roduction Chapter I Chapter II Chapter III Chapter IV Conclusion Appendix

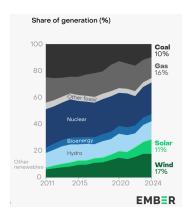
Dancing with the wind: economic modeling of flexibility in low-carbon power systems

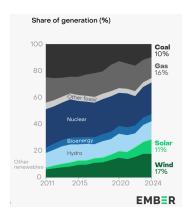
Ange BLANCHARD

Supervisors: Olivier MASSOL, Sébastien LEPAUL

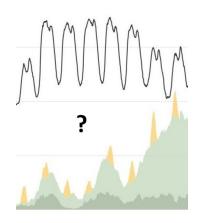
CentraleSupelec, Climate Economics Chair

October 7, 2025




Context: A rapid growth of PV and Wind production

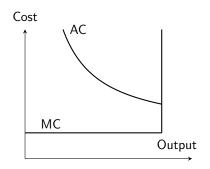
 Between 2007 and 2023, emissions from the EU power sector halved (-50%)


Context: A rapid growth of PV and Wind production

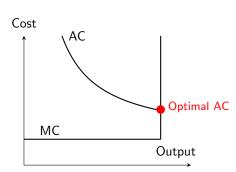
- Between 2007 and 2023, emissions from the EU power sector halved (-50%)
- The share of PV and wind increased from 4% to 30% of total generation

Context: A rapid growth of PV and Wind production

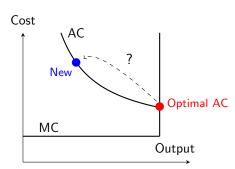
- Between 2007 and 2023, emissions from the EU power sector halved (-50%)
- The share of PV and wind increased from 4% to 30% of total generation
- "What if the sun doesn't shine and the wind doesn't blow?"



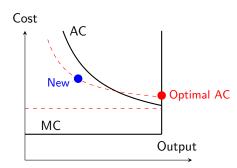
Flexibility:


 Ability of a power system to respond to changes in demand and supply (Cochran et al. 2014)

- Ability of a power system to respond to changes in demand and supply (Cochran et al. 2014)
- Flattness of the unit cost curve (Stigler 1939)


- Ability of a power system to respond to changes in demand and supply (Cochran et al. 2014)
- Flattness of the unit cost curve (Stigler 1939)

- Ability of a power system to respond to changes in demand and supply (Cochran et al. 2014)
- Flattness of the unit cost curve (Stigler 1939)


- Ability of a power system to respond to changes in demand and supply (Cochran et al. 2014)
- Flattness of the unit cost curve (Stigler 1939)

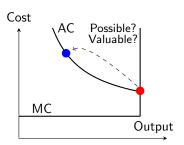
- Ability of a power system to respond to changes in demand and supply (Cochran et al. 2014)
- Flattness of the unit cost curve (Stigler 1939)

- Ability of a power system to respond to changes in demand and supply (Cochran et al. 2014)
- Flattness of the unit cost curve (Stigler 1939)
- More Renewables ⇒ higher flexibility needs

What are the technical limits and economic value of nuclear flexibility in VRE-intensive grids?

- What are the technical limits and economic value of nuclear flexibility in VRE-intensive grids?
- 2 How do Contracts-for-Difference influence the short-term dispatch decisions of nuclear power plants?

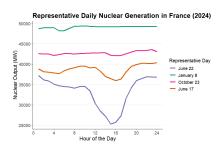
- What are the technical limits and economic value of nuclear flexibility in VRE-intensive grids?
- 2 How do Contracts-for-Difference influence the short-term dispatch decisions of nuclear power plants?
- Are batteries and hydrogen complements or substitutes in future low-carbon energy systems?


- What are the technical limits and economic value of nuclear flexibility in VRE-intensive grids?
- 2 How do Contracts-for-Difference influence the short-term dispatch decisions of nuclear power plants?
- 3 Are batteries and hydrogen complements or substitutes in future low-carbon energy systems?
- 4 What investment strategy to make the hydrogen economy more resilient to foreign dependency?

Chapter 1

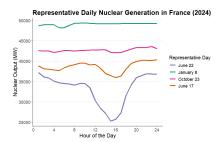
The Value of Nuclear Power Plants' Flexibility: A Multistage Stochastic Dynamic Programming Approach

Co-authored with: Olivier MASSOL


Published in: European Journal of Operational Research, 2025

Motivation

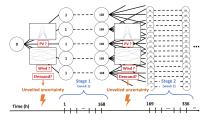
 Renewables and nuclear can coexist if nuclear is flexible enough (Green and Léautier 2015)


Motivation

- Renewables and nuclear can coexist if nuclear is flexible enough (Green and Léautier 2015)
- But nuclear is constrained on cycling (Cany et al. 2016; Loisel et al. 2018; Lynch et al. 2022)

ntroduction **Chapter I** Chapter III Chapter III Chapter IV Conclusion Appendix

Motivation

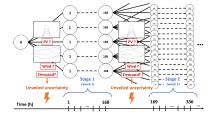

- Renewables and nuclear can coexist if nuclear is flexible enough (Green and Léautier 2015)
- But nuclear is constrained on cycling (Cany et al. 2016; Loisel et al. 2018; Lynch et al. 2022)

Contribution

New modeling of nuclear flexibility: a scarce stock to be dispatched optimally under uncertainty.

Numerical implementation

Stochastic Dynamic Programming: one-year horizon, 52 stages w. Remaining nuclear flexibility l_w , nuclear output q_w , and uncertainty ξ_w . The stage cost is $C_w(l_{w-1}, q_w, \xi_w)$.

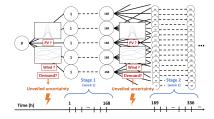


Numerical implementation

Stochastic Dynamic Programming: one-year horizon, 52 stages w. Remaining nuclear flexibility I_w , nuclear output q_w , and uncertainty ξ_w . The stage cost is $C_w(I_{w-1}, q_w, \xi_w)$.

$$V_w(I_{w-1}, \xi_w) = \min_{q_w} C_w(I_{w-1}, q_w, \xi_w) + \mathbb{E}_{\xi_{w+1}} [V_{w+1}(I_w, \xi_{w+1})]$$

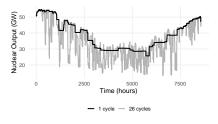
s.t.
$$\sum_{t=1}^{32} \sum_{t=1}^{7} |q_{t+1} - q_t| \le L \quad (\mu)$$


troduction **Chapter I** Chapter II Chapter III Chapter IV Conclusion Appendix

Numerical implementation

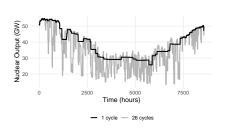
Stochastic Dynamic Programming: one-year horizon, 52 stages w. Remaining nuclear flexibility I_w , nuclear output q_w , and uncertainty ξ_w . The stage cost is $C_w(I_{w-1}, q_w, \xi_w)$.

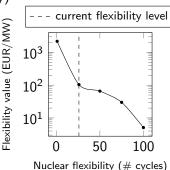
$$V_w(I_{w-1}, \xi_w) = \min_{q_w} C_w(I_{w-1}, q_w, \xi_w) + \mathbb{E}_{\xi_{w+1}} [V_{w+1}(I_w, \xi_{w+1})]$$


s.t.
$$\sum_{t=1}^{52} \sum_{t=1}^{7} |q_{t+1} - q_t| \leq L \quad (\mu)$$

- Stochastic Dual Dynamic Programming algorithm SDDP
- Application on the French system in 2035
- Different scenarios of nuclear flexibility

Results

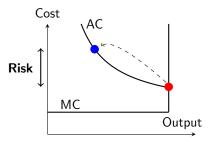

French power system in 2035: Nuclear, VREs, Hydro, Gas, Biomass. Current nuclear flexibility = **26 cycles/year**



Results

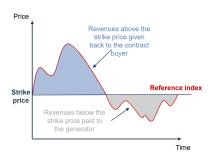
French power system in 2035: Nuclear, VREs, Hydro, Gas, Biomass. Current nuclear flexibility = **26 cycles/year**

Marginal value of flexibility: μ (scarcity)



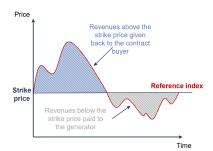
Chapter 2

Contracts-for-Difference and Nuclear Flexibility: A Path to Complementing Renewables


Co-authored with: Ramteen SIOSHANSI

Motivation: from Econ 101 to Econ 102

- Nuclear energy can be a sound option.
 Still, it doesn't develop.
- Market failures (Dimanchev et al. 2024)
 ⇒ public support (CfDs?)

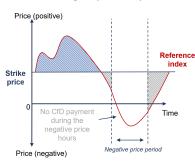

Illustration of a two-sided contract for difference mechanism

Motivation: from Econ 101 to Econ 102

- Nuclear energy can be a sound option.
 Still, it doesn't develop.
- Market failures (Dimanchev et al. 2024)
 ⇒ public support (CfDs?)
- Problem: Traditional CfDs distort dispatch incentives (Kitzing et al. 2024).

Illustration of a two-sided contract for difference mechanism

ntroduction Chapter I Chapter II Chapter III Chapter IV Conclusion Appendix


Motivation: from Econ 101 to Econ 102

- Nuclear energy can be a sound option.
 Still, it doesn't develop.
- Market failures (Dimanchev et al. 2024)
 ⇒ public support (CfDs?)
- Problem: Traditional CfDs distort dispatch incentives (Kitzing et al. 2024).
- Other designs exist, are they better suited? (Newbery 2023).

Contribution

First study on nuclear CfDs, a topical issue (Hinkley Point C, Dukovany 5, EPR2)

Illustration of a two-sided contract for difference mechanism with negative-price interruption

- **Equilibrium model:** A nuclear monopolist maximizes profits, anticipating competitors' behavior. MPEC
- **Study case:** Central Western Europe (France + Benelux + Germany) in 2040 Model

- **Equilibrium model:** A nuclear monopolist maximizes profits, anticipating competitors' behavior. MPEC
- **Study case:** Central Western Europe (France + Benelux + Germany) in 2040 Model

Classical CfD

Strike price for actual production: $s \cdot q_t$

- **Equilibrium model:** A nuclear monopolist maximizes profits, anticipating competitors' behavior. MPEC
- **Study case:** Central Western Europe (France + Benelux + Germany) in 2040 Model

Classical CfD

Strike price for actual production: $s \cdot q_t$

Negative-price CfD

No payment when negative market price:

$$\mathbf{1}_{p_t \geq 0} \cdot s \cdot q_t$$

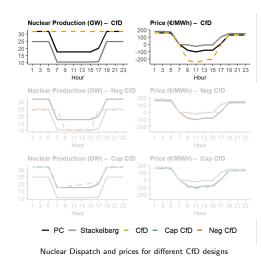
- **Equilibrium model:** A nuclear monopolist maximizes profits, anticipating competitors' behavior. MPEC
- **Study case:** Central Western Europe (France + Benelux + Germany) in 2040 Model

Classical CfD

Strike price for actual production: $s \cdot q_t$

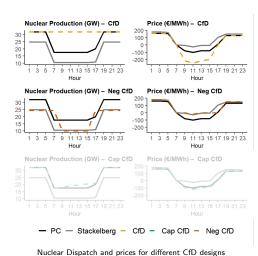
Negative-price CfD

No payment when negative market price:


$$\mathbf{1}_{p_t>0}\cdot s\cdot q_t$$

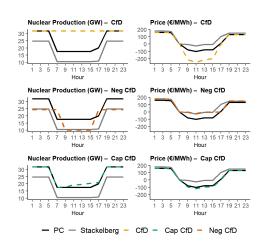
Capability CfD

Non-production based: $s \cdot Q$


ntroduction Chapter I **Chapter II** Chapter III Chapter IV Conclusion Appendix

Results

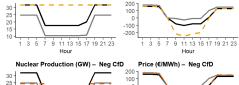
 Classical CfD: Oversupply ⇒ yearly price average -30% compared to optimum troduction Chapter I Chapter II Chapter III Chapter IV Conclusion Appendix


Results

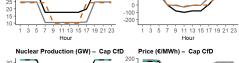
- Classical CfD: Oversupply ⇒ yearly price average -30% compared to optimum
- Negative-price CfD: Capacity withholding \Rightarrow Price +7%

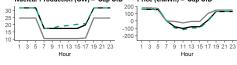
ntroduction Chapter I **Chapter II** Chapter III Chapter IV Conclusion Appendix

Results


Nuclear Dispatch and prices for different CfD designs

- Classical CfD: Oversupply ⇒ yearly price average -30% compared to optimum
- Negative-price CfD: Capacity withholding ⇒ Price +7%
- Capability CfD: Near-optimal dispatch.


ntroduction Chapter I **Chapter II** Chapter III Chapter IV Conclusion Appendix

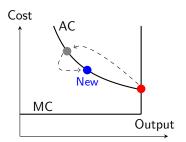

Results

Nuclear Production (GW) - CfD

Price (€/MWh) - CfD

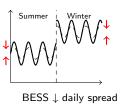
PC — Stackelberg — CfD — Cap CfD — Neg CfD
 Nuclear Dispatch and prices for different CfD designs

- Classical CfD: Oversupply ⇒ yearly price average -30% compared to optimum
- Negative-price CfD: Capacity withholding ⇒ Price +7%
- Capability CfD: Near-optimal dispatch.

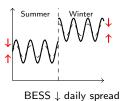

Policy Implications

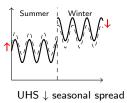
Design nuclear support as **capacity payments** rather than energy-based to preserve dispatch efficiency.

Chapter 3


Battery and Hydrogen Storage: Complements or Substitutes? A German 2035 Case Study

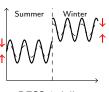
Co-authored with: Camille MEGY



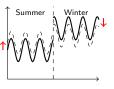

 Different storage options for different needs (Dowling et al. 2020)

- Different storage options for different needs (Dowling et al. 2020)
- **BESS** (Battery): Energy cost: ↑, Power cost: ↓ (Lund et al. 2015)

- Different storage options for different needs (Dowling et al. 2020)
- BESS (Battery): Energy cost: ↑,
 Power cost: ↓ (Lund et al. 2015)
- **UHS** (Hydrogen): Energy cost: ↓, Power cost: ↑ (Petkov and Gabrielli 2020)



Motivation


- Different storage options for different needs (Dowling et al. 2020)
- BESS (Battery): Energy cost: ↑,
 Power cost: ↓ (Lund et al. 2015)
- UHS (Hydrogen): Energy cost: ↓, Power cost: ↑ (Petkov and Gabrielli 2020)
- Complements (Virah-Sawmy, Beck, and Sturmberg 2025), or not ? (Loschan, Auer, and Lettner 2024)

Research gap

Are BESS and UHS complements or substitutes? What is their elasticity of substitution?

BESS ↓ daily spread

UHS ↓ seasonal spread

2 inputs can be used to produce "flexibility": UHS and BESS. Morishima elasticity of substitution:

$$\sigma_{x_i,x_j} = \frac{\partial \ln(x_j/x_i)}{\partial \ln(p_i/p_j)}$$

2 inputs can be used to produce "flexibility": UHS and BESS. Morishima elasticity of substitution:

$$\sigma_{x_i,x_j} = \frac{\partial \ln(x_j/x_i)}{\partial \ln(p_i/p_j)}$$

• Complements if $\sigma \leq 0$ (if BESS cost \downarrow , UHS capacity \uparrow)

2 inputs can be used to produce "flexibility": UHS and BESS. Morishima elasticity of substitution:

$$\sigma_{x_i,x_j} = \frac{\partial \ln(x_j/x_i)}{\partial \ln(p_i/p_i)}$$

- Complements if $\sigma \leq 0$ (if BESS cost \downarrow , UHS capacity \uparrow)
- Substitutes if $\sigma > 0$ (if BESS cost \downarrow , UHS capacity \downarrow)

2 inputs can be used to produce "flexibility": UHS and BESS. Morishima elasticity of substitution:

$$\sigma_{x_i,x_j} = \frac{\partial \ln(x_j/x_i)}{\partial \ln(p_i/p_j)}$$

- Complements if $\sigma \leq 0$ (if BESS cost \downarrow , UHS capacity \uparrow)
- Substitutes if $\sigma > 0$ (if BESS cost \downarrow , UHS capacity \downarrow)

 Numerical modeling of the German energy system

2 inputs can be used to produce "flexibility": UHS and BESS. Morishima elasticity of substitution:

$$\sigma_{x_i,x_j} = \frac{\partial \ln(x_j/x_i)}{\partial \ln(p_i/p_j)}$$

- Complements if $\sigma \leq 0$ (if BESS cost \downarrow , UHS capacity \uparrow)
- Substitutes if $\sigma > 0$ (if BESS cost \downarrow , UHS capacity \downarrow)

- Numerical modeling of the German energy system
- BESS and UHS investment for different cost assumptions
- Regression: log-capacity against log-cost ratios

 Regression

Results

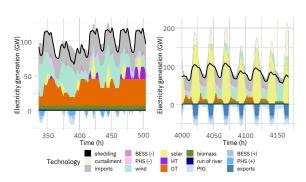


Figure: Electric generation for a typical winter week (left) and summer week (right)

• The two options substitute each other: $\sigma > 0$

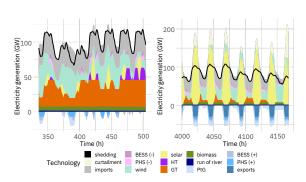


Figure: Electric generation for a typical winter week (left) and summer week (right)

- The two options substitute each other: $\sigma > 0$
- Elasticity to BESS cost= 3

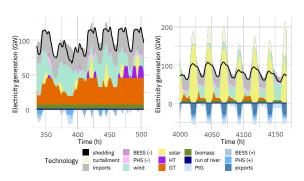
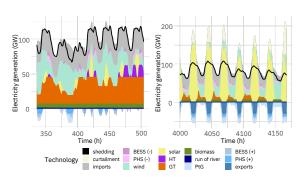
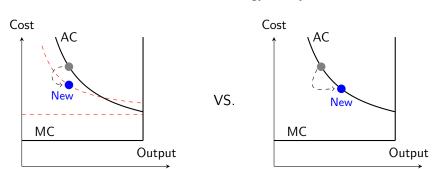


Figure: Electric generation for a typical winter week (left) and summer week (right)

- The two options substitute each other: $\sigma > 0$
- Elasticity to BESS cost= 3
- Elasticity to UHS cost= 1




Figure: Electric generation for a typical winter week (left) and summer week (right)

- The two options substitute each other: $\sigma > 0$
- Elasticity to BESS cost= 3
- Elasticity to UHS cost = 1
- New challenge for H₂: competition from BESS

Chapter 4


Strategic Investments: Electrolysis vs. Storage for Europe's Energy Security in the Hydrogen Era

Solo-authored Published in: *Energy Policy*

 The EU to import a large part of its H₂ consumption (Dejonghe, Van de Graaf, and Belmans 2023)

- The EU to import a large part of its H₂ consumption (Dejonghe, Van de Graaf, and Belmans 2023)
- Hydrogen imports to take over the current dependence on gas imports (Carlson, Pickford, and Nyga-Łukaszewska 2023)

- The EU to import a large part of its H₂ consumption (Dejonghe, Van de Graaf, and Belmans 2023)
- Hydrogen imports to take over the current dependence on gas imports (Carlson, Pickford, and Nyga-Łukaszewska 2023)
- Historical practice for Oil & Gas: stockpilling. (Chao and Manne 1983) Would it be relevant for H₂?



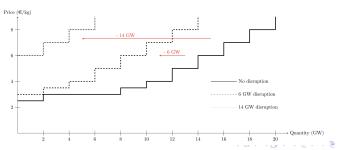
Motivation

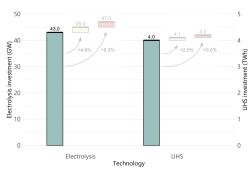
- The EU to import a large part of its H₂ consumption (Dejonghe, Van de Graaf, and Belmans 2023)
- Hydrogen imports to take over the current dependence on gas imports (Carlson, Pickford, and Nyga-Łukaszewska 2023)
- Historical practice for Oil & Gas: stockpilling. (Chao and Manne 1983) Would it be relevant for H₂?

Research question

What optimal hedging strategy for the European H₂ import dependency?

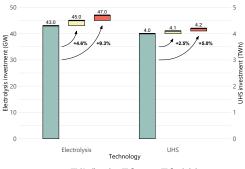
Numerical Model

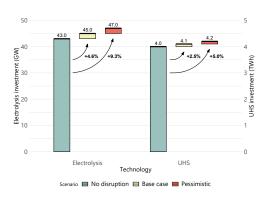

- SDDP algorithm, Central Western Europe, One-year horizon, hourly dispatch
- Endogenous PtG (electrolysis) and UHS (H₂ storage) investment



Numerical Model

- SDDP algorithm, Central Western Europe, One-year horizon, hourly dispatch
- Endogenous PtG (electrolysis) and UHS (H₂ storage) investment
- Markov chain: 3 states of the world with transition probabilities




Scenario ■ No disruption ■ Base case ■ Pessimistic

Results

Scenario ■ No disruption ■ Base case ■ Pessimistic

- Both UHS and electrolysis are helpful: Complementarity between the two
- Electrolysis is more efficient: Twice as much strategic investment as UHS, 95% of the budget

- Both UHS and electrolysis are helpful: Complementarity between the two
- Electrolysis is more efficient:
 Twice as much strategic investment as UHS, 95% of the budget
- Public support: Private investments will undershoot optimal investment levels (energy security as a public good).
 Electrolysis should be the priority.

 Flexibility used to be an abundant by-product of power generation – decarbonization makes it a scarce resource

- Flexibility used to be an abundant by-product of power generation – decarbonization makes it a scarce resource
- Market flaws become more prevalent

- Flexibility used to be an abundant by-product of power generation – decarbonization makes it a scarce resource
- Market flaws become more prevalent
- Old and new modeling approaches (Micro, IO, Markov chains, SDDP, MPEC)

- Flexibility used to be an abundant by-product of power generation – decarbonization makes it a scarce resource
- Market flaws become more prevalent
- Old and new modeling approaches (Micro, IO, Markov chains, SDDP, MPEC)
- Key insights:
 - 1 Nuclear flexibility has value
 - 2 Incentives matter today more than ever
 - 3 Electricity can be (partially) stored, challenging peaking plants
 - 4 Energy security can be (partially) treated with domestic resources

Strike the right balance between risk hedging and incentives.

Strike the right balance between risk hedging and incentives.

Grids

How to get flexibility signals at the grid level? (nodal/zonal)

Strike the right balance between risk hedging and incentives.

Grids

How to get flexibility signals at the grid level? (nodal/zonal)

Demand

How can flexibility foster electrification? (V2G, HP)

Strike the right balance between risk hedging and incentives.

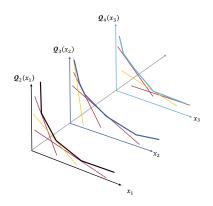
Gride

How to get flexibility signals at the grid level? (nodal/zonal)

Demand

How can flexibility foster electrification? (V2G, HP)

Market design


Can an efficient market design be enough? (entry barriers, modularity, transaction costs)

Thank you

Questions from the Jury

Appendix: SDDP

Each iteration of forward/backward pass adds a Benders cut to the "policy" function, and the approximation of the true cost-to-go function ameliorates.

▶ Main slide

(7)

(8)

(9)

Appendix: MPEC

$$\max_{q_t^{nuc}} \quad \Pi(q_t^{nuc})$$

s.t.
$$q_{min}^{nuc} \le q_t^{nuc} \le Q_{nuc} \quad \forall t$$
 (1)

$$\sum |q_{t+1}^n - q_t^n| \le L \tag{2}$$

Market clearing

$$0 \le -a_t + bd_t + p_t \perp d_t \ge 0 \quad \forall t$$
 (3)

$$d_t - q_t^g - q_t^{PV} - q_t^{wind} - q_t^n - q_t^{hydro,bio} = 0, p_t \text{ free}, \quad \forall t$$
 (4)
 $PV \ Wind \ and \ Gas$

PV, Wind, and Gas

$$0 \le e + f a_s^g - n_s + u_s^g + a_s^g \ge 0 \quad \forall t$$
 (5)

$$0 \le e + fq_t^g - p_t + \mu_t^g \perp q_t^g \ge 0 \quad \forall t$$
 (5)

$$0 \le -q_t^g + q_{max}^g \perp \mu_t^g \ge 0, \quad \forall t$$
 (6)

$$0 \le -q_t^{PV} + q_{max}^{PV} \perp \mu_t^{PV} \ge 0$$
, $\forall t$

$$0 \le -q_t^{wind} + q_{max}^{wind} \perp \bar{\mu}_t^{wind} \ge 0, \forall t$$

$$0 \le -q_t^{avina} + q_{max}^{avina} \perp \mu_t^{avina} \ge 0, \quad \forall t$$

$$0 \leq q_t^{PV} - q_{min}^{PV} \perp \rho_t^{PV} \geq 0, \quad \forall t$$

$$0 \le q_t^{wind} - q_{min}^{wind} \perp \rho_t^{wind} \ge 0, \quad \forall t$$
 (10)

$$0 \le -p_t + u_t^{PV} - \rho_t^{PV} \perp a_t^{PV} \ge 0 \quad \forall t$$
 (11)

$$0 \le -p_t + \mu_t^* \cdot -\rho_t^* \cdot \pm q_t^* \cdot \ge 0 \quad \forall t$$
 (11)
 $0 \le -p_t + \mu_t^{wind} - \rho_t^{wind} \pm q_t^{wind} \ge 0 \quad \forall t$ (12)

$$0 \le -p_t + \mu_t - p_t \pm q_t \ge 0$$
 vi
Storage

$$0 \le \nu_{t-1} - \nu_t + \mu_{s,t} \perp S_t \ge 0, \quad \forall t > 1 \tag{13} \label{eq:13}$$

$$0 \le c_s + p_t - \eta \nu_t + \mu_t^{stor,+} \perp q_t^{stor,+} \ge 0, \forall t$$
 (14)

$$0 \le c_s - p_t + \nu_t + \mu_t^{stor,-} \perp q_t^{stor,-} \ge 0, \forall t$$
 (15)

$$S_{t+1} - S_t - na_t^{stor,+} + a_t^{stor,-} = 0, \nu_t \text{ free} \quad \forall t < T$$
 (16)

$$S_{t+1} - S_t - \eta q_t^{\text{cos}, +} + q_t^{\text{cos}, -} = 0, \nu_t \text{ free} \quad \forall t < T$$
 (1)

$$0 \le -S_t + S_{max} \perp \mu_t^s \ge 0, \quad \forall t \tag{17}$$

$$0 \leq -q_t^{stor,+} + q_{max}^{stor,+} \perp \mu_t^{stor,+} \geq 0, \quad \forall t \tag{} \label{eq:total_stor}$$

$$0 \le -q_t^{stor,-} + q_{max}^{stor,-} \perp \mu_t^{stor,-} \ge 0, \quad \forall t$$
 (19)

$$0 \le -q_t^{stor,+} + q_{max}^{stor,+} \perp \mu_t^{stor,+} \ge 0, \quad \forall t$$

$$(18)$$

Upper-level: the nuclear operator maximizes profit.

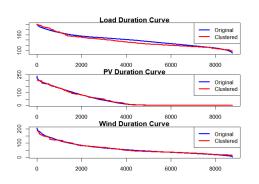
Lower-level: the competitive

market clears (Social welfare is maximized).

Lower-level problem (convex

quadratic) is replaced by KKT conditions.

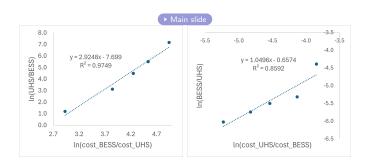
Appendix: Profit functions


• Perfect Competition: $\Pi_{PC} = \sum_{t} (p_t - c) q_t$

• Nuclear monopoly:

$$\Pi_{S} = \sum_{t} (a_{t} - bq_{t} - c)q_{t}$$

- Classical CfD: $\Pi_{CfD} = \sum_{t} (s - c) q_{t}$
- Negative Price CfD: $\Pi_{Neg} = \sum_{t} (p_t c) q_t + \mathbf{1}_{p_t > 0} \sum_{t} (s p_t) q_t$
- Capability CfD: $\Pi_{Cap} = \sum_{t} (p_t - c)q_t + (s - p_t)Q$


Appendix: Temporal aggregation

10 representative days extracted from historical data, using a clustering approach (k-medoïds)

Appendix: Dispatch

Appendix: Dispatch

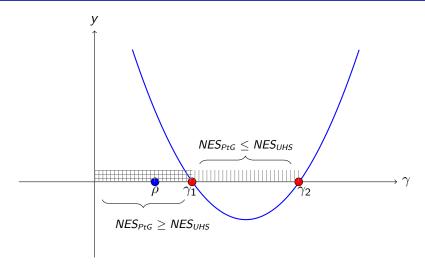


Figure: Graphical representation of the analytical result: PtG is more cost-efficient than UHS for hedging.