The poverty-environment trap:

Climate change, natural resources, and population dynamics in Sub-Saharan Africa

PhD Defense — Edouard Pignède

September 26, 2025

Paris-Saclay Applied Economics, AgroParisTech, University Paris-Saclay

Climate Economic Chair, University Paris-Dauphine-PSL

PhD supervisors:

Raja Chakir - Philippe Delacote - Julien Wolfersberger

Jury members:

Salvatore Di Falco - Flore Gubert - Mathieu Couttenier - Douglas Gollin - Katrin Millock

Introduction

Sub-Saharan Africa is at the heart of many challenges

- Facing higher climate change impacts, induced by GHG emissions for which they are not historically responsible (Bathiany et al., 2018; Ranasinghe et al., 2021)
- High demographic trend
 - $\,\rightarrow\,\,$ 50% of the increase in the human population by 2050
- Rich in natural resources, whose demand is increasing
- High level of poverty, which makes it more vulnerable to shocks

Introduction

Sub-Saharan Africa is at the heart of many challenges

- Facing higher climate change impacts, induced by GHG emissions for which they are not historically responsible (Bathiany et al., 2018; Ranasinghe et al., 2021)
- · High demographic trend
 - ightarrow 50% of the increase in the human population by 2050
- Rich in natural resources, whose demand is increasing
- High level of poverty, which makes it more vulnerable to shocks

Research question

How do climate change and natural resource endowments affect economic development and population dynamics in Sub-Saharan Africa?

This dissertation

Contributions

- Improve the understanding of structural dynamics of the impacts of:
 - → climate change on inequalities, migration, and mortality
 - → mineral resources exploitation on urbanization
- At various temporal and spatial scales.

This dissertation

Contributions

- Improve the understanding of structural dynamics of the impacts of:
 - → climate change on inequalities, migration, and mortality
 - → mineral resources exploitation on urbanization
- At various temporal and spatial scales.

Data & methods

- Use new high-coverage data
 - → Satellite imagery, remote sensing products, geological data
 - → Surveys such as census data from IPUMS, DHS, or LSMS-ISA
- Combination of ex-post impact evaluation and prospective modeling
 - → Empirical analysis of causal inference
 - → Quantitative spatial models (Redding and Rossi-Hansberg, 2017)

This dissertation

	Chapter 1	Chapter 2	Chapter 3	Chapter 4
Methodology				
Empirical analysis	×	×		×
Quant. spatial		×	×	
Main thematic				
Population dynamics	Inequality	Migration	Mortality	Urbanization
Environment		Climate change	→	Natural ressources
Geographic extent				
Country case study	×			
Continent wide		×	X	×

Chapter 1

Who carries the burden of climate change?

Heterogeneous impact of drought in Sub-Saharan Africa.

Published in the American Journal of Agricultural Economics

Weather shocks and inequality

Context

- Droughts are the most important hazard impacting African continent (Trisos et al., 2022)
- Most vulnerable households, which have barriers to resources required for adaptation, may not be able to cope with droughts

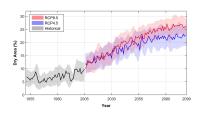


Figure: Climate change impact on drought occurence (Ahmadalipour et al., 2019)

Research gap

- Limited evidence on distributional impact of weather shocks (Hallegatte and Rozenberg, 2017)
- Measure the unconditional quantile treatment effect (Frölich and Melly, 2013)

Data

- Three waves of representative geo-referenced panel data from LSMS-ISA in Ethiopia and Malawi
- High-resolution Standardized Precipitation and Evaporation Index (SPEI)

Idenfication strategy

- Leverage the specific spatial and temporal patterns of drought in Ethiopia and Malawi
- Quantile treatment effect under the copula stability assumption (Callaway and Li, 2019)

Drought increases inequality

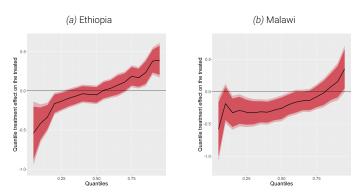


Figure: Quantile treatment effect on income per capita

Drought increases inequality

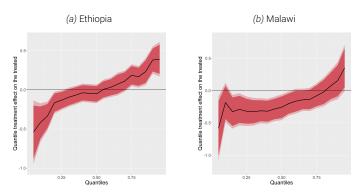


Figure: Quantile treatment effect on income per capita

- Richest households have a higher capacity to find alternative sources of income
- In Ethiopia, the richest households turn to the non-agricultural sector

Drought increases inequality

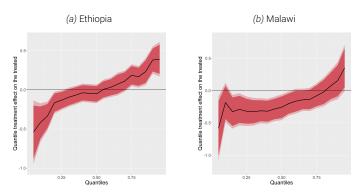


Figure: Quantile treatment effect on income per capita

- Richest households have a higher capacity to find alternative sources of income
- In Ethiopia, the richest households turn to the non-agricultural sector
- → Climate justice is a multilevel issue: within poor countries, climate change disproportionately burdens the poor

Chapter 2

Climate immobility in sub-Saharan Africa

co-written with Julien Wolfersberger

Climate immobility

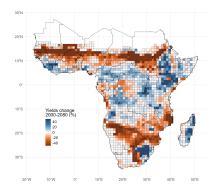


Figure: Spatial distribution of climate change impact on yields

Climate immobility

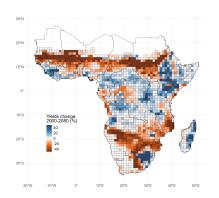


Figure: Spatial distribution of climate change impact on yields

Context

- Weather and climate have been recognized as important drivers of migration (Cattaneo et al., 2019; Defrance et al., 2022; Di Falco et al., 2024)
- As climate change impacts households' income, it may impose financial constraints blocking mobility, generating labor misallocations

Climate immobility

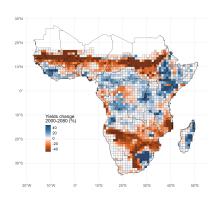


Figure: Spatial distribution of climate change impact on yields

Context

- Weather and climate have been recognized as important drivers of migration (Cattaneo et al., 2019; Defrance et al., 2022; Di Falco et al., 2024)
- As climate change impacts households' income, it may impose financial constraints blocking mobility, generating labor misallocations

Main contribution

Focus on workers immobility

Method

Document motivating facts of immobility in 21 countries of SSA

 Look at heterogeneity in the migration induced by weather & climate shocks across individuals' income levels

Build a quantitative spatial model to measure the cost of immobility under future climate scenarios

- Consider channels of adaptation through migration, production and trade
- · Take the model to rich census and satellite data
- Focus on spatial misallocation: workers unable to migrate due to (endogenous) resource constraints

Motivating facts

- Droughts increase out-migration except for the poorest households
- Droughts \$\psi\$ distance of migration, except for the richest households
- \bullet Long-term changes in temperature \downarrow out-migration for the poorest households

Motivating facts

- Droughts increase out-migration except for the poorest households
- Droughts \$\primeq\$ distance of migration, except for the richest households
- Long-term changes in temperature \downarrow out-migration for the poorest households

Quantification results in 2080

- 31M trapped workers due to CC
- Substantial

 in the cost of CC, measured by welfare or GDP per capita
- Important spatial heterogeneity across districts and countries

Figure: Spatial distribution of trapped workers

Motivating facts

- Droughts increase out-migration except for the poorest households
- Droughts \downarrow distance of migration, except for the richest households
- Long-term changes in temperature \downarrow out-migration for the poorest households

Quantification results in 2080

- 31M trapped workers due to CC
- Substantial ↑ in the cost of CC, measured by welfare or GDP per capita
- Important spatial heterogeneity across districts and countries

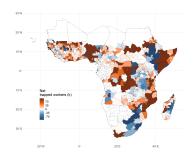


Figure: Spatial distribution of trapped workers

 \rightarrow Provide some evidence on how decrease in migration costs could mitigate trapped workers

Chapter 3

Climate change, adaptation, and mortality

Climate mortality

Context

- Climate change has a strong impact on mortality
 - → From 1991 to 2018, climate change accounted for 2 deaths for 100,000 individuals by year (Vicedo-Cabrera et al., 2021)
 - ightarrow By the end of the century, high temperatures could provoke 73 deaths for 100,000 individuals by year (Carleton et al., 2022)

Number of deaths							
Region	Undernutrition	Vector-borne disease	Diarrhoeal Disease	Heat	Total		
SSA	61,890	22,725	23,865	10,081	118,561		
World	84,697	32,977	32,955	94,621	245,250		

Table: Additional deaths attributable to climate change in 2050 according to WHO

Climate mortality

Context

- Climate change has a strong impact on mortality
 - → From 1991 to 2018, climate change accounted for 2 deaths for 100,000 individuals by year (Vicedo-Cabrera et al., 2021)
 - ightarrow By the end of the century, high temperatures could provoke 73 deaths for 100,000 individuals by year (Carleton et al., 2022)

	Number of deaths							
Region	Undernutrition	Vector-borne disease	Diarrhoeal Disease	Heat	Total			
SSA	61,890	22,725	23,865	10,081	118,561			
World	84,697	32,977	32,955	94,621	245,250			

Table: Additional deaths attributable to climate change in 2050 according to WHO

Research gap

- Projections of climate-induced mortality missed major mechanisms

 - → Adaptation to health-related impacts of climate change
- Method to quantify the impact of selected policies in reducing the mortality burden of climate change

The Model

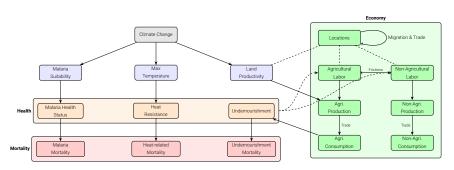


Figure: Schematic representation of the model

- Climate change is a major driver of mortality
 - By 2050, climate-induced mortality reaches almost 40 individuals per 100,000 in SSA
 - Main drivers are undernutrition and malaria prevalence.
- Policies targeting specific mortality channels are effective but can have:
 - → Side-effects on other mortality channels
 - → Generational trade-offs
 - → Distributional impacts

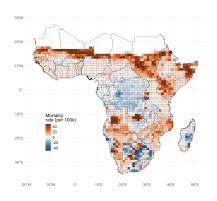


Figure: Spatial distribution of climate change-induced mortality

Chapter 4

Golden Towns

Artisanal mining and urbanization in Africa

co-written with Victoire Girard

Artisanal mining and urbanization

Context

- The African continent is urbanizing at high speed: from 15% in 1960 to 50% in 2020.
- Artisanal and small-scale mining (ASM) is a high-scale, labor-intensive activity, whose location depends on mine deposits
- 60 million people depend on ASM in sub-Saharan Africa 63% of them involved with gold extraction (Hruschka, 2022)

Research gap

- Lack of reliable statistics on ASM
- Tracking long-term urbanization is challenging in low-income countries
- ⇒ Limited evidence on how ASM impacts development and population dynamics

- Levy satellite-based data on human settlements to measure urbanization
- Build a panel of cities spanning 1975 to 2020

- Levy satellite-based data on human settlements to measure urbanization
- Build a panel of cities spanning 1975 to 2020

Figure: Urbanization in Burkina Faso

- Levy satellite-based data on human settlements to measure urbanization
- Build a panel of cities spanning 1975 to 2020

Figure: Urbanization in Burkina Faso

- Levy satellite-based data on human settlements to measure urbanization
- Build a panel of cities spanning 1975 to 2020

Figure: Urbanization in Burkina Faso

- Levy satellite-based data on human settlements to measure urbanization
- Build a panel of cities spanning 1975 to 2020

Figure: Urbanization in Burkina Faso

- Levy satellite-based data on human settlements to measure urbanization
- Build a panel of cities spanning 1975 to 2020

Figure: Urbanization in Burkina Faso

- Levy satellite-based data on human settlements to measure urbanization
- Build a panel of cities spanning 1975 to 2020

Figure: Urbanization in Burkina Faso

- Levy satellite-based data on human settlements to measure urbanization
- Build a panel of cities spanning 1975 to 2020

Figure: Urbanization in Burkina Faso

- Levy satellite-based data on human settlements to measure urbanization
- Build a panel of cities spanning 1975 to 2020

Figure: Urbanization in Burkina Faso

Data & Method

Urbanization

- Levy satellite-based data on human settlements to measure urbanization
- Build a panel of cities spanning 1975 to 2020

Figure: Urbanization in Burkina Faso

Data & Method

Urbanization

- Levy satellite-based data on human settlements to measure urbanization
- Build a panel of cities spanning 1975 to 2020

Figure: Urbanization in Burkina Faso

Data & Method

Urbanization

- Levy satellite-based data on human settlements to measure urbanization
- Build a panel of cities spanning 1975 to 2020

Artisanal mining

- We exploit exogenous variations in the value of potential local ASgM activities.
- Spatial exposure: gold mining requires a gold suitable geology (Girard et al., 2022)
- Time exposure: Variations in the world price of gold dictate how much miners earn and artisanal miners are price takers (Alvarez et al., 2016; Sanchez de la Sierra, 2020)

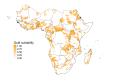


Figure: Gold suitability

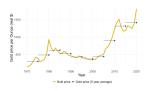


Figure: World price of gold

Artisanal mining

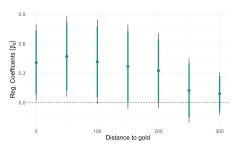


Figure: Artisanal mining and urbanization

• Artisanal mining drives urbanization.

Artisanal mining

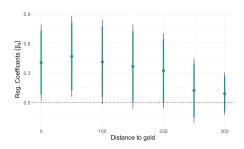


Figure: Artisanal mining and urbanization

- Artisanal mining drives urbanization.
- But this urbanization is concentrated in poorer cities, with lower living standards.
- ASgM exposed cities are more remote, with poor infrastructure and fewer industries.
- $\,\rightarrow\,$ New dimension of resource curse: urbanization with low living standards

Conclusion

Conclusion

Main takeaways

- Climate justice
 - → Most vulnerable people cannot adapt to climate change
 - $\,\,\rightarrow\,\,$ They bear the cost in terms of high-inequality, poverty, and mortality
 - → Risk of exacerbation of inequality with climate change
- → Climate-induced poverty trap: Vital need to fight poverty and climate change now, to avoid long-term impact for the most vulnerable population
 - Resource curse
 - → ASM leads to a bad-quality urbanization in SSA
- ightarrow Without investment in new infrastructures, cities may not be successful and sustainable

References L

- Ahmadalipour, Ali et al. (Apr. 2019). "Future drought risk in Africa: Integrating vulnerability, climate change, and population growth". Science of The Total Environment 662, pp. 672–686. ISSN: 0048-9697. DOI: 10.1016/j.scitotenv.2019.01.278. URL: http://dx.doi.org/10.1016/j.scitotenv.2019.01.278.
- Alvarez, Yves Bertran, Baptiste Coue, and Patrick Schein (2016). Filieres de Commercialisation de l'or

 Artisanal En Afrique de l'Ouest. contrat n° 16002733. Financement FFEM, GEF, ONUDI. URL:

 https://www.responsiblemines.org/wp-content/uploads/2018/04/Publication-filierescommercialisation-or-artisanal-Afrique-Ouest -FR -baja.pdf.
- Bathiany, Sebastian et al. (May 2018). "Climate Models Predict Increasing Temperature Variability in Poor Countries". Science Advances 4.5, eaar5809. DOI: 10.1126/sciadv.aar5809. URL:
 https://www.science.org/doi/10.1126/sciadv.aar5809 (visited on 01/29/2025).
- Callaway, Brantly and Tong Li (2019). "Quantile Treatment Effects in Difference in Differences Models with Panel Data". Quantitative Economics 10.4, pp. 1579–1618. ISSN: 1759-7331. DOI: 10.3982/QE935. URL: https://onlinelibrary.wiley.com/doi/abs/10.3982/QE935 (visited on 04/19/2022).
- Carleton, Tamma et al. (Nov. 2022). "Valuing the Global Mortality Consequences of Climate Change Accounting for Adaptation Costs and Benefits*". The Quarterly Journal of Economics 137.4, pp. 2037–2105. ISSN: 0033-5533. DOI: 10.1093/qje/qjac020. URL: https://doi.org/10.1093/qje/qjac020 (visited on 12/20/2024).

References II

- Cattaneo, Cristina et al. (July 2019). "Human Migration in the Era of Climate Change". Review of

 Environmental Economics and Policy 13.2, pp. 189-206. ISSN: 1750-6816. DOI: 10.1093/reep/rez008.

 URL: https://www.journals.uchicago.edu/doi/full/10.1093/reep/rez008 (visited on 04/18/2023).
- Conte, Bruno (2023). "Climate Change and Migration: The Case of Africa". SSRN Electronic Journal. ISSN: 1556-5068. DOI: 10.2139/ssrn.4226415. URL: https://www.ssrn.com/abstract=4226415 (visited on 10/24/2022).
- Costinot, Arnaud, Dave Donaldson, and Cory Smith (Feb. 2016). "Evolving Comparative Advantage and the Impact of Climate Change in Agricultural Markets: Evidence from 1.7 Million Fields around the World".

 Journal of Political Economy 124.1, pp. 205–248. ISSN: 0022-3808. DOI: 10.1086/684719. URL:

 https://www.journals.uchicago.edu/doi/10.1086/684719 (visited on 09/22/2023).
- Defrance, Dimitri, Esther Delesalle, and Flore Gubert (Aug. 2022). "Migration Response to Drought in Mali. An Analysis Using Panel Data on Malian Localities over the 1987-2009 Period". Environment and Development Economics, pp. 1-20. ISSN: 1355-770X, 1469-4395. DOI: 10.1017/S1355770X22000183.

 URL: https://www.cambridge.org/core/journals/environment-and-development-economics/article/abs/migration-response-to-drought-in-mali-an-analysis-using-panel-data-on-malian-localities-over-the-19872009-period/962EE854AED1B0EDE4B75A730A3C3A18 (visited on 03/08/2023).

- Desmet, Klaus et al. (Aug. 2018). Evaluating the Economic Cost of Coastal Flooding. Working Paper. DOI:
 - 10.3386/w24918. National Bureau of Economic Research: 24918. URL:
 - https://www.nber.org/papers/w24918 (visited on 05/24/2023).
- Di Falco, Salvatore et al. (Jan. 2024). "Leaving Home: Cumulative Climate Shocks and Migration in
 - Sub-Saharan Africa". Environmental and Resource Economics 87.1, pp. 321-345. ISSN: 1573-1502. DOI:
 - $10.1007/s10640-023-00826-x. \ \textbf{URL:} \ https://doi.org/10.1007/s10640-023-00826-x. \ \textbf{(visited on 01/22/2024)}.$
- Fajgelbaum, Pablo and Stephen J. Redding (May 2022). "Trade, Structural Transformation, and Development: Evidence from Argentina 1869–1914". *Journal of Political Economy* 130.5, pp. 1249–1318. ISSN: 0022-3808. 1537-534X. DOI: 10.1086/718915. URL:
 - https://www.journals.uchicago.edu/doi/10.1086/718915 (visited on 03/21/2023).
- Frölich, Markus and Blaise Melly (July 2013). "Unconditional Quantile Treatment Effects Under Endogeneity".
 - Journal of Business & Economic Statistics 31.3, pp. 346-357. ISSN: 0735-0015. DOI:
 - 10.1080/07350015.2013.803869. URL: https://doi.org/10.1080/07350015.2013.803869 (visited on 09/18/2023).
- Girard, Victoire, Teresa Molina-Millàn, and Guillaume Vic (Mar. 2022). "Artisanal Mining in Africa". Working paper Draft version.

05/24/2023).

Gouel, Christophe and David Laborde (Mar. 2021). "The Crucial Role of Domestic and International Market-Mediated Adaptation to Climate Change". Journal of Environmental Economics and Management 106, p. 102408. ISSN: 0095-0696. DOI: 10.1016/j.jeem.2020.102408. URL:
https://www.sciencedirect.com/science/article/pii/S0095069620301315 (visited on

Hallegatte, Stephane and Julie Rozenberg (Apr. 2017). "Climate Change through a Poverty Lens". Nature Climate Change 7.4, pp. 250–256. ISSN: 1758-6798. DOI: 10.1038/nclimate3253. URL:

https://www.nature.com/articles/nclimate3253 (visited on 08/03/2022).

Hruschka, Félix (2022). ASM Inventory 2022. URL: https://artisanalmining.org/Inventory/.

Morten, Melanie and Jaqueline Oliveira (Apr. 2024). "The Effects of Roads on Trade and Migration: Evidence from a Planned Capital City". *American Economic Journal: Applied Economics* 16.2, pp. 389–421. ISSN: 1945-7782, 1945-7790. DOI: 10.1257/app.20180487. URL:

https://pubs.aeaweb.org/doi/10.1257/app.20180487 (visited on 02/28/2025).

- Ranasinghe, Roshanka et al. (2021). "Climate Change Information for Regional Impact and for Risk Assessment.". Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (Eds.)] Cambridge University Press. In Press. Cambridge, United Kingdom and New York, NY, USA, pp. 1767–1926. URL: 10.1017/9781009157896.014...
- Redding, Stephen J. and Esteban Rossi-Hansberg (Aug. 2017). "Quantitative Spatial Economics". *Annual Review of Economics* 9.1, pp. 21–58. ISSN: 1941-1383, 1941-1391. DOI:
 - 10.1146/annurev-economics-063016-103713. URL:
 - https://www.annualreviews.org/doi/10.1146/annurev-economics-063016-103713 (visited on 02/28/2023).
- Sanchez de la Sierra, Raul (Jan. 2020). "On the Origins of the State: Stationary Bandits and Taxation in Eastern Congo". Journal of Political Economy 128.1, pp. 32–74. ISSN: 1537-534X. DOI: 10.1086/703989. URL: http://dx.doi.org/10.1086/703989.

References VI

- Trisos, Christopher H. et al. (2022). "2022: Africa". Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (Eds.)] Cambridge University Press. In Press. Cambridge, UK and New York, NY, USA, pp. 1285–1455. URL:
 - 10.1017/9781009325844.011 (visited on 07/18/2022).
- Vicedo-Cabrera, A. M. et al. (June 2021). "The Burden of Heat-Related Mortality Attributable to Recent Human-Induced Climate Change". Nature Climate Change 11.6, pp. 492–500. ISSN: 1758-6798. DOI: 10.1038/s41558-021-01058-x. URL: https://www.nature.com/articles/s41558-021-01058-x (visited on 01/31/2025).

Appendix

Chapter 1

- ▶ Drought occurence
- ► OTT Consumption ► OTT Asset
- ▶ Paralel trends ▶ Copula stability
- ▶ Share of consumption in income

Chapter 2

- ► IPUMS countries
- ▶ Migration response
 ▶ w long difference
 ▶ w distance
- ▶ Parameter values ▶ Model fit ▶ Fit agr. emp
- ▶ Main results ▶ Welfare distribution

Chapter 3

- ► Mort over time
- ► Spatial mort by type
-, -...,
- ► Emp. mort. (old)
- ► Emp. mort. (young)
- ► Emp. mort. (adult)

- ► Spatial dist drivers
- ▶ Malaria suitability
- ▶ Protein consumption

Chapter 4

- ▶ Gold suit correlation ▶ ASM Burkina Faso
- ▶ Support village
- Dynamic result

Drought occurrence

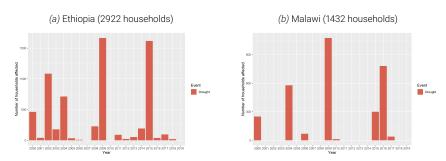


Figure: Number of households affected by drought over time in Ethiopia and Malawi

- One major drought affecting a large proportion of the population occurred just before the last year of the survey
- No major drought occurred between the first wave of the survey to the last wave of the survey

◆ Back 2/3

QTT on Consumption per capita

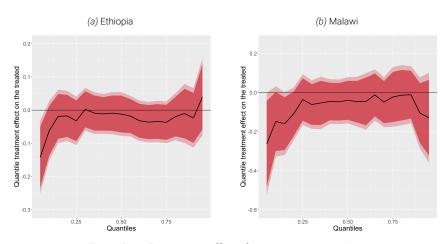


Figure: Quantile treatment effect of consumption per capita

◆ Back 3/3

[▶] Share of consumption in income

QTT on Asset

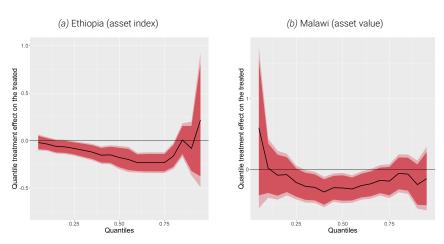


Figure: Quantile treatment effect of asset

Distributional difference-in-differences assumption — Income per capita

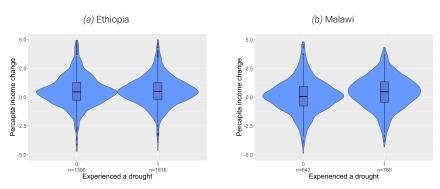


Figure: Distribution of change in the log of per-capita income for the treated and the control group between t-1 and t-2

◆ Back 5/3

Copula stability assumption — Income per capita

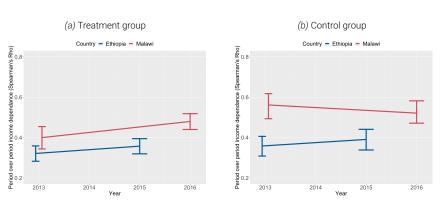


Figure: Evolution of the year-over-year income dependence (Spearman's rho) in Ethiopia and Malawi for the control and treatment group in all panel waves

◆ Back 6/30

Share of consumption in income

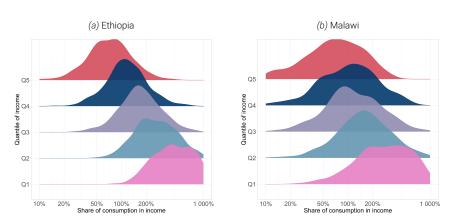


Figure: Share of consumption in income by quantile of income

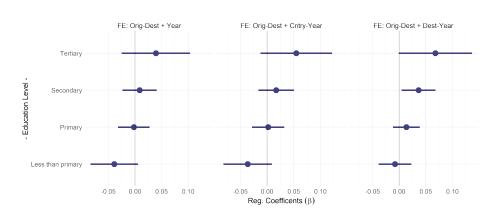
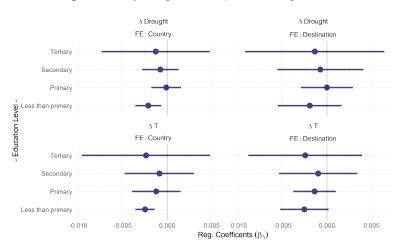

Empirical model — IPUMS data

Figure: Countries and census years considered from IPUMS

Empirical motivations

Figure: Elasticity of migration in response to drought events



■ Back

Empirical motivations

Results — Long difference

Figure: Elasticity of migration in response to drought events

Empirical motivations

Results - Distance of migration

Dependent Variable:	Migration rate (log)							
Education	Less than primary		Primary		Secondary		Tertiary	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Variables								
Droughts	-0.008	0.004	0.014	0.020	0.036**	0.042**	0.068*	0.066*
	(0.016)	(0.017)	(0.013)	(0.013)	(0.016)	(0.017)	(0.035)	(0.036)
Droughts × Distance > 300 km		-0.223***		-0.144**		-0.173**		0.051
		(0.072)		(0.066)		(0.086)		(0.169)
Observations	11,630	11,630	11,253	11,253	9,773	9,773	6,617	6,617
Mean dep. var.	0.004	0.004	0.006	0.006	0.010	0.010	0.015	0.015
Mean mig. dist.	204.0	204.0	225.1	225.1	258.5	258.5	279.6	279.6

Table: Drough-induced migration by distance of migration

Calibration parameters

Parameter	Description	Source
$\alpha_A = 0.6$	Crop land share in production	Fajgelbaum and Redding (2022)
$\theta = 1.1$	Dispersion of within-admin land productivity distribution	Gouel and Laborde (2021)
$\nu = 3$	Dispertion of workers distribution preferences for locations	Morten and Oliveira (2024)
$\eta_k = 5.4$	Elasticity of substitution between varieties (agriculture)	Costinot et al. (2016)
$\eta_M = 4$	Elasticity of substitution between varieties (manufacturing)	Desmet et al. (2018)
$\sigma = 0.26$	Elasticity of substitution between goods for final demand	Conte (2023)
$\delta = 0.16$	Distance elasticity of trade costs	Conte (2023)
$\tau = 7.8$	Cross country trade tariffs	Conte (2023)
$\gamma = 2.5$	Elasticity of substitution between agricultural goods	Conte (2023)
$\epsilon_A = 0.2$	Non-homotetic parameter for agricultural goods	Conte (2023)
$\epsilon_M = 1$	Non-homotetic parameter for non-agricultural goods	Conte (2023)

Table: Calibrated migration costs validation

◆ Back 12/

Model fit

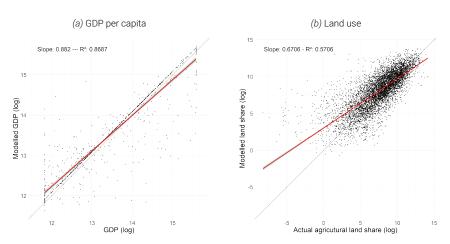


Figure: Model fit with real data

◆ Back 13/30

Model fit

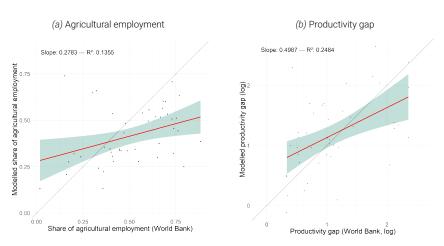


Figure: Model fit with real data

◆ Back 14/30

Main Results

Table: The Economy in 2080 under RCP8.5 relative to no Climate Change

		(1) Baseline	(2) No budget constraint
Climate migration (M)	$\Delta N_i \Delta N_i > 0$	29.56	83.72
Net trapped workers (M)	$\Delta N_{b,i}$	30.70	-
Real income pc change (%)	Δv_i	-4.06	-2.77
Non-ag. emp. change (%)	ΔN_i^M	-0.62	-2.68
Welfare change (%)	ΔW_i	-2.62	-1.84

◆ Back
15/3

Results - Spatial distribution

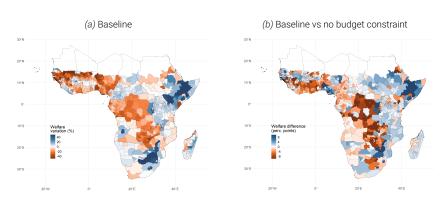


Figure: The distributional impact of climate change on welfare according to the inclusion of liquidity constraint

◆ Back 16/30

Results — Aggregated results

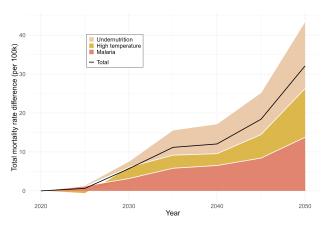


Figure: Climate change induced mortality over time

◆ Back 17/30

Results - Spatial distribution

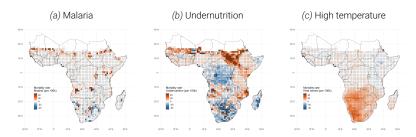


Figure: Spatial distribution of mortality by channel

■ Back 18/30

Results — Mortality drivers

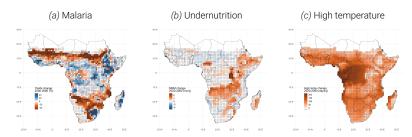


Figure: Drivers of mortality channel

◆ Back 19/30

Heat waves mortality (old people)

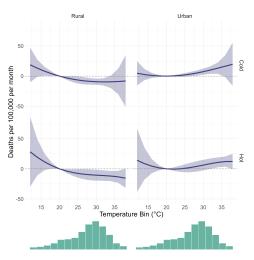


Figure: High temperature impact on mortality (60 years old and older)

◆ Back 20/3

Heat waves mortality (young people)

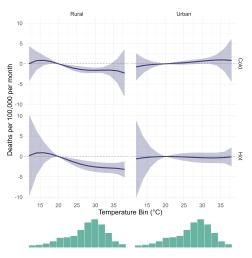


Figure: High temperature impact on mortality (0-15 years old)

◆ Back 21/30

Heat waves mortality (adults)

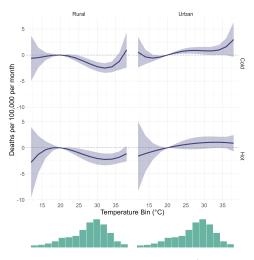


Figure: High temperature impact on mortality (15-60 years old)

◆ Back
22/

Malaria

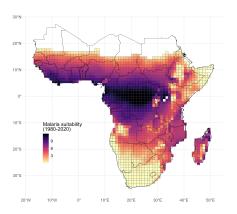


Figure: Malaria suitability map

◆ Back 23/30

Protein consumption

Crop	Calories (millions)	Share	Crop	Calories (millions)	Share
Maize	1,872.16	16.54%	Oil palm fruit	469.47	4.15%
Cassava	1,530.87	13.52%	Yams	392.59	3.47%
Rice	1,123.89	9.93%	Groundnuts	372.98	3.30%
Wheat	871.59	7.70%	Millet	324.72	2.87%
Livestock products	641.26	5.67%	Banana	308.94	2.73%
Sorghum Sugar cane	610.25 557.18	5.39% 4.92%	Other cereals Other	259.12 1,984.40	2.29% 17.53%

Table: Calories per agricultural products in Sub-Saharan Africa

◆ Back 24/30

Results - Distribution

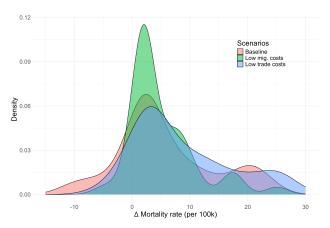
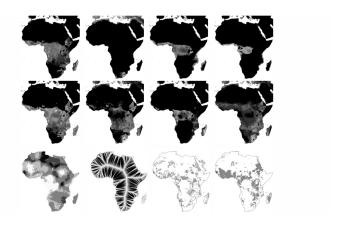


Figure: Country distribution of mortality under RCP8.5 relative to no Climate Change

◆ Back 25/3


Results - Policies

	(1) Baseline	(2) Low trade costs	(3) Low mig. costs
Total mortality (per 100k)	9.56	12.27	8.95
Undernutrition	5.19	7.69	1.94
— Malaria	4.76	8.60	3.34
Heat waves	3.19	3.35	4.77
Welfare change (%)	-0.23	-0.27	-0.08
Migration (M)	10.61	11.25	14.22
Non-ag. emp. change (%)	-0.25	0.43	-1.67

Table: Results in 2050 under RCP8.5 relative to no Climate Change for different policy scenarios

◆ Back 26/30

Gold suitability correlation

Notes: each map represents the following variables, going left to right and top to bottom [we include in bracket the Pearson pairwise correlation between the gold suitability data and each variable]: suitability for banana [0.25], barely [-0.10], cocoa [0.15], coconut [0.04], coffee [0.27], sunflower [0.14], tea [0.17] or tobacco [0.16], prevalence of high temperatures over the study period [-0.12], distance to coast [0.00], geology-based gold suitability [0.70], and man-made ASgM records [0.37].

Figure: Core cells characteristics. Source: Girard et al. (2022)

◆ Back 27/30

Gold suitability example

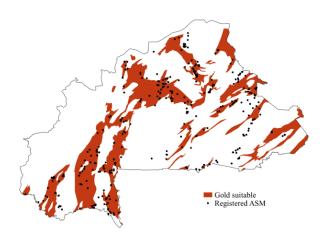


Figure: Artisanal mining in Burkina Faso. Source: Girard et al. (2022)

◆ Back 28/30

Support village

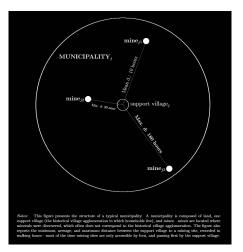
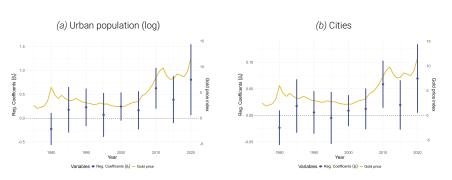



Figure: The structure of mining areas. Source: Sanchez de la Sierra (2020)

◆ Back 29/30

Results - Dynamic

Figure: Artisanal mining and urbanization — Dynamic

◆ Back 30/30