change trends in EU ETS-regulated sectors without making a
causal claim about the policy’s impacts. The most comprehensive multi-sector analysis of this
sort, Baudry and Faure (forthcoming), applies a linear-quadratic minimization framework to nine
four-digit NACE sectors (iron and steel, cement, flat glass, hollow glass, ceramic tiles, ceramic
bricks, pulp, paper, and chemicals) from 2012-2021. Calibrating sector-specific annual frontiers for
249 EU ETS firms, they categorize sectors as exhibiting non-directed technological change (iron
and steel, flat and hollow glass, ceramic tiles, and chemicals), weakly directed technical change—

meaning that firms reduced their carbon intensity but increased total emissions through output



growth (cement, pulp, ceramic bricks)—or indeterminate technological change due to a high level

of heterogeneity between firms (paper).

Sector-specific papers further study these trends. For iron and steel, Morfeldt and Silveira (2014)
use a DEA-based Malmquist index to distinguish technical change (innovation-driven efficiency
gains) from energy efficiency (firms’ average distance to best practices) across 15 EU countries
from 1992-2010. While technological progress occurred, energy efficiency gaps widened between
frontier and lagging producers. In the Swedish pulp and paper sector, Bostian et al. (2018) find
productivity declines between 2002 and 2008 when emissions are accounted for in the DEA frontier.
For chemicals, Dzemydaité and NaruSevi¢ius (2023) highlight robust technological progress (2000
2019) measured via Stochastic Frontier Ananlysis (SFA). Oggioni et al. (2011) attribute stable
efficiency gains in EU cement (2005-2008) to advanced kilns and alternative fuels but do not
disentangle EU ETS incentives from other drivers. Overall, there is little recent evidence on firm-

level technical change across all heavy industry sectors covered by the EU ETS.

2.3 Has the EU ETS caused directed technical change?

A separate strand of literature evaluates whether the EU ETS caused directed technical change,
with two main approaches. The first group assesses the EU ETS’ impact on TFA-based measures of
technological progress, while the second group does so on proxies of technological progress, namely

patents and investments in research and development.

Within the first group, Loschel et al. (2019) perform a difference-in-differences analysis on 473
EU ETS-regulated firms and 35,122 non-EU ETS firms in Germany (2003-2012). They apply
an SFA to estimate sector-specific economic efficiency frontiers for the entire period. Efficiency
improvements are measured as the reduction of a firm’s distance to the frontier over time. While
EU ETS firms initially lagged in efficiency, their median distance to the frontier decreased by
2012—mnotably in the paper sector—while non-ETS firms showed no improvement. The authors
show that the EU ETS improved economic efficiency. However, their methodology only allows
them to measure general technological progress, without commenting on its direction with regards
to emission efficiency. Contrary to this result, Lundgren et al. (2015) assess 90 Swedish firms (1998
2008) and find that COq taxes and the EU ETS had negligible or negative effects on productivity,
but that fossil fuel prices spurred stronger incentives for efficiency gains through technological
progress. They are able to decompose efficiency gains from technological change by computing a
Luenberger Total Factor Productivity indicator. This indicator defines technological change as the
displacement of the technological frontier from one year to the next and efficiency gains as the

change in firms’ distance to the frontier from one year to the next.

Within the second strand of literature, researchers have exploited the EU ETS’ installation-level
inclusion criteria to assess the market’s causal impact on patents or investments in research and

development—used as proxies for technological change. Calel (2020) adopt this approach on a panel



of British firms and find that the EU ETS has encouraged low-carbon patenting and spending in
research and development between 2005 and 2012. Applying a similar approach on a panel of
around 3,500 firms, Calel and Dechezleprétre (2014) find that the EU ETS increased low-carbon
patenting in regulated firms by as much as 10% from 2005 to 2009. While this research points in the
direction of directed technical change induced by the EU ETS, there is one significant limitation:
low-carbon patents indicate that a firm has invented a new process or product, but not that it
has implemented this invention in its production process (making it an innovation), nor that this

implementation has effectively reduced emissions or emission intensity.

This paper aims to complement the existing literature highlighted in this section by providing an
analysis of technical change in EU ETS firms and by studying whether low-carbon patenting by
EU ETS firms has led improvements in emission and production efficiency. We now turn to the
theoretical framework that allows us to measure firm-level efficiency accounting both for technical

and emission parameters.

3 Theoretical framework

3.1 Technological frontiers

We apply the theoretical framework of technological frontiers, first formalized by Shephard (1970)
and later generalized by Chambers et al. (1998). A technological frontier represents a firm’s maxi-
mum attainable output with a given set of inputs if the firm is fully efficient. A firm’s inefficiency
is therefore measured as its distance to the technological frontier. Following Fére et al. (2005), we

examine a setting where firms produce both a desirable and an undesirable output.

General setup. We consider Zle N firms in S sectors over T' time periods (years). Firm i
(i =1,...,Ng) in sector s (s = 1,...,.5) produces O = 2 types of outputs Y, at time ¢ (¢t = 1,...,T):
one good output Y, (production of an industrial good such as cement) and one bad output ¥} (CO2
emissions). The bad output is an undesirable side effect of production. The output of firm i at

time ¢ is a O-dimensional vector given by: Yi; = (Yig, Yinp)' € %2.

Firm ¢ uses @ = 3 inputs X, for its production: capital X}, labor X;, and material inputs X,
(which include energy and raw materials). The inputs used by firm i at time ¢ are a )-dimensional
vector given by: X = (X, Xitt, Xitm) € ?Rg

Firm ¢ transforms the vector of inputs X;; into the vector of outputs Y;; by using a production
technology P that is common to all firms within a sector s (Fare et al., 2005). All the equations
that follow are given for a specific sector s. To simplify notations, we forego the s subscript in the

rest of this section.



Production technology. The production technology P is defined as:
P(X) = {Yi : X1 can produce Yj;} (1)

This specification follows a set of standard neoclassical micro-economic assumptions, augmented to
account for joint production of desirable and undesirable outputs (Fare et al., 2005; Shephard &
Fére, 1974; Shephard, 1970). For notational simplicity, we omit firm ¢ and time ¢ subscripts when

presenting these assumptions below, though all properties hold for each firm-period observation.

e Inputs are strongly and freely disposable, meaning that a firm cannot decrease its

output level if it does not also decrease its input level:

If X' > X then P(X') C P(X) (2)

e Null-jointness of Y, and Y}, meaning that a firm cannot produce any level of the good

output without also producing some amount of the bad output:
If (V,,Y;) € P(X) and ¥, =0 then Y; =0 (3)

¢ Good and bad outputs together are weakly disposable, meaning that for a given level
of X, cutting down proportionally on Y} and Yj is technologically feasible (the decrease in Y
represents the cost of cutting down on Y3):

If (Y,,Y;) € P(X) and 0 < ¢ < 1 then (CY,,(Y;) € P(X) (4)

e Good outputs are strongly disposable, meaning that the firm can dispose of the good

output at no cost:

It (Y,,Y3) € P(X) and (Y}, Y3) < (¥;,Y5) then (Y, ¥;) € P(X) (5)

To further explain the characteristics of the technological frontier framework, we turn to a graphical
representation (Figure 1). The technological frontier is represented by the solid line.! Firms’ inputs
have been normalized to an equal amount and each dot represents the level of good and bad outputs

that each firm produces given this normalized amount of inputs.

3.2 Efficiency

Broadly speaking, efficiency can be understood as firms’ capacity to use the lowest amount of inputs
(resources) to produce the largest amount of outputs. In practice, efficiency is measured either as
an input-oriented measure or an output-oriented measure. Input-oriented efficiency measures the
extent to which a firm could reduce its use of inputs and still be able to produce the same level of

output. Output-oriented efficiency is the opposite, meaning the extent to which a firm could expand

!The technological frontier has an inverse-U shape for three reasons: (1) the assumption of null-jointness of Yy
and Y; imposes that it passes through (0,0); (2) it must be above or equal to all firms’ outputs; (3) the assumption
that Y; is strongly disposable means that it passes through (max(Y3),0).



Figure 1: Representation of an output-oriented technological frontier
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its level of output without using more inputs. Both measures are relative to the best-performing
firms in a sector (Bogetoft & Otto, 2011).

In this paper, efficiency has to integrate both a good and a bad output. We therefore use an
output-oriented measure of efficiency, defined as a firm’s capacity to produce the largest amount of

good outputs, while producing the smallest amount of bad outputs, with a fixed level of inputs.

To integrate both a good and a bad output, we use the concept of Shephard’s distance applied to
an output-oriented efficiency (Shephard, 1970). Shephard’s distance measures how far each firm
is from its sector’s technological frontier. The further away a firm is from the frontier, the higher
its inefficiency. The solid arrows going from the firm-level observations to the frontier in Figure 1
illustrate this measure of inefficiency. Formally, Shephard’s distance is defined as a directional

distance function
H
Dit(Xit, Yitg, Yin; vg, —vp) = max{¢ : Yirg + dvg; Yin, — ¢vp,) € P(Xi)} (6)

where ¢ represents the most the good output can grow (or the bad output can shrink) based on a
plant’s technology, moving in a specific direction defined by v = (vg, —vp), where v represents the

direction for good outputs (vg4) and bad outputs (vp).



3.3 Technological progress

In this framework, technological progress occurs when the production frontier shifts upward from
one period to the next (represented by the dashed frontier line in Figure 2). This shift reflects an

expansion of production possibilities.

Our focus is on identifying the firm-level drivers of technological progress. Specifically, we aim to
pinpoint which firms are responsible for pushing the frontier outward. To do this, we compute
each firm’s position relative to the t — 1 frontier (represented as the diamonds in Figure 2) by
evaluating its t-period inputs and outputs against the frontier’s ¢ — 1 coefficients. This also allows
us to compute a firm’s distance to the ¢t — 1 frontier (represented as the dotted arrows in Figure 2).
If a firm’s production lies beyond the t — 1 frontier, it has contributed to displacing the frontier
outward in period t (for example, firms A, B and F in Figure 2) and has a negative value for its
distance. If it lies below the frontier, it has not driven technological progress (for example, firms

C, D and E in Figure 2) and has a positive value for its distance.

Figure 2: Representation of frontier displacement

Good output Y

FI
o2 Be 2
c
B, ‘
. D,
Al N

Bad output Y}

Source: Authors.



4 Data

4.1 Data sources

Three main databases were merged to provide data on firm-level climate and economic variables:
Moody’s ORBIS database,? the EU Transaction Log (EUTL),? and the European Patent Office’s
(EPO) PATSTAT database.*

ORBIS is a proprietary dataset that includes around 550 million businesses throughout the world.
It harmonizes financial information into a uniform global template, enabling comparisons between
countries. The EUTL, managed by the European Commission, serves as the primary system for
reporting and tracking all EU ETS compliance and transaction information. It provides public
access to GHG emission compliance data for installations covered by the EU ETS. PATSTAT
is a proprietary database compiled by the EPO. It provides patent data at the firm level from
patent offices in major industrialized and developing countries and includes bibliographical and

legal information.

4.2 Data preparation
4.2.1 Data cleaning

EUTL We use the data files provided by Abrell (2022).> We implement the following steps to
clean these files for the purpose of our analysis. First, we remove all observations lacking company
registration numbers and entries from the Swiss ETS (CH ETS). Second, we discard entries not
reporting Operator Holding Accounts, as well as those with “Aircraft operator activities” as their

installation activity. Finally, we exclude account holders without any corresponding installations.

ORBIS We follow recommendations from Gal (2013), Gopinath et al. (2017), and Kalemli-Ozcan
et al. (2015) to ensure that we eliminate all observations without sufficient data quality from our

sample. In particular, we drop all observations that meet the following criteria:
e Missing any of the following variables: total assets, turnover, sales, cost of employees, tangible
fixed assets, material costs

e Any of the following variables are negative: total assets, number of employees, sales, tangible

fixed assets, material costs, operating revenue

Zhttps: //www.moodys.com/web/en/us/capabilities/company-reference-data/orbis.html

Shttps://www.eea.europa.eu/data-and-maps/dashboards /emissions-trading-viewer- 1

“https://www.epo.org/en/searching-for-patents/business /patstat

® Abrell (2022) scraped the data from the EUTL and compiled it into a relational database made up of various
CSV files. These files, along with documentation on Abrell’s work and output are available for download at the
following website: https://www.euets.info/download/



e Any of the following variables are equal to zero: material costs, total assets, tangible fixed

assets, number of employees or operating revenue

Additionally, we deflate all the data reported in euros in ORBIS. Following Curzi et al. (2021),
we deflate turnover with Eurostat’s output price index data series and tangible fixed assets with
Eurostat’s implicit deflator for fixed assets data series. Both of these data series come from national
accounts data. Labor costs are deflated using Eurostat’s labor cost index for wages and salaries
data series. Material costs are deflated through a combined index, computed as the simple average

of price indexes for natural gas and metals from the IMF, and electricity prices from Eurostat.®

Finally, following Cameron and Garrone (2024), we keep only firms whose main activity as stated by
its ORBIS NACE code is an activity regulated by the EU ETS. This is to ensure better compatibility
between ORBIS and EUTL data.

PATSTAT o assess the level of patented inventions among EU ETS firms, we exploit the EPO’s
PATSTAT database. Patents signal novel and significant advances over the current state of the
art in technology and confer exclusive industrialization and commercial rights within the relevant

jurisdiction.

To avoid double counting of the same invention filed in multiple jurisdictions, we rely on observations
at the patent family level (defined as the INPADOC family classification).” Since our focus is on
inventions within EU member states, we only consider patents filed with the EPO, or, in the absence

of such, with a national office of an EU ETS country.

We define the date of invention as the filing date, which better reflects the timing of inventive
activity than the grant date. We do not restrict the dataset to granted patents, to capture early-

stage inventions and avoid truncation biases in recent years.

We construct two different measures of patent counts. One is a stock value and the other is a flow
value. The stock value begins in the first year of our sample (2013) and is a cumulative count of
the patents filed since then. We do not include the stock before 2013 because it does not vary
over time and is therefore accounted for in our firm-level fixed effects. The patent flow value is the

simple count of patents filed in a single year.

Patent families are classified either as “Low-carbon” or “Not low-carbon” in our data. This is
determined based on the Cooperative Patent Classification (CPC) system. The EPO and the

5Data codes are the following for Eurostat data series: “NAMA 10 A64” for the output price index series,
“NAMA 10 _ANG6” for the implicit deflator for fixed assets deflator series, “LC_LCI_R2_A” for the labor cost index
data series, and “TENO00117” for the electricity price data series. All of these data series are provided for industry
only (NACE code D) and by country and year. The IMF data for natural gas and metal price indexes are taken from
the Primary Commodity Price Systems database. The natural gas data is provided as an EU average and the metal
data is provided as a world average. Both are for all sectors of the economy.

TAn extended patent family is a collection of patent documents covering a technology. The technical content
covered by the applications is similar, but not necessarily the same. See Martinez (2010) and the EPO’s website for a
complete discussion on the use of patent families: https://www.epo.org/en/searching-for-patents/helpful-resources/
first-time-here /patent-families/inpadoc

10



United States Patent and Trademark Office developed a tagging system that identifies patents
linked to climate change mitigation technologies. The tagged patents are given a CPC code that
begins with “Y02” (Angelucci et al., 2018). Patent families can have several associated CPC codes
if they are related to several technical fields. As a result, a single patent family may be associated
both with CPC codes starting with “Y02” and others that are not.

To avoid double counting these patent families, we count those with both “Y02” and non-“Y02”
CPC codes as 0.5 Low-carbon and 0.5 Not Low-carbon. We refer to the category of Low-carbon
patent families as green inventions and Not low-carbon patent families as brown inventions. We
include a robustness test that counts patent families with both types of CPC codes as 1 in each

category of inventions. Results for this test are reported in Appendix 11.

Finally, we also compute a variant of our stock count of patent families that includes a rate of
depreciation of inventions. This is to account for the progressive loss of value of inventions as
they grow older. Following the literature, we compute this with an annual depreciation rate of 5%
(de Rassenfosse & Jaffe, 2018; Huang & Diewert, 2011). Results that use the depreciated patent
family stock variable are reported in Appendix 11.

4.2.2 Matching databases at the firm level

The matching between ORBIS and the EUTL was conducted in previous work by Cameron and
Ho (2024). The full procedure, as well as the resulting matched dataset, has been published by the

European Commission and is available online.®

Turning to the PATSTAT-EUTL matching, no common unique identifiers exist between the two
datasets. We therefore implement a matching protocol based on firm names and geographic infor-

mation.

First, we extract all patent filings from firms located in countries participating in the EU ETS,
between 1992 and 2020. We then construct a name-matching algorithm following Cameron and Ho
(2024) that applies an N-gram similarity algorithm to compare firm names across PATSTAT and the
EUTL, incorporating data on zip codes to improve the precision of matches. The resulting candidate
matches are evaluated using a combination of automated similarity scores and complementary

manual validation to ensure correspondence between legal entities.

We subsequently merge the outputs of the two separate matched databases (i) PATSTAT-EUTL,
and (ii) EUTL-ORBIS. Upon inspection, we observed that in some cases, firm names from ORBIS—
distinct from their EUTL counterparts—matched closely with PATSTAT applicant names. To
account for this, we re-applied the N-gram algorithm to the subsample of ORBIS firms already
matched to the EUTL but not matched in the original PATSTAT-EUTL procedure. This procedure
results in a balanced panel of 872 firms that were observed between 2013 and 2020.

®The matching procedure and data can be accessed at https://single-market-economy.ec.europa.cu/
single-market /services/economic-analysis/matching-eu-transaction-log-orbis-database _en?prefLang—sv
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4.2.3 Sectoral classification

One of the fundamental assumptions in TFA is that firms within a given sector employ the same
production technology, meaning they share a common production/technology set. This assump-
tion is crucial because firm efficiency is assessed through benchmarking against other firms in the
same sector. If firms differ in their outputs, production technologies, or input types, efficiency

measurements may be biased (Walheer, 2024).

This assumption poses two challenges for empirical implementation. First, sectoral nomenclatures
typically classify firms based on their economic activity or outputs, rather than the production
technologies they use. This may not be a problem for sectors where production technologies for
onc output or activity are relatively homogeneous (e.g., paper production), but it is one in sectors
that have several distinct production pathways (e.g., steel production). The second challenge is
that, although using the most disaggregated nomenclature maximizes technological homogeneity
within sectors, it also creates sectors that are too narrow for empirical analysis—for instance, at
the 4-digit level, 21 NACE sectors contain only a single firm in our sample. We must thus strike a
balance between achieving sufficient disaggregation to reflect homogeneous technological processes

while avoiding excessive fragmentation that results in sectors that contain very few firms.

To determine the sectoral classification that best ensures technological homogeneity within sectors
while avoiding over-fragmentation, we evaluate available nomenclatures using a Multiple Analysis
of Variance (MANOVA).? There are four nomenclatures available in our dataset: 2-digit NACE
codes, 3-digit NACE codes, 4-digit NACE codes, and installation activity codes from the EUTL.
The indicators employed in the MANOVA are firms’ capital intensity, labor intensity, material

input intensity, and emission intensity.'"

We begin with the most disaggregated nomenclature available—the 4-digit NACE codes—which
achieves the best MANOVA scores across all test (brown bars in Figure 3). Sectors with fewer than
20 firms are subsequently merged with their closest parent NACE sector (orange bars in Figure 3).1!
While the 3-digit NACE classification (purple bars in Figure 3) and the EUTL installation activity
nomenclature (red bars in Figure 3) both yield better scores than the new aggregated nomenclature
for some of the test statistics, they suffer from the same issue as the 4-digit classification, with some
sectors containing too few firms. Therefore, the final proposed nomenclature represents the most

disaggregated classification in which all sectors contain at least 20 firms.

9We report results for the four most common MANOVA test statistics: Wilk’s Lambda, Hotelling-Lawley’s Trace,
Roy’s Greatest Root, and Pillai’s Trace. While all assess group differences across dependent variables, they handle
variability differently and rely on distinct data assumptions. Regardless of the test statistic used, the results of the
nomenclature assessment remain broadly consistent.

0Capital intensity serves as a proxy for the machinery used in production (Bellocchi et al., 2023; Kaldor, 1957);
labor intensity reflects skill and labor requirements (Acemoglu & Autor, 2011); material input intensity characterizes
the type and quantity of inputs needed (Rigby & Essletzbichler, 1997); and emission intensity represents the emission
profile associated with different production pathways (OECD, 2024).

HThe complete list of these aggregations is provided in Appendix 9.
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We refine this classification and address the first challenge described above by incorporating infor-
mation on steel production technologies. Neither the NACE nor the EUTL installation activity
classifications distinguish between steel firms operating electric arc furnaces and those using basic
oxygen furnaces, despite the significant differences between these technologies (Cameron, 2025).
To address this gap, we merge our dataset at the installation level with the Global Steel Plant
Tracker database, which provides information on steel mill production technologies (Global Energy
Monitor, 2024).'2 This additional classification step slightly enhances the MANOVA scores of the
final nomenclature (green bars in Figure 3).

Figure 3: Results of MANOVA for sectoral classification
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Note: Higher scores for Hotelling-Lawley’s Trace, Roy’s Greatest Root and Pillai’s Trace indicate a higher level of
differentiation between sectors, while the opposite is true for Wilk’s Lambda (i.e. a lower score indicates a higher
level of differentiation between sectors).

Source: Authors.

12These datasets are first matched based on geographic location, then manually verified using installation and
company name similarities. Unmatched steel mills are categorized under “Unknown technology”.
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4.3 Data characteristics
4.3.1 Final sample

The sample in this study comprises heavy industry firms regulated under the EU ETS, which are
not representative of all EU heavy industry firms. Due to the EU ETS inclusion criteria, the
dataset disproportionately reflects the largest and most polluting firms in the sector (Cameron
& Garrone, 2024). Data limitations further constrain the analysis: attrition occurs during the
matching and cleaning processes (Figure 4). Observations prior to 2013 are excluded because data
from ORBIS are unavailable for earlier years. The final sample we use in our analysis is a balanced
panel of observations with sufficient data quality—meaning they are likely the largest firms, not a

representative set.

Figure 4: Sample size at the different stages of data preparation
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Source: Authors.

4.3.2 Descriptive statistics

The dataset spans 17 heavy industry sectors, which are heterogeneous in their sizes, and input and
output structures (Table 1). In our sample, Paper & paperboard have the most firms (160 firms),
followed by Ceramic tiles (100 firms), while Iron & steel via the EAF route and Pulp have the
least (20 firms each). Basic chemicals (173M€) and Pulp (168M<€) have the highest mean levels
of capital, though with high volatility (standard deviation of up to 263M€ ), while Other metals
(653M<€ ) and Basic chemicals (467M€ ) have the highest levels of material inputs. Mean labor
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costs are highest in Chemical products (85M€), but with high dispersion (standard deviation
of 442M€), suggesting heterogeneous firm sizes. Finally, Other metals (761M€ ) and Chemical
products (724M<€ ) have the highest mean level of output and Cement by far has the largest mean
level of emissions (1203ktCO2).
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Table 1: Mean firm-level values by sector

Sector N firms Capital Labor l\/ilr?;zl::l Output  Emissions
(M€) (M€) (M€) (ktCO2)
(M€)
Baked clay products 70 17.32 7.05 13.69 33.02 36.02
[26.6] [14.54] [26.64] [59.73] [56.64]
Basic chemicals 34 173.1 45.46 467.17 638.58 343.87
[179.55] [74.98] [772.15]  [920.29]  [426.65]
Cement 43 109.85 24.36 66.0 159.04 1202.57
[98.6] [26.58] [78.3] [134.12]  [901.93]
Ceramic tiles 96 27.66 10.27 22.57 55.29 34.17
[39.47] [12.18] [37.37] [66.38] [41.34]
Chemical products 59 157.07 85.39 460.3 723.96 194.03
[469.57]  [441.79] [1754.72] [2856.32] [566.65]
Hollow glass 45 50.47 22.04 62.84 123.97 91.74
[46.77] [29.69] [105.91]  [151.95]  [119.56]
Iron & steel - EAF 22 114.16 31.27 317.7 436.7 105.61
[147.2] [27.85] [264.32]  [341.31] [83.05]
Iron & steel - Unknown 32 63.77 23.07 148.49 210.51 74.11
[58.57] [24.81] [117.36]  [166.72] [77.7]
Lime & plaster 59 26.1 6.27 18.88 43.53 227.26
[40.71] [9.44] [23.05] [52.48] [322.99]
Metal processing 45 75.23 33.68 176.02 255.0 48.79
[80.9] [52.98] [216.37]  [296.44] [67.33]
Other glass 42 71.14 19.87 63.15 126.56 98.0
[69.48] [20.22] [68.37] [119.06]  [108.52]
Other metals 29 108.39 34.04 653.1 761.11 73.0
[125.14] [43.85] [1325.3] [1393.81] [97.21]
Other non-metallic minerals 48 43.31 14.46 48.71 97.46 101.88
[56.86] [18.66] [64.75] [117.78]  [216.48]
Paper & paperboard 160 68.66 18.4 89.02 160.94 47.83
[187.06] [39.08] [194.17]  [345.87] [93.75]
Paper & paperboard products 42 51.1 18.25 79.37 136.92 62.86
[111.97] [26.01] [144.42]  [229.37]  [130.49]
Pulp 21 167.69 18.68 140.2 243.5 35.84
[263.4] [21.83] [225.14]  [357.27] [44.3]
Sanitary goods 26 53.79 25.86 126.36 200.39 30.26
[49.44] [34.39] [171.52]  [225.07] [31.93]

Note: Standard deviation in square brackets.

Source: Authors based on EUTL and ORBIS.
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The data presented above has been matched to patent data from PATSTAT to explore the rela-
tionship between patenting, green patenting and technical progress. As discussed in Section 2, the
existing literature finds that the EU ETS induced green patenting in regulated firms (Calel, 2020;
Calel & Dechezleprétre, 2014). As a purely descriptive check, we examine whether firms in our
sample exhibit a similar trend. Figure 5 shows the evolution of patent families filed by these firms
as an index with a base of 100 in 2005. It confirms that, following the introduction of the EU ETS,
firms in our sample increased the number of low-carbon patent families they filed more than other
types of patent families. This trend remained strong during the second and third phases of the
EU ETS, with the exception of a noticeable dip in 2016-2017, followed by a sharp increase. This
is only an indication of the evolution of patenting trends, not of the number of patent families that
have been filed in each category. Many more non-low-carbon patent families have been filed, as

illustrated by the fact that the total trend follows the non-low-carbon trend very closely.

Figure 5: Patenting trends in the sample
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5 Empirical approach

5.1 Choice of an approach for the Technological Frontier Analysis

Since the inception of TFA, many empirical methods have been developed to bring the theory to

the data. In this subsection, we review the main TFA methods in economic literature and highlight
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their strengths and weaknesses. Finally, we argue for the choice of using a Minimization Program
(MP) approach in this paper. Figure 6 describes the nomenclature of methodologies that have been

applied for TFA and summarizes their main advantages and drawbacks.

Flexibility. These methodologies can first be classified as either parametric or non-parametric.
This characterizes whether they make assumptions about the data process underlying the observed
data. Non-parametric approaches are more flexible than their parametric counterparts because
they do not impose assumptions on the functional form of the production function or on the
distribution of the unknown parameters (Assaf & Josiassen, 2016). This can be an advantage when
little is known about the true distribution of the data. Some parametric approaches can relax
the restrictiveness of their distribution assumption, namely the Generalized Method of Moments
(GMM) and Bayesian Inference (BI). GMM are relatively flexible because they only require moment
conditions rather than assumptions about full probability distributions (Atkinson & Tsionas, 2018).
BI can relax distribution assumptions by starting with noninformative priors (Fernandez et al.,
2000).

Outliers. While non-parametric methods offer flexibility, this advantage comes with heightened
sensitivity to outliers. Due to this flexibility, a single highly efficient firm can disproportionately
influence the frontier’s shape. In contrast, parametric methods mitigate the impact of outliers by

leveraging distributional assumptions, which aid in identifying and accounting for these outliers.

Statistical inference. Non-parametric methods do not rely on statistical inference and therefore

do not allow for hypothesis testing or sensitivity analyses. Parametric methods are the opposite.

Multi-output setting. Non-parametric approaches are more easily applied to multi-output set-
tings than parametric models (Assaf & Josiassen, 2016). This is because they are applied through
mathematical programs that can easily be generalized to include multiple outputs. Additionally,
these methods are very close to the theoretical underpinning of TFA. Some parametric methods
are also adapted to multi-output settings, namely a Minimization Program (MP), GMM, and BI.
On the other hand the use of Maximum Likelihood Estimation (MLE) is ill-suited for multiple out-
puts because it is an econometric method that can only have a single dependent variable (output).
Researchers have proposed two options to work around this, as detailed below. However, neither of
these options are consistent with the theoretical and empirical setting in the present paper, meaning
MLE is excluded.

e QOutputs are aggregated into a single variable, either with a ratio or a sum. For example,
Robaina-Alves et al. (2015) use a ratio of a good output over a bad output as their dependent
variable. The issue with this approach is that it fully departs from the theoretical framework

of TFA and no longer allows for efficiency to be defined according to a frontier.
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e A system of equations is estimated, with one equation for each output type. The efficiency
term can be linked between these different equations via a copula function (Skevas, 2025).
This model makes the explicit assumption that the different outputs are produced by distinct
sub-technologies. While this can make sense for models whose outputs are different products
(e.g.: one production technology to produce hats and another to produce shoes, or multi-crop
farms in agriculture), this assumption does not reflect the setting in this paper. The bad
outputs of industrial production are intrinsically linked to the production technology of the

good outputs (e.g.: emissions from cement production are produced by the cement kiln).

Error term. Non-parametric and parametric deterministic methods do not include an error term
and therefore attribute all noise in the data to firm-level inefficiency. This can be problematic for

two reasons:

1. There are random effects that affect firms’ production that are unrelated to their efficiency
(e.g.: changing weather patterns and extreme events, changes in local policies, etc... (Atkinson
& Tsionas, 2018)).

2. There are likely reporting errors and biases in the data we use (e.g.: Liu (2020) reports on
issues with data consistency, survival and selection biases and misclassifications in ORBIS;
the European Securities and Markets Authority (2022) identified consistency errors in the
EUTL due to the absence of common entity identifiers).

Data availability. Most of the methodologies presented here can be applied via a distance func-
tion derived from a production function. This means they only need data on production volumes
or values, as well as input and emission volumes or values. There is one exception however, namely
GMM. GMM requires input and output price data as it relies on the estimation of a cost function
with prices as instrumental variables (Atkinson & Tsionas, 2018). This data is very difficult to find

given its commercial sensitivity, which forces us to exclude GMM.

Computational needs. DEA, Free Disposal Hull (FDH, which is a specific form of DEA with
no assumption on the convexity of the distance function), MLE and GMM all have ready-to-use,
optimized packages in statistical programming languages. These allow for computation of the
distance function with fairly low computational needs. While MP is not available in the form of a
ready-to-use package, it can be programmed in a mathematical computation program and requires
low computational needs. The only exception is Bl, which has extremely high computational needs

given its reliance on high-iteration Monte Carlo simulations.

Final choice. Based on the above evaluation of available methodologies, this paper uses MP to

perform TFA. This methodology fits well with the theoretical framework of one bad output and one
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good output and does not require many observations by sector, which corresponds well to our data.
It is more flexible than a DEA and allows for a smoother representation of the frontier rather than
a piece-by-piece linear approximation. It thus offers a mid-point between DEA and econometric
approaches. To minimize the risk of outliers skewing our results, we ensure the quality of our data
through the steps detailed in Section 4.2.1.

While it would be preferable to use a stochastic method to account for noise in the data, each of

the possible methods are excluded for the following reasons:

e MLE is ill-suited to the multi-output framework, especially with one good output and one

bad output.
e GMM requires data on the price of inputs and outputs, which is not available to us.

e BI has computational needs that go beyond the infrastructure available to us. This is nonethe-

less the most promising method for future research.

As a result, we opt for the MP methodology, which has the advantage of being highly flexible as it
only makes assumptions about the functional form of the directional distance function. Additionally,
it can be a first step towards a BI approach which requires values for priors to reduce computation

needs.

Figure 6: Approaches to Technological Frontier Analysis
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5.2 Step 1: TFA through linear-quadratic minimization programming

We apply a deterministic linear-quadratic minimization program for the TFA. Following Fére et al.

(2005) and Baudry and Faure (forthcoming), we apply the following linear-quadratic program P

to calibrate sector- and year-specific technological frontiers
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The direction parameters v do not appear explicitly in Equation 7 because they are integrated in

the constraints imposed on the § parameters.

Implicitly, Dit(XmYz'tb; Yitg;v) = 0 defines the technological frontier, since it defines a situation

where a firm has no inefficiency. The program’s constraints ensure the technological frontier takes

on the appropriate shape, namely:

e (a) implies that firms are either on or below the technological frontier;
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(b) implies that a marginal increase in the good output increases a firm’s efficiency;
(c) implies that a marginal increase in the bad output decreases a firm’s efficiency;
(d) implies that a marginal increase in input use decreases a firm’s efficiency;

(e) implies that any use of inputs must be associated with some production;



e all the constraints allow for Yj;, > 0 even with a null production Yj;, = 0, which means P
respects the assumption of weak disposability of good and bad outputs jointly, defined in

Equation 4.

5.3 Step 2: Exploring technological progress

The purpose of our empirical analysis is to assess the effect of low-carbon patenting—measured
here through patent families belonging to the CPC class Y02—on firms’ technological progress—as

defined through our frontier approach. We therefore estimate the following equation:

TechProg, , =1 log Greenlnv; ;1 + 2 log Inv; 41

; 8
+ 3 St + i+ pe + € (8)
k

where:

e TechProg; ; is the dependent variable representing technical progress. It is either the continu-
ous variable representing a firm’s distance to the previous year’s technological frontier (which
takes a negative value when the firm is beyond the frontier, i.e., it contributed to techno-
logical change, and a positive value if it is below the frontier, i.e., it did not contribute to

technological change) or the binary variable indicating if a firm displaced the previous year’s

technological frontier or not;

e Greenlnv;; 1 and Inv;;_; are respectively the count of low-carbon or “green” patent families
(measured either as a flow or a stock) and the count of non-low-carbon or “brown” patent

families (measured either as a flow or a stock) of firm ¢ in time ¢ — 1;
e 2% is the set of firm-level control variables;
e 1; are firm fixed effects;
e [+ are country-year fixed effects;

¢ is the error term.

We run two different specifications of this equation. The first is an OLS regression in which
the dependent variable is firm’s distance to the previous year’s technological frontier. In this
specification, we use the stock patent family count variables because distance is a continuous variable
and it is likely that a firm’s accumulation of knowledge rather than its knowledge at a specific time
explains its relative efficiency within its sector. The second specification is a logit regression in
which the dependent variable is the binary variable indicating whether a firm has displaced the

frontier in a specific year. In this specification, we instead use the flow patent family count variables
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because the dependent variable is meant to capture a “‘jump” in a firm’s knowledge and therefore

is more likely explained by its patenting behavior in the year preceding the jump.

To mitigate potential reverse causality whereby proximity to the frontier may itself affect invention
decisions (firms that are more efficient are those that are more likely to innovate), we lag both
invention variables by one period. This lag also reflects the delay in the realization of productivity

benefits from inventions.

In our baseline specification, we include a set of control variables designed to isolate the impact of
low-carbon patented inventions and non-low-carbon patented inventions on firms’ distances to the
previous year’s technological frontier. These controls account for observable heterogeneity which
may affect a firm’s invention patterns and its relative technological position, thereby mitigating

omitted variable bias.

First, we include two dummy variables indicating organizational changes, namely, whether a firm
has opened or closed an installation during the period under consideration. It takes the value of
1 the year that an installation is opened or closed and 0 otherwise. These indicators allow us to
account for major internal restructuring events that may affect a firm’s technological performance
independently of its patenting activity. The opening of a new facility may reflect strategic expansion
or investment in new capabilities, while a closure may signal downsizing or internal reallocation
of resources, both of which can alter a firm’s innovation dynamics and hence distance to the

technological frontier (Cameron & Garrone, 2024).

We also account for firm-level environmental stringency, as measured by the proportion of its
GHG emissions for which the firm must purchase allowances. This variable captures the extent of
the regulatory pressure firms face under the emissions trading scheme (Borghesi et al., 2015) since
heavy industry firms still received free allowances throughout all of Phase 3 of the EU ETS. Reverse
causality may arise when examining the relationship between environmental regulatory stringency
and firm-level efficiency (Rubashkina et al., 2015). Specifically, improvements in productivity or
technological innovation may lead to reductions in emissions or lower abatement costs, thereby
influencing the very measure intended to capture regulatory stringency. To address this concern,
we lag the measure of environmental regulation to ensure that the policy variable is temporally

prior to observed outcomes (Franco & Marin, 2017).

Another factor of endogeneity that could bias our results is measurement error. In our case, the
dependent variable may be subject to this bias. If the measurement error is neither correlated with
the error term nor the regressors, our estimates will remain unbiased, but the standard deviations

will increase. This bias works against finding a significant effect.

To capture the possible correlation in errors arising from the fact that distances are computed rel-
ative to sector-year technological frontiers, errors are clustered at the sector-year level. If a frontier

is biased for a specific sector-year, all the distances that are computed relative to it will inherit the
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same bias. This level of clustering thus allows us to avoid overemphasizing the importance of these

types of errors.

A key concern in our framework arises from the dynamic nature of both innovation and technological
distance, each of which reflects accumulated activity. The stock of low-carbon patented inventions
and the firm’s proximity to the technological frontier are inherently time dependent variables and
potentially subject to hysteresis, shaped by intertemporal investment and learning dynamics. Con-
sequently , current measures of technological distance may reflect prior innovation that is itself a
function of past regulatory environments and firm specific factors. This time dependence introduces
a risk of reverse causality. In our empirical strategy we account for this endogeneity threat by in-
cluding firm fixed effects to control for time-invariant unobserved heterogeneity across firms—such
as managerial quality, historical R&D capacity, or long-term strategic orientation. Furthermore, we
use a short panel (up to seven year for firm) which helps isolate within-firm variation over time of
our main regressors without worrying about confounding factors. We also test whether some specific
firm-level controls (firm size and a firm’s initial stock of patent families) can explain firms’ distance
to the frontier in a specification that excludes firm fixed effects. Lastly, we include country-year
fixed effects in our preferred specification to control for policy shifts at the country level, includ-
ing macroeconomic trends or regulatory stringency variations, which might simultaneously affect

innovation incentives and the evolution of the technological frontier.

6 Results

6.1 Trends in firm-level distance to the frontier

An interesting result from our analysis lies in the within-sector dispersion of firms’ distances to the
technological frontier. While the level values of distances are not comparable across sectors due to
the within-sector calibration of the frontier, dispersion metrics (e.g., coefficient of variation) can
reveal meaningful intra- and inter-sector dynamics. High dispersion signals significant heterogeneity
in firm efficiency, whereas low dispersion reflects homogeneity—i.e., firms are clustered tightly
around the sectoral mean efficiency. These patterns are not static; they evolve over time, offering

insights into convergence or divergence of efficiency at the sector level (Figure 7).

The sectors in our analysis can be split into three groups based on the dispersion of their efficiency
values. The first group comprises sectors with low levels of dispersion (coefficient of variation (CV)
below 100%, meaning that the standard deviation is smaller than the mean). This group includes
Cement and Other glass products for all years of the analysis, as well as Baked clay products, Hollow
glass, and EAF Iron and steel in the most recent year of data (2020). The second group holds the
most sectors. It is composed of sectors with middling dispersions, displaying a CV between 100 and
150%. This includes Iron and steel from an unknown technology, Lime and plaster, Other basic

chemicals, Other basic metals, Paper and paperboard, Processing of metals, and Sanitary goods.
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Pulp and Ceramics are also in this category in 2020. Finally, the last group is composed of sectors
that have high levels of dispersion (CV above 150%, meaning the standard deviation is more than
1.5 times the mean). In this category, Other chemical products has the highest CV, followed by
Other non-metallic mineral products, then Paper and paperboard products.

The evolution of dispersion also varies across sectors. The Hollow glass sector stands out as having
the largest absolute change in dispersion between 2014 and 2020 (-63 percentage points), indicating
a shrinking heterogeneity among firms. Baked clay products and Iron and steel from an unknown
technology also became more homogeneous over this period (-26 and - 20 percentage points, respec-
tively). On the other hand, Ceramics and EAF Iron and steel display a widening heterogeneity,
increasing their CV by 16 and 17 percentage points, respectively. Some sectors’ dispersion remained
relatively stable over the entire period, with a difference in CV of less than 5 percentage points in
absolute terms. This includes Other basic chemicals, Pulp, Cement, Other chemical products, and

Paper and paperboard.

Figure 7: Coefficient of variation of distance to frontier

Baked clay products u
Cement u

Year
2014
2016

2020

Ceramics
Hollow glass u
Iron & steel EAF u
Iron & steel Unknown
Lime & plaster
Other basic chemicals
Other basic metals u
Other chemical products
Other glass products u
Other non-metallic mineral products
Paper & paperboard
Paper & paperboard products
Processing of metals
Pulp

Sanitary goods

60 80 100 120 140 160 180 200 220

Coefficient of variation of distance
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Note: The coefficient of variation is computed as the ratio of a sector’s standard deviation and its mean, multiplied
by 100.

Another key finding that is relevant to the second part of our empirical analysis concerns the trends
in frontier displacement. Which firms are driving these shifts? Are the same firms consistently

responsible for shifts in the frontier?
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In all sectors except Pulp and paperboard, 15 or fewer firms displace the frontier at least once in our
sample.'® Some sectors exhibit particularly low numbers: Cement has only 1 firm (2% of the total),
Other basic metals has 3 (10%), Hollow glass has 4 (9%), while Iron & steel (unknown technology)
and Pulp have 5 each (15% and 24%, respectively). These results suggest that technological progress

is concentrated in a small subset of firms within each sector (Figure 8).

Figure 8: Number of firms that displace the frontier
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Source: Authors.

There are also differences regarding the frequency with which firms displace the frontier in each
sector—i.e., whether the same firms consistently displace the frontier every year or if the firms
displacing the frontier change over time. In some sectors, frontier displacement is rare and sporadic.
The Cement firm that displaced the frontier did so only once in our sample. Firms in the Sanitary
goods sector displaced the frontier 2-3 times on average, and Pulp and Hollow glass firms did so
3—4 times on average. In contrast, sectors like Paper and paperboard products and Other basic

metals exhibit consistent displacement, with the same firms driving progress every year (Figure 8).

13Pulp and paperboard is an exception, though this sector also contains significantly more firms than the others.

26



Figure 9: Average frequency of frontier displacements
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6.2 Do patents explain technological progress?

We now turn to the second stage of our analysis. Here, we present the results of the estimations
that study the effect of patenting on firms’ distances to the previous year’s frontier, our proxy for

technological progress.

Initial specification. Table 2 begins by showing the results from our simplest specification, a
flexible version of Equation 8 where we replace country-year fixed effects by year fixed effects and
use a within-firm estimator. These results show the impact of both the stock of low-carbon and of
non-low-carbon patented inventions on a firm’s distance to the previous year’s technological frontier.
Column 1 shows that the coefficient for the stock of low-carbon patented inventions is positive and
significant at the 5% level. This indicates that, on average, an increase in low-carbon patented
inventions between 2013 and 2020 increased a firm’s distance to the previous year’s technological

frontier. In other words, it decreased its propensity to displace the technological frontier.

This is robust to the inclusion of the lagged variable for firm-level EU ETS stringency and both
variables controlling for firms’ internal restructuring (column 3).!4# Among the control variables,
only the variable measuring whether a firm closed an installation in a specific year is significant.

This coeflicient is negative, indicating that firms that close an installation become relatively more

14 Estimating the model without using a lag on the stringency variable produces the same results.
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efficient (i.e., decrease their distance to the technological frontier). This is fairly intuitive as the

installations that get closed are likely those that have the worst performance.

In column 5, the stock of brown patented inventions is added to ensure that the estimated effect
in columns 1 and 3 is not a global effect of the stock of patented inventions due to correlation
between the stock of green and brown inventions, but rather a specific effect of the stock of low-
carbon patented inventions. The coefficient for the stock of low-carbon patented inventions remains
constant in magnitude and significance. Perhaps surprisingly, the stock of non-low-carbon patented
inventions has no significant effect by itself (column 2) or when combined with the other variables

(column 4 and 5).

Table 2: Initial OLS specification results

Dependent variable: Distance;

(1) (2) 3) (4) (5)

OLS OLS OLS OLS OLS
log StockGreenInvy ;  0.322** 0.323** 0.334**
(0.128) (0.128) (0.132)
log StockBrownlInvy_; 0.0325 0.0332 -0.0113
(0.0243) (0.0243) (0.0233)

Stringency .1 0.309 0.694 0.354

(5.331)  (5.308) (5.332)

Installation Closed -0.121*  -0.121** -0.121**
(0.0570) (0.0573) (0.0571)

Installation Opened -0.0225  -0.0188 -0.0219
(0.0174)  (0.0175) (0.0172)
Firm FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Country-Year FE No No No No No
Adjusted R? 0.945 0.944 0.945 0.944 0.945
F-statistic 6.330 1.787 2.949 1.883 2.380
Observations 6104 6104 6104 6104 6104

The dependent variable is a continuous variable representing a firm’s distance to the pre-
vious year’s technological frontier. Heteroskedasticity-robust standard errors are reported
in parentheses. Errors are corrected for clustering at the sector-year level. *** ** gpd *
indicate significance at the one, five and ten percent levels respectively.
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Preferred specification. Next, Table 3 presents the results for our preferred specification. The
difference with the previous specification is that year fixed effects are dropped and replaced with
country-year fixed effects. Combined with the inclusion of firm fixed effects as in the previous
specification, this change significantly reduces the potential for bias. With these fixed effects,
we control for time-invariant firm heterogeneity and country-specific temporal shocks, such as

environmental policy changes or macroeconomic conditions.

A key finding emerging from the analysis is that the effect of low-carbon patented inventions on
firms’ distance to the previous year’s technological frontier is positive and statistically significant.
Across all specifications where it is included (columns 1, 3, and 5), the coefficient for this variable
remains remarkably stable in magnitude—ranging from 0.337 to 0.340—and is consistently signifi-
cant at the 1% level. This result is robust to the inclusion of additional controls, suggesting a stable
relationship. In this log-level specification, the coefficient can be interpreted as a semi-elasticity.
These results thus imply that a 1% increase in the stock of low-carbon patented inventions is as-
sociated with a 0.34 unit increase in a firm’s distance to the previous year’s technological frontier,

on average and all else being equal.

Thus, the core result from Table 2 holds in both significance and magnitude, reinforcing the ar-
gument that the observed effect is not confounded by macro-level policy shifts. The only notable
difference is observed in columns 2 and 4, where the coefficient on the stock of brown patented in-
ventions becomes positive and significant at the 10% level. However, this effect turns negative and
is no longer significant when we include all controls and both green and brown patented inventions

stocks.

Exploring firm characteristics. We aim to investigate which firm-level characteristics might
help explain the between variation in firms’ distances to the previous year’s frontier. To do this, we
replace firm fixed effects with observable firm characteristics. If the coefficients on the patented in-
vention variables remain stable and the included firm characteristics are found to be significant, this
would suggest that the firm fixed effects were primarily capturing those characteristics. Conversely,
if the results change, it would imply that the fixed effects are accounting for other, unobserved

firm-level traits.

In our analysis, we focus on two specific firm-level characteristics: the initial stock of green and
brown patented inventions at the beginning of our study period— measured on the basis of patent
applications that were filed during the decade before our start date (2013). The initial stock
variables are designed to capture a firm’s innovative capacity prior to 2013, to test the hypothesis
that inherently inventive firms are more likely to continue driving technological change. However,
only the initial stock of green patented inventions is significant, and only in two model specifications

without control variables, suggesting limited robustness.

When we include the second firm-level characteristic we are interested in, firm size—as measured

by total sales—its coefficient emerges as positive and statistically significant at the 1% level. This

29



Table 3: Preferred OLS specification results

Dependent variable: Distance;

(1) (2) (3) (4) ()

OLS OLS OLS OLS OLS
log StockGreenlnvy.;  0.337*** 0.338"** 0.340***
(0.122) (0.122) (0.127)
log StockBownlInv_; 0.0406* 0.0415* -0.00222
(0.0225) (0.0226) (0.0229)

Stringency ¢ 1 1.626 1.975 1.636

(5.302)  (5.277)  (5.316)

Installation Closed -0.119*  -0.119* -0.118*
(0.0604) (0.0614) (0.0605)

Installation Opened ¢ -0.0272  -0.0237 -0.0271
(0.0179) (0.0177) (0.0177)
Firm FE Yes Yes Yes Yes Yes
Year FE No No No No No
Country-Year FE Yes Yes Yes Yes Yes
Adjusted R? 0.945 0.945 0.945 0.945 0.945
F-statistic 7.661 3.253 2.863 1.963 2.310
Observations 6104 6104 6104 6104 6104

The dependent variable is a continuous variable representing a firm’s distance to the pre-
vious year’s technological frontier. Heteroskedasticity-robust standard errors are reported
in parentheses. Errors are corrected for clustering at the sector-year level. *** ** gpnd *
indicate significance at the one, five and ten percent levels respectively.

suggests that, all else equal, larger firms tend to be further from the previous year’s frontier,
implying they contribute less to technological progress. This result aligns with the idea that smaller
firms may be more agile and better positioned to adopt and implement new technologies. Overall,
our findings indicate that the firm fixed effects from earlier regressions likely capture more than
just size and pre-existing inventiveness, as the flow patented invention variables lose significance

once these firm characteristics are explicitly included.
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Table 4: Removing firm fixed effects

Dependent variable: Distance;

(1) (2) (3) (4)
OLS OLS OLS OLS
log InitialStockGreenlnvyg 0.0843 0.0487 0.0841 0.0487
(0.0731)  (0.0709)  (0.0732) (0.0709)
log InitialStockBrownlnvyy 0.0738**  -0.00124  0.0738** -0.00124
(0.0315)  (0.0308)  (0.0315) (0.0308)
log Greenlnvy_q -0.281 -0.214 -0.280 -0.214
(0.204) (0.200) (0.204) (0.200)
log Invy_q 0.0838 0.0698 0.0838 0.0698
(0.0823)  (0.0809)  (0.0823) (0.0809)
Stringency .1 -1.395 -1.397
(9.726) (9.738)
Installation Closed ¢ -0.144 -0.148
(0.282) (0.283)
Installation Opened ¢ -0.259 -0.263
(0.251) (0.251)
log Sizey 0.141*** 0.141***
(0.00749) (0.00749)
Firm FE No No No No
Year FE No No Yes Yes
Country-Year FE No No No No
Adjusted R? 0.0195 0.0823 0.0187 0.0815
F-statistic 9.756 49.03 4.396 30.21
Observations 5232 5232 5232 5232

The dependent variable is a continuous variable representing a firm’s distance to the previ-
ous year’s technological frontier. Heteroskedasticity-robust standards errors are reported in
parentheses. ***  ** and * indicate significance at the one, five and ten percent levels respec-
tively.

Logit specification. Here, we investigate an alternative specification in which, rather than ex-

amining a firm’s distance to the previous year’s technological frontier, we assess the probability
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that a firm displaces this frontier—i.e., that at time ¢, it is beyond the frontier constructed for
t — 1. Our dependent variable is a binary variable that takes the value of 1 if the firm is beyond
the ¢ — 1 frontier and 0 otherwise. This prompts a switch to a logit specification. As discussed in
the empirical strategy section, flows of patent families are more appropriate for capturing discrete
shifts—or “jumps”™—in a firm’s technological position. Table 5 presents the results of the logit re-
gression. The sample size decreases substantially because the estimation can only be conducted for

firms that have displaced the frontier at least once due to the inclusion of firm fixed effects.

Focusing on the results reported in column (5) of Table 5, which include the full set of controls,
shows that the coefficient associated with the logarithm of the flow of low-carbon patent families
is estimated at —1.6 and is statistically significant at the 10% confidence level. This result implies
that an increase in low-carbon patenting activity is associated with a drop in the likelihood that
a firm displaces the technological frontier. In contrast, the coefficients on the remaining covariates
are not statistically significant, indicating that they do not contribute meaningfully to explaining

variation in frontier displacement. This result aligns with our earlier findings.

To ensure the robustness of the results presented in Table 3, three additional tests are conducted.

Their results are provided in Appendix 11.

Robustness — CPC weighting. As presented in the data section, the patented inventions
stock variables are constructed by weighting patent families belonging to both the low-carbon and
non-low-carbon patent categories. Consequently, patent families belonging to a single category
are implicitly given twice the weight of their bi-category peers. To assess whether this weighting
scheme introduces bias into our estimates, we re-estimate the baseline specification using unweighted
patent family stock measures, treating all patent families equally regardless of category overlaps.
The results are reported in Appendix 11, Table 8. All the results presented in Table 3 are robust
to this new weighting of patent counts. The only difference is that the magnitude of the coefficient

for the low-carbon stock of patented inventions is reduced from around 0.34 to 0.24.

The smaller coefficient for the stock of low-carbon patented inventions in the robustness test may
reflect the different informational content of mono- versus dual-category patents. Patents classified
exclusively as low-carbon or non-low-carbon are likely to be more thematically focused, potentially
vielding a stronger and more targeted impact on firm-level efficiency outcomes. In contrast, dual-
category patents may embody more general-purpose inventions, whose benefits are diffused across
multiple dimensions and thus less potent in any single domain. Equal weighting might mitigate the
bias introduced by over-weighting such dual-purpose inventions, potentially reducing measurement

error and enhancing statistical precision.

Robustness — Patent depreciation. The patented inventions stock variables are defined as
the cumulative sums of patent families over time. This construction entails two key features that

may introduce bias in the estimation. First, the stock variable never decreases since it captures
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Table 5: Logit specification results

Dependent variable: P(Displacement);

(1) (2) 3) (4) ()

Logit Logit Logit Logit Logit

log Greenlnvy_q -1.868** -1.845** -1.603*
(0.913) (0.917) (0.943)

log Invy g -0.551 -0.552 -0.402
(0.340) (0.340) (0.349)

Stringency ¢ 1 43.37 42.26 43.26

Installation Closed

(32.32)  (32.03)  (32.25)

2.094  2.301 2.131
(2.114)  (2.027) (2.095)

Installation Opened ¢ -0.501  -0.456 -0.474
(0.839) (0.838) (0.839)
Firm FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Country-Year FE No No No No No
Pseudo R? 0.0277 0.0251 0.0319 0.0295 0.0338
Log likelihood -353.6 -354.6 -352.1 -352.9 -351.4
Observations 917 917 917 917 917

The dependent variable is a continuous variable representing a firm’s distance to the previ-
ous year’s technological frontier. Heteroskedasticity-robust standards errors are reported in
parentheses. Errors are corrected for clustering at the sector-year level. *** ** and * indicate
significance at the one, five and ten percent levels respectively.

only positive increments in patent counts. Second, all patents are weighted equally, irrespective of
their filing year. As a result, older patents—for instance, those filed in 2014—contribute equally
to the stock in 2020 as more recent ones, filed in 2018, despite possible differences in their current
relevance or technological value. These features highlight a limitation of the stock measure: it
does not account for knowledge depreciation or the dynamic nature of the technological frontier,
wherein past innovation does not necessarily translate into sustained technological leadership (de
Rassenfosse & Jaffe, 2018). Following (Huang & Diewert, 2011) we construct stock variables as
weighted depreciated sums of past flows, applying an exponential decay to account for temporal
distance. Each year’s contribution is weighted by 1/(1 + )28, where § = 0.05 and age reflects the
number of years that have passed since a patent was filed.
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Re-estimating the baseline specification using the “depreciated” version of the patent stock variables
yields the results displayed in Appendix 11, Table 9. These results do not depart from the preferred
specification, either in sign or significance. There is however a slight change in the magnitude of
the coefficients—from 0.34 to 0.27—which is similar to the one observed in the previous robustness
check with the unweighted version of the stock of patented inventions (Appendix 11, Table 8).

Robustness — Reduced sample. Finally, there is a possibility that our estimation is affected
by the fact that many observations in our sample have a value of zero for the main variable of
interest—green patented inventions counts. 82% of the firms we observe never filed a patent in the
period covered by our data. This might cause some statistical issues due to zero inflation (Czado
et al., 2007).

To test for this bias, we run the baseline specification on a subsample of firms that have filed at least
one patent between 2013 and 2020. The results for this test are reported in Appendix 11, Table 10.
This regression can be understood as studying the intensive effect of the stock of green patented
inventions on firms’ distance to the previous year’s frontier. The magnitude of the coefficient for
the stock of green patented inventions increases slightly in magnitude—from 0.34 to 0.37—and

decreases in significance—{rom a 1% to a 5% confidence level.

7 Discussion

The results presented in the previous section can be summarized as two key insights: (1) there is a
high level of heterogeneity in the dispersion of efficiency levels between sectors; (2) green patenting
is inversely related to technical progress. This section discusses some possible explanations and

policy implications for each of these results.

Heterogeneity of dispersion in efficiency. The dispersion of efficiency within a sector can be
interpreted as an indicator of its potential for emission reductions. Greater dispersion suggests that
the least efficient firms are significantly lagging behind the most efficient ones, implying a higher
opportunity for efficiency gains and corresponding emission cuts. Using a back-of-the-envelope

6

calculation of efficiency!'® and potential emission reductions'®, we can evaluate this potential at the

sectoral level.

Figure 10 illustrates that there is considerable variation across sectors in both the mean efficiency
score and the total potential for emission reductions. The cement sector stands out, with the
highest estimated potential for emission reductions—approximately 9 MtCOo—despite exhibiting
a relatively high average efficiency of 83%. This is largely due to the sector’s inherently high

emission intensity. Lime and plaster, along with Chemicals, follow as the sectors with the next

Y Efficiency is computed as 1/(1 4 distance;;).
$Potential emission cuts within a sector are computed as Zf\;l emissions;: - (1 — efficiency,,).
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highest reduction potential. In contrast, the EAF Iron and steel sector has the highest mean

efficiency at 92%, but also the lowest potential for emission reductions, at just 0.2 MtCO», reflecting

its significantly lower carbon intensity.

These findings offer valuable insights for policymakers regarding the emission reduction potential

achievable through existing technologies. Overall, the analysis suggests that the scope for further

reductions through efficiency improvements alone is limited. Even in the case of cement produc-

tion—the sector with the greatest potential—the estimated reduction accounts for only about 10%

of its total emissions. While this is not negligible, it highlights the critical need for technological

innovation. To achieve climate targets, policy efforts should focus on transformative solutions that

enable deep decarbonization beyond what incremental efficiency gains can deliver.

Figure 10: Mean efficiency and total potential emission reductions by sector (2020)
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Green patenting and efficiency. At first glance, the finding that green patenting is associated

with reduced firm-level efficiency may seem counterintuitive. However, we offer an explanation

grounded in the broader economic and technological context, which—while supported by existing

literature—warrants further empirical testing.
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Figure 11: Viability of low-carbon heavy industry technologies
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Our argument builds on the theory of carbon-intensive technology lock-in, as proposed by Acemoglu
et al. (2012) and empirically supported by Aghion et al. (2016) and Janipour et al. (2020). Firms
relying on brown technologies benefit from decades of accumulated knowledge, infrastructure, and
learning-by-doing. In contrast, firms shifting toward green technologies face higher costs, technical
uncertainty, and weaker performance relative to the established norm. As a result, green inventive
firms may appear less efficient in relative terms, simply because their brown-technology peers are

improving at a faster rate within the current paradigm.

This explanation is particularly relevant in the context of heavy industry, where green alternatives
remain largely immature. Even where mature technologies exist, they tend to be costlier than
conventional options or face practical constraints, limiting their adoption. A recent review by
Diesing et al. (2025) finds that none of the available low-carbon technologies across major industrial
sectors—Iron and steel, Cement, Chemicals, Glass, and Pulp and paper—score above 3 (on a
1-5 scale) across all three dimensions of maturity, affordability, and applicability (Figure 11).
This suggests that, despite investment in green patenting, these technologies are not yet ready
for widespread deployment. It also underscores that patents protect inventions which may take a
long time before being profitable or even never succeed . Additionally, heavy industrial assets are
long-lived, and are typically not retired before the end of their life cycle, which slows the pace at

which cleaner technologies can be adopted.
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There is also a methodological consideration related to how we define the technological frontier.
Our directional distance function treats a 1% increase in output as equivalent to a 1% decrease in
emissions. This implies that firms can improve efficiency by reducing emissions, increasing output,
or both. In this context, green patenting might lead to better environmental performance while
having no effect—or even a negative effect—on production-side efficiency. This interpretation aligns
with findings from Xiang and Geng (2024), who also report mixed impacts of green patenting on
firm efficiency in Chinese industry and it challenges the strong version of the Porter hypothesis
(Porter & van der Linde, 1995).

Several macro-level studies offer similar insights, showing that green inventions alone may not reduce
emissions unless accompanied by strong prior economic growth and complementary enabling factors

(Du et al., 2019; Sahoo et al., 2022). A similar dynamic may be present in our data.

To test this hypothesis more directly, further studies could adjust the directional vector in the TFA
to assign more weight either to emissions or to output. If green patenting shows a negative effect
when output is prioritized, but a positive effect when emissions are prioritized, this would lend
further support to the idea that green patented inventions boost environmental efficiency but not

necessarily productive efficiency.

An alternative explanation is that our study period may simply be too short to capture the effects of
green patenting. The transition from invention to commercialization is often slow and incremental,
especially in capital-intensive sectors. As such, the benefits of green patenting might not yet be
fully observable. A longer time horizon or the use of a model that explicitly captures delayed
effects, such as a Nonlinear Autoregressive Distributed Lag model could help uncover these lagged

relationships and better account for the cumulative impact of green patented inventions over time.

8 Conclusion

This paper has examined the relationship between firm-level efficiency, green patenting, technolog-
ical progress, and the potential for emission reductions in the context of heavy industry sectors
regulated by the EU ETS. Our findings highlight several key insights with important implications

for both research and policy.

First, we observe substantial heterogeneity in the dispersion of efficiency scores across firms within
sectors. This variation translates into differing levels of emission reductions that can be achieved
solely through improvements in inefficiency. However, the overall picture suggests that incremental
efficiency gains alone are insufficient. Most sectors will require more profound shifts in production

technologies to achieve the deep decarbonization necessary to meet climate targets.

Second, our analysis shows that technological progress is driven by a small number of firms within
each sector. This suggests the presence of a strong leader—laggard dynamic. From a policy per-

spective, this raises two distinct and potentially complementary strategic options: policymakers
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can either support the sectoral “champions” that are already innovating and leading in technical
change, or they can adopt a broader approach that promotes technological diffusion by supporting

a wider base of firms to stimulate more inclusive and competitive innovation.

Finally, our findings indicate that green patenting does not directly imply improvements in firm-level
efficiency, even when the measure of efficiency includes both emission and output in its measure.
This challenges the interpretation of earlier studies such as Calel and Dechezleprétre (2014) and
Calel (2020), which primarily measure the effect of the EU ETS on green patenting activity. Our
results suggest that green patents do not necessarily translate into effective or implemented decar-
bonization technologies—at least in the short run that is analyzed in this paper. Consequently,
policymakers should be cautious in using patent-based indicators to evaluate the success of climate
policy. Greater emphasis should instead be placed on direct measures of technological change and

real-world emission reductions at the firm level.

Future research can extend and refine the conclusions found in this paper. Other methodologies
could be applied to measure firm-level efficiencies, namely Bayesian modeling which this paper has
identified as the most promising and flexible methodology available, despite its heavy computational
needs. Additionally, to further understand the effect of green patenting on firm-level efficiency
outcomes, it could be useful to study innovation in sectors that are either upstream or downstream
of the regulated heavy industry sectors. It could be that the green patenting that really matters to

reduce emissions comes from these sectors instead of directly from the regulated sector.

Ultimately, achieving deep decarbonization in heavy industries will require a dual focus on ac-
celerating technological breakthroughs among sectoral leaders while ensuring broader diffusion of
innovations and process changes across lagging firms. Policymakers must also look beyond patent-
based metrics and prioritize direct evidence of emission reductions when evaluating the effectiveness

of climate regulations.
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Appendix

9 Sector-NACE correspondence table

Table 6: Aggregated Manufacturing Descriptions and Associated Codes

Aggregated sector code N° firms 4-digit NACE code N° firms
Manufacture of articles of paper and o Manufacture of veneer sheets and 5
paperboard wood-based panels
Wholesale of wood, construction .
materials and sanitary equipment
Manufacture of paper stationery 1
Manufacture of other articles of pa- .
per and paperboard
Manufacture of articles of paper and A
paperboard
Manufacture of paper and paper L
products
Manufacture of corrugated paper
and paperboard and of containers of 18
paper and paperboard
Manufacture of wallpaper 1
Manufacture of other products of
wood; manufacture of articles of 1
cork, straw and plaiting materials
Silviculture and other forestry activ- 1
ities
Manufacture of basic iron and steel 60 Manufacture of basic iron and steel 60
and of ferro-alloys and of ferro-alloys
Manufacture of bricks, tiles and con- 70 Manufacture of bricks, tiles and con- 70
struction products, in baked clay struction products, in baked clay
Manufacture of cement 43 Manufacture of cement 43
Manufacture of ceramic tiles and 96 Manufacture of ceramic tiles and 96

flags

flags
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Table 6: Aggregated Manufacturing Descriptions and Associated Codes

Aggregated sector code N° firms 4-digit NACE code N° firms
Manufacture of hollow glass 45 Manufacture of hollow glass 45
Manufacture of household and sani- 26 Manufacture of household and sani- 26
tary goods tary goods and of toilet requisites
Manufacture of lime and plaster 59 Manufact.ure of plaster products for 7
construction purposes
Quarrying of ornamental and build-
ing stone, limestone, gypsum, chalk 8
and slate
Manufacture of lime and plaster 44
Manufacture of other basic chemi- 34 Manufacture of fertilisers and nitro- 10
cals gen compounds
Manufacture of other inorganic ba- 12
sic chemicals
Manufacture of other organic basic 19
chemicals
Manufacture of other basic metals 29 Manufacture of basic precious and 1
other non-ferrous metals
Lead, zinc and tin production 6
Manufacture of basic metals 1
Mining of other non-ferrous metal 5
ores
Wholesale of metals and metal ores 1
Copper production 8
Aluminium production 10
Manufacture of other chemical prod- )
ets Lo, 59 Manufacture of dyes and pigments 2
Manufacture of basic chemicals, fer-
tilisers and nitrogen compounds, 5
plastics and synthetic rubber in pri-
mary forms
Manufacture of plastics in primary 17

forms
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Table 6: Aggregated Manufacturing Descriptions and Associated Codes

Aggregated sector code N° firms 4-digit NACE code N° firms
Wholesale of chemical products 3
Manufacture of chemicals and chem- 5
ical products
Manufacture of industrial gases 4
Manufacture of paints, varnishes
and similar coatings, printing ink 14
and mastics
Manufacture of basic pharmaceuti- 1
cal products
Manufacture of synthetic rubber in 1
primary forms
Manufacture of other chemical prod- 10
ucts n.e.c.
Manufacture of glues 2
Manufacture of other glass products 42 Manufacture of glass and glass prod- 7
ucts
Shaping and processing of flat glass 2
Manufacture of flat glass 14
Manufacture and processing of other 6
glass, including technical glassware
Manufacture of glass fibres 13
Manufacture of other non-metallic Cutting, shaping and finishing of 1
mineral products n.e.c. stone
Manufacture of other articles of con- 5
crete, plaster and cement
Manufacture of other ceramic prod- A
ucts
Manufacture of other non-metallic 19
mineral products n.e.c.
Manufacture of refractory products 10
Manufacture of concrete products .

for construction purposes
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Table 6: Aggregated Manufacturing Descriptions and Associated Codes

Aggregated sector code N° firms 4-digit NACE code N° firms
Manufacture of ceramic sanitary fix- .
tures

Manufacture of paper and paper- 160 Manufacture of paper and paper- 156

board board
Manufacture of pulp, paper and pa- A
perboard

Manufacture of pulp 21 Manufacture of pulp 21

Processing of metals 45 Other non-ferrous metal production 1
Manufacture of wire products, chain L
and springs
Forging, pressing, stamping and
roll-forming of metal; powder met- 12
allurgy
Manufacture of railway locomotives 1
and rolling stock
Casting of iron 7
Manufacture of other taps and 1
valves
Cold drawing of wire 2
Manufacture of fabricated metal
products, except machinery and 1
equipment
Casting of steel 4
Treatment and coating of metals
Manufacture of other fabricated 1
metal products n.e.c.

Cold forming or folding 1
Casting of metals 1
Casting of light metals 1
Casting of other non-ferrous metals 2
Manufacture of tubes, pipes, hollow 5

profiles and related fittings, of steel




Table 6: Aggregated Manufacturing Descriptions and Associated Codes

Aggregated sector code N° firms 4-digit NACE code N° firms

Manufacture of metal structures and
parts of structures
Manufacture of other products of

first processing of steel

48



“Ju() SUIRIN-UOISIOa(] I0] spue)s NN :PION

"OUI[OdP
[eoto[ouyey 09 Aqurewrid onp

‘soargoolqo  gndino  pue  suors

-STWO  Yjoq SULIOPISUOD TOYM (8702)
aurep  Ayanonpord  [eIsA() vAd 8002-2007  Ioded pue ding LI uapamg 9% ‘T 10 urn®sog
'0T0Z Ul AI10A0D
-1 pue 6OOZ Ul Yseld uey} ‘Y00%
[un uonesEaoy  "000¢ [Hun
UMOPMO[S U} ‘GEET-GEGT L£oUdID (F10g) BIOATIS
-Ijo  ASIoue ur sjuewesorduuy vAd 0T02-%661 [099s pue uoI] Ayuno)) alc GT pue 1p[eJIoN
(Sururoot}10j)
o8ueD aImeq
[POIS0[OUTDI)  UOQIRI-MO]  ON d1 1202-310¢T Jouent 6 W nd 67T pue A1pneq
‘ssoxdord 1edr30]
-ouyoe) AQ USATIP ‘ADUSIOIo WLIY
URIPOW UL POSeaIdUul Uay} sO)00T
A[Te0 FunmMp PoOSeIINOP UOIOUNJ (6102)
uononpoid 03 9ouR)SIp URIPIIN VAS 2102-€002 ‘Jnuewnt j LI Aueurion) eLy ‘T 19 [oY0SO]
a8e1aA0)) a8eIsA0) Ao a8eIaA0)
synsoy urejn POYISIA owILT, [e10309g  uoljeatasqQ [edryderSosry NN # Tadeq

$10300s A1psnpur Aaeoy ueadoiny 031 Vi, Suld[dde ainjersr| 2, o[qel

S10900s Axjsnpul AAeoy ueodoani| uo ainjeidl VoL, Jo Arewwung (Qf

49



T () SUR[RT\-UOISIA(T I0J SPue)s NN 930N

"S109098 19730 0}

poreduion JuemIge A[OIIIS 9 0) S10909s
punoj a1om s10399s 3onpoid poom SurmjorNURM (810%) Te 10
pue wvorjonpoid roded pue dmg Aucrel 6002 il alci nA il Q[[PAId)-OURINY,
“Apusdige pajerado sy [[r
JL%T9°0T 01 96°¢ Aq paonpat og dT (€202)
PINoo A)ISUSIUT WOQIRD S[RITWDY) ONSIUIINO(  0503-GT0T S[ROTWIOT)) WLITL alci i7é ‘T° 90 oY
ordues [[eI0A0
oY) UeT) IDYSIY SOUWIT) AT TR} (€202)
arowr ‘ssexdoxd [eomuyos) YISy ® STIQTASSILIR N
POMAIYXD 10909S S[RITWIOTD O, VAS 6102-000% S[eOTIIdT) Anunoy) alcl e pue 9yrepAMIRZ(]
‘ToAS] AdUSIOLe JUe)S
-U0d> A[IeoUu € pourejurew Q4] (11T0%)
-0 Iepun sorrjunod uweadoini viad 8002-G00% JIOWD)) A1yuno)) [eqorH) 12 ‘Te 10 THOIS3()
o8ueTD [ROIO[OUTDY
pozianyuoour Apjueogrusdrs sootid
PNy qissoy Arpsnpur teded pue
dmd ur e8uero [esrdofouyoe) U0 (g102)
Aot10d 9yeturd jo jorduir 1Sepoy vAd 200Z2-8661  Toded pue ding LI uapamg 06 ‘Te 10 uaIdpunry
a8e1aA0) a8eIsA0) [eAeT a8eIsA0)
S)[NS9Y uren POUIRIA auuIlLT, [el0309g  uoljeatasq( [eoryderSoery NOINA # TodeJ

s10900s Arysnpur Aaeey uradomy o0y YT, Sutd[dde amjero :) o[qer,

90



11 Econometric robustness checks

Table 8: Unweighted CPC class

Dependent variable: Distance;

(1) (2) (3) (4) (5)
OLS OLS OLS OLS OLS

log unweightStockGreenlnvyy  0.240*** 0.241*** 0.243***
(0.0777) (0.0778) (0.0822)
log unweightBrownStockInvy_q 0.0434* 0.0443*  -0.00265
(0.0224) (0.0224)  (0.0230)

Stringency .1 0.177 0.195 0.179

(0.529)  (0.528)  (0.530)

Installation Closed -0.119*  -0.120*  -0.119*
(0.0605) (0.0614) (0.0607)

Installation Opened -0.0265  -0.0240  -0.0263
(0.0177) (0.0177) (0.0175)
Firm FE Yes Yes Yes Yes Yes
Year FE No No No No No
Country-Year FE Yes Yes Yes Yes Yes
Adjusted R?2 0.945 0.945 0.945 0.945 0.945
F-statistic 9.535 3.767 3.275 2.081 2.624
Observations 6104 6104 6104 6104 6104

The dependent variable is a continuous variable representing a firm’s distance to the previ-
ous year’s technological frontier. Heteroskedasticity-robust standards errors are reported in
parentheses. Errors are corrected for clustering at the sector-year level. ¥** ** and * indicate
significance at the one, five and ten percent levels respectively.
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Table 9: Patent stock variables with depreciation

Dependent variable: Distance;

(1) (2) (3) (4) (5)
OLS OLS OLS OLS OLS
log DeprecStockGreenlnvy.;  0.269*** 0.270*** 0.270***
(0.0798) (0.0798) (0.0833)
log DeprecBrownStockInvy g 0.0461** 0.0470**  -0.0000499
(0.0228) (0.0229)  (0.0237)
Stringency 1.1 0.184 0.196 0.184
(0.529)  (0.529) (0.530)
Installation Closed -0.118*  -0.119* -0.118*
(0.0605) (0.0613)  (0.0607)
Installation Opened -0.0266  -0.0238 -0.0266
(0.0176) (0.0177)  (0.0175)
Firm FE Yes Yes Yes Yes Yes
Year FE No No No No No
Country-Year FE Yes Yes Yes Yes Yes
Adjusted R? 0.945 0.945 0.945 0.945 0.945
F-statistic 11.34 4.077 3.675 2.168 2.943
Observations 6104 6104 6104 6104 6104

The dependent variable is a continuous variable representing a firm’s distance to the previ-
ous year’s technological frontier. Heteroskedasticity-robust standards errors are reported in
parentheses. Errors are corrected for clustering at the sector-year level. *** ** and * indicate
significance at the one, five and ten percent levels respectively.
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Table 10: Reduced Sample

Dependent variable: Distance;

(1) (2) 3) (4) (5)
OLS OLS OLS OLS OLS
log StockGreenInvy ;  0.374** 0.367** 0.355™*
(0.145) (0.145) (0.145)
log StockBrownlInvy_; 0.0525* 0.0569* 0.0349
(0.0312) (0.0308) (0.0313)
Stringency ¢ 1 4.540  4.769** 4.576**
(2.248) (2.203) (2.249)
Installation Closed -0.182 -0.204 -0.194
(0.200) (0.196) (0.199)
Installation Opened ¢ -0.109 -0.0916 -0.112
(0.0896) (0.0931) (0.0899)
Firm FE Yes Yes Yes Yes Yes
Year FE No No No No No
Country-Year FE Yes Yes Yes Yes Yes
Adjusted R? 0.931 0.930 0.931 0.930 0.931
F-statistic 6.625 2.833 2.350 2.440 2.142
Observations 1092 1092 1092 1092 1092

The dependent variable is a continuous variable representing a firm’s distance to the previ-
ous year’s technological frontier. Heteroskedasticity-robust standards errors are reported in
parentheses. Errors are corrected for clustering at the sector-year level. *** ** and * indicate
significance at the one, five and ten percent levels respectively.
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