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Introduction

Context: A rapid growth of PV and Wind production

® Between 2007 and 2023, emissions
from the EU power sector halved
(-50%)

® The share of PV and wind
increased from 4% to 30% of total
generation

® “What if the sun doesn’t shine and
the wind doesn’t blow?”
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Flexibility: a definition

Flexibility:
® Ability of a power system to
respond to changes in

demand and supply (Cochran
et al. 2014)

® Flattness of the unit cost
curve (Stigler 1939)

® More Renewables = higher
flexibility needs

Cost
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flexibility in VRE-intensive grids?

How do Contracts-for-Difference influence the short-term
dispatch decisions of nuclear power plants?

Are batteries and hydrogen complements or substitutes in
future low-carbon energy systems?

What investment strategy to make the hydrogen economy
more resilient to foreign dependency?
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Chapter 1

The Value of Nuclear Power Plants’ Flexibility: A
Multistage Stochastic Dynamic Programming
Approach

Co-authored with: Olivier MASSOL
Published in: European Journal of Operational Research, 2025
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Representative Daily Nuclear Generation in France (2024)
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Contribution

New modeling of nuclear flexibility: a scarce stock to be
dispatched optimally under uncertainty.
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Numerical implementation

Stochastic Dynamic Programming: one-year horizon, 52 stages w. Remaining
nuclear flexibility /, nuclear output qu, and uncertainty &,,. The stage cost is
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Numerical implementation

Stochastic Dynamic Programming: one-year horizon, 52 stages w. Remaining

nuclear flexibility /, nuclear output qu, and uncertainty &,,. The stage cost is
CW(IW—17 qW7 gw)

Vw(lwflv gw) = ”q“n Cw(lwflv qw, gw) + ]EEW“ [VWJrl(va gw+1)]

52 T
st Y > lara—al < L (w)
t=1

w

® Stochastic Dual Dynamic
Programming algorithm

® Application on the French system
in 2035

® Different scenarios of nuclear
flexibility
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Results

French power system in 2035: Nuclear, VREs, Hydro, Gas,
Biomass. Current nuclear flexibility = 26 cycles/year
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Results

French power system in 2035: Nuclear, VREs, Hydro, Gas,
Biomass. Current nuclear flexibility = 26 cycles/year

Marginal value of flexibility: p (scarcity)
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Chapter 2

Contracts-for-Difference and Nuclear Flexibility: A
Path to Complementing Renewables

Co-authored with: Ramteen SIOSHANSI
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Motivation: from Econ 101 to Econ 102

® Nuclear energy can be a sound option. lllustration of a two-sided contract for difference
. . mechanism
Still, it doesn’t develop.
Price

® Market failures (Dimanchev et al. 2024) evemoe above e
= public support (CfDs?) strike price given

back to the contract
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Motivation: from Econ 101 to Econ 102

® Nuclear energy can be a sound option.
Still, it doesn’t develop.

® Market failures (Dimanchev et al. 2024)
= public support (CfDs?)

® Problem: Traditional CfDs distort
dispatch incentives (Kitzing et al. 2024).

® Other designs exist, are they better
suited? (Newbery 2023).

Contribution

First study on nuclear CfDs, a topical issue
(Hinkley Point C, Dukovany 5, EPR2)

lllustration of a two-sided contract for difference
mechanism with negative-price interruption

Price

Strike
price

Price (negative)

(positive)

| Reference
index

Negative price period
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Model & Intuitions

e Equilibrium model: A nuclear monopolist maximizes profits,
anticipating competitors’ behavior.

e Study case: Central Western Europe (France + Benelux +
Germany) in 2040
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Model & Intuitions

e Equilibrium model: A nuclear monopolist maximizes profits,
anticipating competitors’ behavior.

e Study case: Central Western Europe (France + Benelux +
Germany) in 2040

Classical CfD Negative-price CfD Capability CfD

Strike price for actual No payment when Non-production
production: s - g negative market price: based: s- Q
1,505 Gt
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Results

Nuclear Production (GW) - CfD Price (€MWh) - CfD
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® (Classical CfD: Oversupply =
yearly price average -30%
compared to optimum

® Negative-price CfD: Capacity
withholding = Price +7%

® Capability CfD: Near-optimal
dispatch.

Policy Implications

Design nuclear support as capacity
payments rather than energy-based
to preserve dispatch efficiency.
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Chapter 3

Battery and Hydrogen Storage: Complements or
Substitutes? A German 2035 Case Study

Co-authored with: Camille MEGY
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Motivation

e Different storage options for
different needs (Dowling et al. 2020)

e BESS (Battery): Energy cost: T,
Power cost: | (Lund et al. 2015)

e UHS (Hydrogen): Energy cost: |,
Power cost: 1 (Petkov and Gabrielli
2020) BESS | daily spread

Summer | Winter

® Complements (Virah-Sawmy, Beck,
and Sturmberg 2025), or not ?
(Loschan, Auer, and Lettner 2024)

Summer | Winter

Research gap

Are BESS and UHS complements or
substitutes? What is their elasticity UHS | seasonal spread
of substitution?
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Morishima elasticity of substitution:

o 9In(x/xi)
9 (pi/py)

e Complements if o < 0 (if BESS cost |, UHS capacity 1)
® Substitutes if o > 0 (if BESS cost |, UHS capacity |)

® Numerical modeling of the German

[vind ] (st ] o ] [tomass | impors | energy system
(] —. ey — L] ® BESS and UHS investment for different

marker R
PHS Wt |— l Linepack
Exports Consumers

cost assumptions

® Regression: log-capacity against log-cost
ratios
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Figure: Electric generation for a typical winter week
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The two options
substitute each other:
c>0

Elasticity to BESS cost
=3

Elasticity to UHS cost
=1

New challenge for Hy:
competition from BESS
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Chapter 4

Strategic Investments: Electrolysis vs. Storage for
Europe’s Energy Security in the Hydrogen Era

Solo-authored
Published in: Energy Policy
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Motivation

® The EU to import a large part of
its Hy consumption (Dejonghe,
Van de Graaf, and Belmans 2023)

® Hydrogen imports to take over the
current dependence on gas imports
(Carlson, Pickford, and
Nyga-tukaszewska 2023)

® Historical practice for Oil & Gas:
stockpilling. (Chao and Manne
1983) Would it be relevant for Hp?

Research question

What optimal hedging strategy for
the European H, import
dependency?
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Numerical Model
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dispatch
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Numerical Model

e SDDP algorithm, Central Western
Europe, One-year horizon, hourly

dispatch

® Endogenous PtG (electrolysis) and
UHS (H; storage) investment

® Markov chain: 3 states of the world

with transition probabilities

Price (€/kg)

1 14 GW disruption

i t + t \ t + i - b—— Quantity (GW)
) ! ;
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Results
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Chapter IV

Both UHS and electrolysis are

helpful: Complementarity
between the two

Electrolysis is more efficient:

Twice as much strategic

investment as UHS, 95% of the

budget
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° ' ® Public support: Private
. L L | . investments will undershoot
Electrolysis UHS optimal investment levels (energy

Technology . .
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Electrolysis should be the priority.
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Conclusion

Conclusions

® Flexibility used to be an abundant by-product of power
generation — decarbonization makes it a scarce resource

® Market flaws become more prevalent

¢ Old and new modeling approaches (Micro, 10, Markov chains,
SDDP, MPEC)

® Key insights:

Nuclear flexibility has value

Incentives matter today more than ever

Electricity can be (partially) stored, challenging peaking plants

Energy security can be (partially) treated with domestic
resources
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Conclusion

Policy Implications & caveats

Strike the right balance between risk hedging and incentives.

Market design

How to get flexibility How can flexibility Can an efficient
signals at the grid foster electrification? market design be
level? (nodal/zonal) (V2G, HP) enough? (entry

barriers, modularity,
transaction costs)
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Appendix

Appendix: SDDP

Each iteration of

o \ \ forward /backward pass adds a
N N Benders cut to the “policy”
~ function, and the approximation
" of the true cost-to-go function
\ \ ameliorates.
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Appendix: MPEC
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Market clearing
0< —a +bd +p Ly 20 Vi ®  Upper-level: the nuclear operator
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PV, Wind, and Cas maximizes profit.
O0<e+fg —pe+pf Lgl >0 Vt (5) _ . H
PR B « Lower-level: the competitive
0< g +qll, Lufv 20, W @ market clears (Social welfare is
0 < u vind + ’lx;]r(::l 1 ﬂurmi > 0, Vit (8) . .
0< rn” —amn LotV >0, vt ) maXImlzed)‘
0 g™ — it LA™ 20, vt (19| ower-level problem (convex
0< —pi+plV —plV LgV >0 Wt (11) i .
0< —pu P — gt L guind > 0 vy a2 quadratic) is replaced by KKT
Storage

conditions.

0< vy — v+ gty LS >0, VE>1 (
0<eotp— e+ L't >0, vt (
0<co—pitw+p™ Lg'™ >0, Vt (

Serr = Se =g 4+ ¢ = 0,y free VE<T (
0< S+ Spar L >0, Wt (
0< =g gt Lyt >0, vt (
0< —q""" 4 gilen L >0, Wt (

22/22



Appendix

Appendix: Profit functions

® Perfect Competition:
Mpc = 3_,(pt — €)qe

® Nuclear monopoly:
Ns =>,(a: — bg: — c)q:
® (Classical CfD:
MNeo =Y (s —¢)agr
® Negative Price CfD:
Mneg = >, (Pe — €)qe + 1p>0 D2, (s — pe)q:
® Capability CfD:
Meap = 22, (pe — €)qe + (s — pe)Q
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Appendix: Temporal aggregation
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Appendix: Dispatch
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Appendix

Appendix: Dispatch
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Figure: Graphical representation of the analytical result: PtG is more

cost-efficient than UHS for hedging. 2
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